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Oscillations for Certain Difference Equations
with Continuous Variable

Binggen Zhang and Linlin Zhao

Abstract. In this paper, we investigate some nonlinear difference equations with
continuous variable. A linearized oscillation result is established and oscillation
criteria for some forced difference equations are obtained.
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0. Introduction

Recently, there has been an increasing interest in the study of the oscillatory
behavior of the solutions of delay difference equations [1]. In [3], authors
consider the oscillation of the delay difference equation

y(t)− y(t− τ) + p(t)H(y(t− σ)) = f(t) (t ≥ 0)

where τ, σ > 0, and p ∈ C(R+,R+), f ∈ C(R+,R) and H ∈ C(R,R). In the
present paper we use some ideas from [3] to consider the oscillation of the
equation

y(t− τ)− y(t) +
m∑

i=1

pifi(y(t + σi)) = 0 (1)

where τ > 0, σm ≥ ... ≥ σ1 > 0, pi > 0, fi ∈ C(R,R), ufi(u) > 0 for u 6= 0 and
limu→∞

fi(u)
u = 1, and of the equation

y(t)− a(t)y(t− τ) + G(t, y(t− σ)) = f(t) (2)

where τ, σ > 0 and a ∈ C(R+,R+), G ∈ C(R+ × R,R) and f ∈ C(R+,R).
As usuall, a solution of equation (1) or (2) is said to be oscillatory if it is
neither eventually positive nor eventually negative. Otherwise the solution is
called non-oscillatory. In Section 1, we obtain a linearized oscillation result
for equation (1) and in Section 2 we obtain some oscillation criteria for the
forced equation (2).
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1. Linearized oscillation for equation (1)

Consider equation (1) together with the associated linear difference equation

y(t− τ)− y(t) +
m∑

i=1

piy(t + σi) = 0. (3)

The first lemma is borrowed from [2].

Lemma 1. The following statements are equivalent:

(a) Every solution of equation (3) oscillates.

(b) The characteristic equation

e−λτ − 1 +
m∑

i=1

pie
λσi = 0 (4)

has no real roots.

Lemma 2. Every solution of equation (3) oscillates if and only if the
inequality

y(t− τ)− y(t) +
m∑

i=1

piy(t + σi) ≤ 0 (5)

has no eventually positive solutions.

Proof. Necessity. Suppose y > 0 is an eventually positive solution of
equation (5). Then

y(t) ≥ y(t− τ) +
m∑

i=1

piy(t + σi) (t ≥ T − τ > 0). (6)

The further proof is simple and based on the following Knaster Fixed Point
Theorem [4]:

Let (X,≤) be an ordered set, let for every subset M of X there exist inf M
and supM , and let T : M → M be an increasing mapping, that is, x ≤ y
implies Tx ≤ Ty. Then there exists at least one element x ∈ X such that
Tx = x.

To use this theorem, define the set

X = {x ∈ C : 0 ≤ x(t) ≤ y(t) (t ≥ T − τ)}
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endowed with usual pointwise ordering, i.e. x1 ≤ x2 if x1(t) ≤ x2(t) for every
t ≥ T − τ . It is easy to see that every A ⊆ X has a supremum which belongs
to X. Define an operator S on X by

(Sx)(t) =

{
x(t− τ) +

∑m
i=1 pix(t + σi) if t ≥ T

(1− t
T )y(t) + ty(t)Sx(T )

Ty(T ) if T − τ ≤ t < T .
(7)

For any x ∈ X, from

0 ≤ (Sx)(t) = x(t− τ) +
m∑

i=1

pix(t + σi) ≤ y(t− τ) +
m∑

i=1

piy(t + σi) ≤ y(t)

for t ≥ T and

0 ≤ (Sx)(t) =
(
1− t

T

)
y(t) +

ty(t)Sx(T )
Ty(T )

≤
(
1− t

T

)
y(t) +

t

T
y(t) = y(t)

for T − τ ≤ t < T we know that SX ⊆ X. Moreover, S is obviously non-
decreasing. By the Knaster Fixed Point Theorem, there exists an x∗ ∈ X
such that Sx∗ = x∗. As T ≤ t ≤ T + τ ,

x∗(t) = x∗(t− τ) +
m∑

i=1

pix
∗(t + σi)

≥ x∗(t− τ)

= Sx∗(t− τ)

=
(
1− t− τ

T

)
y(t− τ) +

(t− τ)y(t− τ)Sx∗(T )
Ty(T )

≥
(
1− t− τ

T

)
y(t− τ)

> 0.

Repeating this procedure, we get x∗(t) > 0 as t ≥ T . So x∗ is an eventually
positive solution of equation (3), which is a contradiction.

