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Oscillations for Certain Difference Equations
with Continuous Variable

Binggen Zhang and Linlin Zhao

Abstract. In this paper, we investigate some nonlinear difference equations with
continuous variable. A linearized oscillation result is established and oscillation
criteria for some forced difference equations are obtained.
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0. Introduction

Recently, there has been an increasing interest in the study of the oscillatory
behavior of the solutions of delay difference equations [1]. In [3], authors
consider the oscillation of the delay difference equation

y(t) —y(t—7)+pt)H(y(t —0)) = f()  (t=0)
where 7,0 > 0, and p € C(Ry,Ry), f € C(R4,R) and H € C(R,R). In the
present paper we use some ideas from [3] to consider the oscillation of the
equation

y(t—1) —y(t)+Zpifi(y(t+Ui)) =0 (1)

where 7 > 0,0, > ... > 01 > 0,p; >0, f; € C(R,R),uf;(u) > 0 for u # 0 and
limy, o0 @ =1, and of the equation

y(t) —a@y(t —7) + Gt y(t — o)) = f(t) (2)
where 7,0 > 0 and a € C(R{,R;),G € C(R+ x R,R) and f € C(R4,R).
As usuall, a solution of equation (1) or (2) is said to be oscillatory if it is
neither eventually positive nor eventually negative. Otherwise the solution is
called non-oscillatory. In Section 1, we obtain a linearized oscillation result
for equation (1) and in Section 2 we obtain some oscillation criteria for the
forced equation (2).
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1. Linearized oscillation for equation (1)

Consider equation (1) together with the associated linear difference equation

y(t—7) —y() + Y _ piy(t+0;) = 0. (3)

i=1
The first lemma is borrowed from [2].

Lemma 1. The following statements are equivalent:
(a) FEvery solution of equation (3) oscillates.

(b) The characteristic equation
m
e M — 1+ Zpie’\‘” =0 (4)
i=1

has no real roots.

Lemma 2. FEvery solution of equation (3) oscillates if and only if the

inequality
m

y(t=7) —y(t) + Y _piy(t+0i) <0 ()

i=1
has no eventually positive solutions.

Proof. Necessity. Suppose y > 0 is an eventually positive solution of
equation (5). Then

m

y(t) =yt —7)+ Y piylt+o;) (=T —7>0). (6)

i=1
The further proof is simple and based on the following Knaster Fixed Point
Theorem [4]:

Let (X, <) be an ordered set, let for every subset M of X there exist inf M
and sup M, and let T : M — M be an increasing mapping, that is, x < y
implies Tx < Ty. Then there exists at least one element x € X such that
Tr =x.

To use this theorem, define the set

X={zeC:0<a(t)<ylt) t=T-1)}
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endowed with usual pointwise ordering, i.e. x1 < xg if z1(t) < x5(t) for every
t > T — 7. It is easy to see that every A C X has a supremum which belongs
to X. Define an operator S on X by

z(t—71)+ >0 pixt+o) ift>T

(1— £)y(t) + LoD if T—7<t<T.

(5z)(t) = { (7)

For any x € X, from
0< (Sz)(t) =a(t—7)+ > _p(t+05) <ylt—7)+ > piy(t+0s) < yl(t)
i=1 =1

for t > T and

0<(85)(0) = (1- 7 )w(t) + % <(-!

for T'— 7 <t < T we know that SX C X. Moreover, S is obviously non-
decreasing. By the Knaster Fixed Point Theorem, there exists an z* € X
such that Sz* =2*. AsT <t <T + T,

o) =z (t—7) + Zpix*(t + ;)

> " (t—1)
= Sz*(t — )
t—7 (t—1)y(t —71)Sx*(T)
:<1_ T )y(t_TH Ty(T)
> (1—t_T)y(t—T)
>0

Repeating this procedure, we get z*(t) > 0 as t > T. So z* is an eventually
positive solution of equation (3), which is a contradiction.

Sufficiency. Suppose equation (3) has an eventually positive solution y > 0
or eventually negative solution x < 0. Because the latter means —x > 0 is an
eventually positive solution of equation (3), we only discuss the former case.
It is easy to show that equation (5) has an eventually positive solution y > 0.
This is a contradiction B
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Lemma 3. Assume that uf;(u) > 0 for u # 0,lim, o # =1 and f;
is convex for u > 0 and concave for u <0 (i =1,2,...,m). Further, assume
that every solution of the equation

y(t =) —y(t)+(1—€)2piy(t+0¢) =0 (e€(0,1)) (8)

oscillates. Then every solution of equation (1) oscillates.