Sufficiency. Suppose equation (3) has an eventually positive solution y > 0
or eventually negative solution x < 0. Because the latter means −x > 0 is an
eventually positive solution of equation (3), we only discuss the former case.
It is easy to show that equation (5) has an eventually positive solution y > 0.
This is a contradiction
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Lemma 3. Assume that ufi(u) > 0 for u 6= 0, limu→∞
fi(u)

u = 1 and fi

is convex for u > 0 and concave for u < 0 (i = 1, 2, ...,m). Further, assume
that every solution of the equation

y(t− τ)− y(t) + (1− ε)
m∑

i=1

piy(t + σi) = 0 (ε ∈ (0, 1)) (8)

oscillates. Then every solution of equation (1) oscillates.

Proof. Suppose equation (1) has an eventually positive solution y and
set z(t) = 1

τ

∫ t

t−τ
y(s) ds > 0. Then

z′(t) =
1
τ

(
y(t)− y(t− τ)

)
=

1
τ

m∑

i=1

pifi(y(t + σi)) > 0

eventually. Hence limt→∞ z(t) = β > 0 exists. We claim that β = ∞.
Otherwise, 0 < β < ∞. We integrate equation (1) from t− τ to t and get

∫ t

t−τ

y(s− τ) ds−
∫ t

t−τ

y(s) ds +
m∑

i=1

pi

∫ t

t−τ

fi(y(s + σi)) ds = 0. (9)

Since fi is convex for u > 0, by Jensen’s inequality we have

z(t− τ)− z(t) +
m∑

i=1

pifi(z(t + σi)) ≤ 0. (10)

Letting t → ∞, from (10) we obtain the inequality
∑m

i=1 pifi(β) ≤ 0 which
is a contradiction. By limu→∞

fi(u)
u = 1 for any ε ∈ (0, 1) there exists α > 0

such that
(1− ε)u < fi(u) < (1 + ε)u (u ≥ α). (11)

Thus, from (10) we have

z(t− τ)− z(t) + (1− ε)
m∑

i=1

piz(t + σi) ≤ 0.

By Lemma 2, equation (8) has a positive solution. This is a contradiction.
Similarly, we can prove that equation (1) have no eventually negative solu-
tions
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Lemma 4. If

y(t− τ)− y(t) + (1 + ε)
m∑

i=1

piy(t + σi) = 0 (ε ∈ (0, 1)) (12)

has positive solutions and fi is non-decreasing in u, so does equation (1).

Proof. By Lemma 1 and the fact that equation (12) has an eventually
positive solution, the characteristic equation

e−λτ − 1 + (1 + ε)
m∑

i=1

pie
λσi = 0 (13)

has a real root η. Clearly, η > 0. Thus eηt is a solution of equation (12) which
tends to infinity as t →∞. Suppose y(t) →∞ as t →∞ is a positive solution
of equation (12). From (11) we have

y(t−τ)−y(t)+
m∑

i=1

pifi(y(t+σi)) ≤ y(t−τ)−y(t)+(1+ε)
m∑

i=1

piy(t+σi) = 0.

Then

y(t) ≥ y(t− τ) +
m∑

i=1

pifi(y(t + σi)). (14)

Define
Y =

{
a ∈ C : 0 ≤ a(t) ≤ y(t) for t ≥ T − τ

}

and an operator E on Y by

Ea(t) =

{
a(t− τ) +

∑m
i=1 pifi(a(t + σi)) if t ≥ T

(1− t
T )y(t) + ty(t)Ex(T )

Ty(T ) if T − τ ≤ t < T .

Similar to the proof of Lemma 2, we can prove that there exists a fixed point
a ∈ Y and a(t) > 0 for t ≥ T . Since a = Ea, a is a positive solution of
equation (1)

Lemma 5. The equation

F (λ) = e−λτ − 1 +
m∑

i=1

pie
λσi = 0 (15)

has real roots if and only if there exists ε0 ∈ (0, 1) such that

e−λτ − 1 + (1 + ε)
m∑

i=1

pie
λσi = 0 (|ε| < ε0) (16)
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has real roots.

Proof. Sufficiency. If there exists ε0 ∈ (0, 1) such that equation (16) has
real roots, then let ε = 0 and we obtain that the equation

F (λ) = e−λτ − 1 +
m∑

i=1

pie
λσi = 0

has real roots.
Necessity. Suppose F (λ) = 0 has a real root η, i.e.F (η) = 0. Define a

function H as

H(ε, λ) = e−λτ − 1 + (1 + ε)
m∑

i=1

pie
λσi (|ε| < 1).

It is easy to see that H ∈ C
(
(−1, 1)× R,R

)
and

H(0, η) = e−ητ − 1 +
m∑

i=1

pie
ησi = F (η) = 0.

In a small neighbourhood of (0, η) the equation H(ε, λ(ε)) = 0 defines a
continuous function λ = λ(ε) which satisfies H(ε, λ(ε)) = 0, λ(0) = η and
limε→0 λ(ε) = η. So there exists ε0 ∈ (0, 1) such that equation (16) has real
roots

From the above lemmas, we can describe the first main result in this paper.

Theorem 1. Assume that pi, τ, σi > 0 and fi ∈ C(R,R), ufi(u) > 0 for
u 6= 0, limu→∞

fi(u)
u = 1, fi is non-decreasing in u, convex for u > 0 and

concave for u < 0 (i = 1, 2, ..., m). Then every solution of equation (1)
oscillates if and only if every solution of equation (3) oscillates.

Proof. Sufficiency. If the solution of equation (3) oscillates, by Lemma
1 equation (4) and hence by Lemma 5 equation (16) has no real roots. By
Lemma 1, every solution of equation (8) oscillates. From Lemma 3 we show
that every solution of equation (1) oscillates.

Necessity. Suppose equation (3) has an eventually positive solution. By
Lemma 1 equation (4) and by Lemma 5 equation (16) has real roots. By
Lemma 1

y(t− τ)− y(t) + (1 + ε)
m∑

i=1

piy(t + σi) = 0 (|ε| < |ε0|)

and by Lemma 4 equation (1) has eventually positive solutions, which is a
contradiction
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2. Oscillations for equation (2)

The following lemma will be used to state the main results in Section 2.

Lemma 6. Assume that f ∈ C(R+,R) and a(t) 6= 0 as t ≥ T where
T ≥ τ . Then there exists a continuous function F = F (t) as t ≥ T − τ such
that F (t)− F (t− τ) a(t) = f(t) for t ≥ T .

Proof. Define

a1(t) =

{
a(t) if t ≥ T
t−T+τ

τ a1(T ) if T − τ ≤ t < T
0 if t < T − τ .

Then a1 ∈ C(R,R) and a1(t) = a(t) for t ≥ T . Define

r(t) =

{
f(t) a−1(t) if t ≥ T
t−T+τ

τ r(T ) if T − τ ≤ t < T
0 if t < T − τ .

Then r ∈ C(R,R). Let

F (t) =
∞∑

i=0

r(t− iτ)
i∏

j=0

a1(t− jτ) (t ≥ T ).

Obviously, F ∈ C(R+,R). When t ≥ T , we know

F (t)− a(t)F (t− τ)

=
∞∑

i=0

r(t− iτ)
i∏

j=0

a1(t− jτ)− a(t)
∞∑

i=0

r(t− τ − iτ)
i∏

j=0

a1(t− τ − jτ)

=
∞∑

i=0

r(t− iτ)
i∏

j=0

a1(t− jτ)−
∞∑

i=1

r(t− iτ)
i∏

j=0

a1(t− jτ)

= r(t)a(t)

= f(t)
and the proof is complete

Set

y(t) =
∫ t

T ′
y(s) ds +

∫ T ′

t−τ

a(s + τ)y(s) ds

F (t) =
∫ t

T ′
F (s) ds +

∫ T ′

t−τ

a(s + τ)F (s) ds

where

T ′ =
{

t− τ
2 if a(s + τ) ∈ (0, 1]

t− 3τ
2 if a(s + τ) ∈ (1, +∞) (s ∈ [t− τ, t])

and set F±(t) = max{±F (t), 0}.
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Theorem 2. Assume the following:
(a) g(t, u) = mint−τ≤s≤t G(s, u) for u > 0.
(b) G(t, u) is an odd function in u, uG(t, u) > 0 for u 6= 0, g(t, 0) = 0,

and g(t, u) is non-decreasing and is convex in u > 0.
(c) For any number N > 0, there exist two sequences {ti} and {t′i} such

that ti+1 − ti ≥ τ and t′i+1 − t′i ≥ τ , and a(t) ∈ (0, 1] or a(t) ∈ (1,+∞) as
t ∈ [ti − σ − 2τ, ti − σ − τ ] (i = 1, 2, . . .), and

∞∑

i=1

τg

(
ti,

1
τ

F+(ti − σ)
)

> N (17)

∞∑

i=1

τg

(
t′i,

1
τ

F−(t′i − σ)
)

> N. (18)

Then every solution of equation (2) oscillates.