Proof. Suppose equation (1) has an eventually positive solution y and
set z(t —1ft s)ds > 0. Then

() = = (y(t) — y(t — 7)) szfz (t+0) >0

eventually. Hence lim; .o 2(t) = 0 > 0 exists. We claim that § =
Otherwise, 0 < § < co. We integrate equation (1) from ¢ — 7 to ¢t and get

/t: y(s —7)ds — /t; y(s)ds + g:pi /t; fily(s +04))ds=0. (9)

Since f; is convex for v > 0, by Jensen’s inequality we have

2(t—7) — +szfz (t+0y)) <O0. (10)

=1

Letting ¢ — oo, from (10) we obtain the inequality Y ;- p; f;(8) < 0 which

is a contradiction. By lim, o %u) =1 for any € € (0,1) there exists o > 0
such that

(I—-e)u< filu) < (1+e)u (u> ). (11)

Thus, from (10) we have

z(t—71)—2z(t)+ (1 —¢) Zpiz(t +0;) <0.
i=1

By Lemma 2, equation (8) has a positive solution. This is a contradiction.
Similarly, we can prove that equation (1) have no eventually negative solu-
tions
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Lemma 4. If

y(t —7) —y(t) +(1+¢) Zpiy(t +0;)=0 (6€(0,1)) (12)

has positive solutions and f; is non-decreasing in u, so does equation (1).

Proof. By Lemma 1 and the fact that equation (12) has an eventually
positive solution, the characteristic equation

e =1+ (1+e)) pie* =0 (13)
=1

has a real root 1. Clearly, n > 0. Thus €™ is a solution of equation (12) which
tends to infinity as t — oco. Suppose y(t) — 0o as t — oo is a positive solution
of equation (12). From (11) we have

y(t=7)—y(O)+ Y pifily(t+0:) < y(t—7)—y(t)+(1+e) Y _piy(t+o,) =0,

Then .
y(t) = y(t—T)‘f'Zpifi(y(t‘i‘Ui))- (14)

i=1
Define
Y={acC:0<a(t)<y(t)fort>T-71}

and an operator ¥ on Y by

{ alt—7)+ > pifilalt+o;)) ift>T
Ea(t) =

(1 — L)y(t) + BT if T —7<t<T.

T Ty(T)

Similar to the proof of Lemma 2, we can prove that there exists a fixed point
a €Y and a(t) > 0 for t > T. Since a = Fa, a is a positive solution of
equation (1)

Lemma 5. The equation
FA)=e -1+ Zpie’\‘” =0 (15)
i=1
has real roots if and only if there exists eg € (0,1) such that

e 1+ (L4e) Y pie =0 (le| <o) (16)
=1
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has real roots.

Proof. Sufficiency. If there exists ¢ € (0, 1) such that equation (16) has
real roots, then let ¢ = 0 and we obtain that the equation

FA)=e M -1+ Zpie’\‘” =0
i=1

has real roots.

Necessity. Suppose F(\) = 0 has a real root n,i.e.F(n) = 0. Define a
function H as

H(e,N)=e ™ =1+ (1+e) Y pe* (e <1).

=1

It is easy to see that H € C'((—1,1) x R,R) and

H(O,T]) = 6_777- — 1 —|— Zpienai = F(T’) — 0

=1

In a small neighbourhood of (0,7) the equation H (e, A(¢)) = 0 defines a
continuous function A = A(e) which satisfies H(g,A(¢)) = 0,A(0) = n and
lim. o A(e) = 1. So there exists g9 € (0,1) such that equation (16) has real
roots i

From the above lemmas, we can describe the first main result in this paper.

Theorem 1. Assume that p;,7,0; > 0 and f; € C(R,R),uf;(u) > 0 for

u # 0,limy, o # =1, f; is non-decreasing in u, convex for u > 0 and
concave for u < 0 (i = 1,2,...,m). Then every solution of equation (1)

oscillates if and only if every solution of equation (3) oscillates.

Proof. Sufficiency. If the solution of equation (3) oscillates, by Lemma
1 equation (4) and hence by Lemma 5 equation (16) has no real roots. By
Lemma 1, every solution of equation (8) oscillates. From Lemma 3 we show
that every solution of equation (1) oscillates.

Necessity. Suppose equation (3) has an eventually positive solution. By
Lemma 1 equation (4) and by Lemma 5 equation (16) has real roots. By
Lemma 1

yit —7) —yt)+ 1 +e)> pyt+o) =0 (| <leol)
=1

and by Lemma 4 equation (1) has eventually positive solutions, which is a
contradiction Nl
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2. Oscillations for equation (2)

The following lemma will be used to state the main results in Section 2.

Lemma 6. Assume that f € C(Ry,R) and a(t) # 0 as t > T where
T > 7. Then there exists a continuous function F = F(t) ast > T — 7 such
that F(t) — F(t — 1) a(t) = f(t) fort > T.