Proof. From Lemma 6, equation (2) can be rewritten in the form

(y(t)− F (t))− a(t)
(
y(t− τ)− F (t− τ)

)
+ G(t, y(t− σ)) = 0. (19)

Suppose the contrary, let y > 0 be an eventually positive solution of equation
(19) and let z = y − F . Then equation (19) becomes

z′(t) + G(t, y(t− σ)) = 0. (20)

So z′(t) < 0 for t ≥ T . If z(t) < 0 eventually, then 0 < y(t) < F (t) eventu-
ally and hence F−(t) = 0 and g(t, 1

τ F−(t − σ)) = 0 which contradicts (18).
Therefore z(t) > 0 and limt→∞ z(t) = α ≥ 0 exists. Integrating equation (20)
from T to ∞ we obtain

∫ ∞

T

G(t, y(t− σ)) dt = z(T )− α < ∞. (21)

Since z(t) > 0, we have y(t) ≥ F (t) and hence y(t) ≥ F+(t) for t ≥ T . There
exists k > 0 such that tk − τ ≥ T + σ and so by Jensen’s inequality

∫ ∞

T+σ

G(t, y(t− σ)) dt ≥
∞∑

i=k

∫ ti

ti−τ

G(t, y(t− σ)) dt

≥
∞∑

i=k

∫ ti

ti−τ

g(t, y(t− σ)) dt

≥
∞∑

i=k

τg

(
ti,

1
τ

∫ ti

ti−τ

y(t− σ) dt

)
.

(22)
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Setting Ai = [ti − 2τ − σ, ti − τ − σ] we obtain
∫ ti

ti−τ

y(s− σ) ds

=





∫ ti

ti− τ
2

y(s− σ) ds +
∫ ti− τ

2
ti−τ

y(s− σ) ds if a ∈ C(Ai, (0, 1])
∫ ti

ti− 3τ
2

y(s− σ) ds +
∫ ti− 3τ

2
ti−τ

y(s− σ) ds if a ∈ C(Ai, (1, +∞))

≥
{∫ ti−σ

ti− τ
2−σ

y(s) ds +
∫ ti− τ

2−σ

ti−τ−σ
a(s + τ)y(s) ds if a ∈ C(Ai, (0, 1])

∫ ti−σ

ti− 3τ
2 −σ

y(s) ds− ∫ ti−τ−σ

ti− 3τ
2 −σ

a(s + τ)y(s) ds if a ∈ C(Ai, (1,+∞))

= y(ti − σ)

≥ F+(ti − σ).
(23)

In view of (21) - (23) and that g(t, u) is non-decreasing in u > 0 we have

z(T ) >

∫ ∞

T+σ

G(t, y(t− σ)) dt ≥
∞∑

i=k

τg

(
ti,

1
τ

F+(ti − σ)
)

which contradicts (17). Suppose y < 0 is an eventually negative solution
of equation (19). Then similarly we can prove that z′ > 0, z < 0, hence
limt→∞ z(t) = β ≤ 0 and

∞ > β − z(T )

= −
∫ ∞

T

G(t, y(t− σ)) dt

> −
∫ ∞

T+σ

G(t, y(t− σ)) dt

≥
∞∑

i=k

(
−

∫ t′i

t′
i
−τ

G(t, y(t− σ)) dt

)

=
∞∑

i=k

∫ t′i

t′
i
−τ

G(t,−y(t− σ)) dt

≥
∞∑

i=k

∫ t′i

t′
i
−τ

g(t′i,−y(t− σ)) dt

≥
∞∑

i=k

τg
(
t′i,−

1
τ

y(t′i − σ)
)
.

(24)

Since z < 0, y < F and hence−y > −F , therefore−y(t) > (−F (t))+ = F−(t).
From (24) we have

∞∑

i=k

τg
(
t′i,

1
τ

F−(t′i − σ)
)

< −z(T )
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which contradicts (18)

Example 1. Consider the difference equation

y(t)− ty(t− π) + (1 + t)y3(t− π
2 ) = (1 + t)(cos t + sin3 t). (25)

In this case G(t, u) = (1 + t)u3, f(t) = (1 + t)(cos t + sin3 t), σ = π
2 , τ = π,

a(t) = t and F (t) = cos t+sin3 t. Let T = 5π
2 +1. So a(t) > 1 as t ≥ T . Thus

F (t) =
∫ t

t− 3π
2

(cos s + sin3 s) ds +
∫ t− 3π

2

t−π

(s + π)(cos s + sin3 s) ds

=
(

4
9 + π

6 − t
3

)
sin3 t +

(
4
9 + t

3

)
cos3 t +

(
2t− π

2 − 1
3

)
sin t− (

π
2 + 1

3

)
cos t

g(t, u) = min
t−π≤s≤t

{(1 + s)u3} = (1 + t− π)u3 (u > 0).

It is easy to see that the former two coditions of Theorem 2 hold. We only need
to show that (17) and (18) could be fulfilled. In fact, let t1 = 3π, tn = tn−1+2π
and t′1 = 9π

2 , t′n = t′n−1 + 2π, i.e. two sequences {ti}, {t′i} (i ≥ 1) exist and

F+(ti − π
2 ) = 5

3 ti + 1
9 − 7

6π ≥ 5π + 1
9 − 7

6π > 3π
∞∑

i=1

πg(ti, 1
π F+(ti − σ)) = 1

π2

∞∑

i=1

(1 + ti − π)(F+(ti − σ))3.

In view of (1 + ti − π)(F+(ti − σ))3 > 54π4,
∑∞

i=1 πg
(
ti,

1
π F+(ti − σ)

)
= ∞.

Analogously, F−(t′i−π
2 ) = t′i

3 − 2
3π+ 1

9 > 5
6π and so

∑∞
i=1 πg

(
t′i,

1
π F−(t′i−π

2 )
)

=
∞. Therefore (17) and (18) are satisfied. By Theorem 2, the solutions of
equation (25) oscillate. Actually, y = cos t is a such solution of equation (25).

If a(t) = 1 and G(t, y(t− σ)) = p(t)y(t− σ), then equation (2) becomes

y(t)− y(t− τ) + p(t)y(t− σ) = f(t). (26)

Corollary 1. Suppose p ∈ C(R+,R+) and for any number N > 0 there
exist two sequences {ti} and {t′i} such that ti+1− ti, t

′
i+1− t′i ≥ τ (i ≥ 1) and

∞∑

i=1

q(ti)F+(ti − σ) > N and
∞∑

i=1

q(t′i)F−(t′i − σ) > N

where q(t) = mint−τ≤s≤t p(s). Then every solution of equation (26) oscillates.

Corollary 1 is [3: Theorem 2.5]. Similar to [3], from Theorem 2 we can
obtain the following conclusion.
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Corollary 2. Assume conditions (a) - (b) in Theorem 2 and either a(t) ∈
(0, 1] or a(t) ∈ (1,+∞) as t ≥ T . Furthermore, let

∫∞
T

g
(
t, 1

τ F±(t− σ)
)
dt =

∞. Then every solution of equation (2) oscillates.

By the bivariate Jensen inequality we can get the next oscillation criterion.

Theorem 3. Assume the following:
(i) G(t, u) is non-decreasing and is an odd function in u, G(t, 0) = 0,

uG(t, u) > 0 for u 6= 0 and G(t, u) is convex in (t, u) as t, u > 0.
(ii) Condition (c) of Theorem 2 holds where (17) and (18) are replaced by

∞∑

i=1

τG
(
ti − τ

2
,
1
τ

F+(ti − σ)
)

> N and
∞∑

i=1

τG
(
t′i −

τ

2
,
1
τ

F−(t′i − σ)
)

> N

respectively. Then every solution of equation (2) oscillates.

The proof of Theorem 3 is similar to that of Theorem 2. We only need to
pay attention to Jensen’s inequality for functions in two variables, i.e.

1
τ

∫ t

t−τ

G(s, y(s)) ds ≥ G

(
t− τ

2
,
1
τ

∫ t

t−τ

y(s) ds

)

since G(t, u) is convex in (t, u).
Similar to Corollary 1, for the linear equation (26) we have

Corollary 3. Assume p ∈ C(R+,R+) and up(t) is convex in (t, u) as
t, u > 0. Furthermore, for any number N > 0 let there exist two sequences
{ti} and {t′i} such that ti+1 − ti, t

′
i+1 − t′i ≥ τ (i ≥ 1),

∞∑

i=1

p(ti − τ
2 )F+(ti − σ) > N and

∞∑

i=1

p(t′i − τ
2 )F−(t′i − σ) > N.

Then every solution of equation (26) oscillates.

Corollary 4. Assume condition (i) of Theorem 3 holds, either a(t) ∈
(0, 1] or a(t) ∈ (1, +∞) as t ≥ T , and

∫∞
T

G
(
t− τ

2 , 1
τ F±(t−σ)

)
dt = ∞. Then

every solution of equation (2) oscillates.

We can also extend the above methods to investigate the oscillation of the
solution of the difference equation

a(t)y(t− τ)− y(t) + G(t, y(t + σ)) = f(t).
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