Proof. Define

a(t) iftt>T
a1(t)={t_:£+7a1(T) T —7<t<T
0 ift<T —r.
Then a; € C(R,R) and a4 (t) = a(t) for t > T. Define
f@a @) iift>T
T(t)z{t_q;‘”r(T) ifT—7<t<T
0 ift<T —r.

Then r € C(R,R). Let

F(t)y=> r(t—ir) H a(t—jr)  (t=>T).

i=0
Obviously, F' € C(R4+,R). When t > T, we know
F(t)—a(t)F(t—T)

= T(t—ZT)Hal(t—jT)—CL(t)ZT(t—T—ZT) ar(t — 7 —jr1)
=0 7=0 =0 7=0
= Zr(t —iT) H ay(t —j7) — Zr(t —iT) H ar(t — j7)
=0 7=0 =1 7=0
= r(t)a(t)
= f(t)
and the proof is complete i
Set . -
y(t) = //y(s) ds + /t_ a(s+ 71)y(s) ds
t T’
Ft) = / F(s)ds + /t_ a(s + 7)F(s) ds
where

T,:{t—% if a(s+7) € (0,1] (st -]

t—2 ifa(s+7) € (1,400)

and set Fy(t) = max{£F(t),0}.
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Theorem 2. Assume the following:

(a) g(t,u) = ming_r<s<¢ G(s,u) for u> 0.

(b) G(t,u) is an odd function in u, uG(t,u) > 0 for u # 0, g(t,0) = 0,
and g(t,u) is non-decreasing and is convex in u > 0.

(c) For any number N > 0, there exist two sequences {t;} and {t.} such
that tign —t; > 7 and tj | —t; > 7, and a(t) € (0,1] or a(t) € (1,+00) as
telt,—o—2nti—o—71] (1=1,2,...), and

im (t %E(ti _ o—)) SN (17)
ZTQ(Z,— (t] —a)>>N. (18)

Then every solution of equation (2) oscillates.

Proof. From Lemma 6, equation (2) can be rewritten in the form

(y(t) = F(t)) = a(t)(y(t —7) = F(t = 7)) + G(t,y(t — 0)) = 0. (19)

Suppose the contrary, let y > 0 be an eventually positive solution of equation
(19) and let z =y — F. Then equation (19) becomes

2'(t) + G(t,y(t — o)) =0. (20)

So 2/(t) < 0 for t > T. If z(t) < 0 eventually, then 0 < 7(t) < F(t) eventu-
ally and hence F_(t) = 0 and g(¢t,2F_(t — o)) = 0 which contradicts (18).
Therefore z(t) > 0 and lim; . 2(t) = o > 0 exists. Integrating equation (20)
from 7' to oo we obtain

/TOO Gt,y(t —o))dt = z(T) — o < 0. (21)

(t) and hence 7(t) > F(t) for t > T. There
T + o and so by Jensen’s inequality

Since z(t) > 0, we have y(t)
exists k > 0 such that t, — 7

/oo G(t,y(t — o)) dt>2/ G(t,y(t —o))dt

T+o t;—T

>
>

=S / gyt — o)) dt (22)
1=k

ti—T

00 1 t;
> Tg(ti,—/ y(t—U)dt)

1=
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Setting A; = [t; — 27 — 0,t; — T — 0] we obtain

s —o)ds+ [P y(s —o)ds it a € C(4;,(0,1])
tii_gTT y(s —o)ds+ ft;::% y(s —o)ds ifa € C(A;, (1,+00))
{ftl 7 ds—i—ft :T__U a(s +7)y(s)ds if a € C(A;, (0, ])
fti‘;;_ y(s)ds — [, 5" a(s +7)y(s)ds if a € C(A;, (1, +00))
]

(23)
In view of (21) - (23) and that g(¢,u) is non-decreasing in v > 0 we have

«(T) > /:a Gt y(t — o)) dt > gm (t %F+(ti _ a))

which contradicts (17). Suppose y < 0 is an eventually negative solution
of equation (19). Then similarly we can prove that z’ > 0,z < 0, hence
limy_, o 2(t) = < 0 and

oo > 3 —z(T)

> — /OO G(t,y(t —o))dt

T+o

£ ([ e
_Z/H (t, —y(t — o)) dt
>Z/ﬂ_7 y(t — o)) dt
>ZTg(z,_ y(t; - 0)).

Since z < 0,7 < F and hence —y > —F, therefore —3(t) > (=F(t))y = F_(t).
From (24) we have

(24)

iTg( _(t — 0)) < —2(T)

i=k
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which contradicts (18) B
Example 1. Consider the difference equation
y(t) —ty(t —m) + (L +t)y*(t — Z) = (L + t)(cost + sin® t). (25)

In this case G(t,u) = (1 +t)u?, f(t) = (1 +t)(cost +sin’t), o0 = Z, 7 =,

a(t) =t and F(t) = cost+sin®¢. Let T =2 +1. So a(t) > L ast > T. Thus

N

t t—
F(t) = / (cos s + sin® 5) ds + / (s + 7)(cos s + sin® s) ds
t—3¢ t

( +5—3 )sm t+( +§)c033t+(2t—§—§)sint—(g—f—%)cost
g(t,u) = mln {(1+s) N=1+t—mu® (u>0).

t—m<

It is easy to see that the former two coditions of Theorem 2 hold. We only need
to show that (17) and (18) could be fulfilled. In fact, let ¢; = 3w, ¢, = t,,—1+27
and ) = 2 ¢! =1t/ | + 27, i.e. two sequences {t;},{ti} (i > 1) exist and

2obn

Fitti—3) =3+t —In>bn+5—Ir>3n
D9t s Filti—0) = 25 3 (1+ti = m)(Fy(ti — )
=1 =1

In view of (1+¢; — m)(F4(t; — 0))® > bdr*, 372 wg(ti, LF 4 (t; — 0)) = oo.

Analogously, F_(t,—Z) = %—%w—k% > Srandso Y2 wg(t], LF_(t/—%)) =

V)T

00. Therefore (17) and (18) are satisfied. By Theorem 2, the solutions of
equation (25) oscillate. Actually, y = cost is a such solution of equation (25).

If a(t) =1 and G(t,y(t — o)) = p(t)y(t — o), then equation (2) becomes

y(t) =yt —7) + pt)y(t — o) = f(1). (26)

Corollary 1. Suppose p € C(R,Ry) and for any number N > 0 there
exist two sequences {t;} and {t;} such that t;41 —t;, t;  —t; > 7 (i >1) and

Zq +(ti—o)>N and Zq _(ti—0o)>N

where q(t) = min;_;<s<; p(s). Then every solution of equation (26) oscillates.

Corollary 1 is [3: Theorem 2.5]. Similar to [3], from Theorem 2 we can
obtain the following conclusion.
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Corollary 2. Assume conditions (a) - (b) in Theorem 2 and either a(t) €
(0,1] or a(t) € (1,+00) as t > T. Furthermore, let [ g(t, 1F1(t —0))dt =
o0o. Then every solution of equation (2) oscillates.

By the bivariate Jensen inequality we can get the next oscillation criterion.

Theorem 3. Assume the following:

(i) G(t,u) is non-decreasing and is an odd function in u, G(t,0) = 0,
uG(t,u) >0 for u # 0 and G(t,u) is convex in (t,u) as t,u > 0.

(ii) Condition (c) of Theorem 2 holds where (17) and (18) are replaced by
3 Tl - , T 1—
;TG<75¢—§,;F+(U—U)) >N and ;TG(ti_i,;F_(ti—o)) S N

respectively. Then every solution of equation (2) oscillates.

The proof of Theorem 3 is similar to that of Theorem 2. We only need to
pay attention to Jensen’s inequality for functions in two variables, i.e.

LY Gs (s ds > G (t -7 % /ti y(s) ds)

T Jt—r

since G(t,u) is convex in (¢, u).

Similar to Corollary 1, for the linear equation (26) we have

Corollary 3. Assume p € C(Ry,Ry) and up(t) is conver in (t,u) as
t,u > 0. Furthermore, for any number N > 0 let there exist two sequences
{ti} and {t;} such that t;1, —t;,t;  —t;>7 (i>1),

Zp +(ti—o)>N and Zp — )F_(t; — o) > N.

=1

Then every solution of equation (26) oscillates.

Corollary 4. Assume condition (i) of Theorem 3 holds, either a(t) €
(0,1] ora(t) € (1,400) ast > T, and [, G(t—%,L1Fy(t—0))dt = co. Then
every solution of equation (2) oscillates.

We can also extend the above methods to investigate the oscillation of the
solution of the difference equation

a(t)y(t —7) —y(t) + Gt y(t + o)) = f(1).



516 Binggen Zhang and Linlin Zhao
References

[1] Agarwal, R. P.: Difference Equations and Inequalities. New York: Marcel
Dekker 2000.

[2] Ladas, G., Pakala, L. and Z. Wang: Necessary and sufficient conditions for the
oscillation of difference equations. PanAmer. Math. J. 2 (1992), 17 — 26.

[3] Zhang, B. G., Jun Ni and Sung Kyu Choi: Oscillation for difference equations
with continuous variable. Comp. Math. Appl. 36 (1998)9, 11 — 18.

[4] Kulenovic, M. R. and M. K. Grammatikopoulos: Some comparison and oscila-
tion results for first order differential equations and inequalities with a deviating
arguments. J. Math. Anal. Appl. 131 (1988), 67 — 84.

Received 14.06.2001; in revised form 07.01.2002



