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Oscillation Theorems for
Non-Canonical Self-Adjoint Differential Equations I
of Second Order

J. Ohriska

Abstract. The report deals with the equation (r(t)u’(t))’ + p(¢t)u(t) = 0 and ren-

ers effective sufficient conditions for its oscillation and non-oscillation in the case

oo dt
m<oo.
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For tg > 0 we consider the second order self-adjoint differential equation
(r(®)u'®) +pu(t) =0  (t > to). (1)

Throughout the paper we shall assume that
(i) r € C[tg,00), r(t) > 0 for all t >ty and f‘x’ % < 00
(ii) p € Clto, 00).

We say that equation (1) is in canonical form if [~ % = o0, and that it

is in mon-canonical form if foo % < o00. By a solution of equation (1) we

mean a function u : [tg,00) — R with the properties u € C*[ty,00) and
ru’ € Cltyg,o0) which satisfies equation (1) for all ¢ € [tg,00) and is not
identically zero. Such a solution is called oscillatory if it has arbitrarily large
zeros, and non-oscillatory otherwise. An equation is said to be oscillatory if
one, and thereby each solution is oscillatory, otherwise it is said to be non-
oscillatory.
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Equation (1) and its special case
u”(t) + p(t)u(t) =0 (2)

is still a valid subject for research. Although there are many results concerning
the oscillatory nature of equations (1) or (2), no completely satisfactory answer
has yet been obtained. In oscillation theory, one of the tools for obtaining new
results is a transformation of an equation considered. We recall at least the
well known Riccati, Kummer and Bohl transformations (see, e.g., [9]). On the
other hand, in articles which deal with equation (1) the authors very often
require r € Cl[tg,00) and define a solution as a function u € C?[tg, o) (see,
e.g., [3,4,8,9]).

Note that in the case when equation (1) is in the canonical form, there is
one significant analogy with equation (2), namely that the integrals [ > %

and [ °°1dt are divergent. This fact gives the possibility to make some steps
in the study of equation (1) in analogous to the study of equation (2). In the
non-canonical case this is not posssible and the study of such equation is then
more difficult.

Since equation (2), as special case of (1), is measured more than equation
(1), our purpose in this article is to extend some results known for equation
(2) to equation (1) by using a useful transformation. For this we put

pawaémﬁg (t > to)

and we mention the following result which is a special case of [6: Theorem
2.1].

Theorem A. Let the conditions

(a) I and I are intervals in R
(b) ve C(Ih), v: I — I strictly monotone
(c)peC(),p: I >R

be satisfied. A function u(t) is a solution of the equation

y'(t) +p)y(t) =0  (tel) (3)
if and only if the function u(v(t)) is a solution of the equation
d2
Y 4 pu(s)y(s) =0 (s € ). ()
Note that
o) _ ) - 0
dv z—t v(x) — v(t)
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we call the v-derivative of the function f at the point ¢t. Then the expression

d*y(s)
dv?

is the second wv-derivative of the function y at the point s and

T - (8 - oA (Y

dv?  dv
if there exist v/(s) # 0 and y/(s) for s € I;. The process of obtaining equation
(4) from (3) we call the v-transformation of equation (3). It is also useful to
note that if ¢ is the inverse function to v, so the ¢-transformation of (4) gives
again equation (3). For more detailed information about the v-derivative and
the v-transformation we refer the reader to [6].

Now we are ready to introduce the following result.

Theorem 1. Let assumptions (i) and (ii) be satisfied. Then equation (1)
s oscillatory if
1
lim inf p2(t)r(t)p(t) > 7 (5)

t—o0

and it 1s non-oscillatory provided

lim sup p()r(£)p(t) < —. (6)
t—o0 4
Proof. From the definition of the function p we see that p € Cl[tg, 00) is
decreasing and p : [tg,00) — (0, po] with pg = p(tp). Denote by ¢ the inverse
function to p. Now using the notion of the v-derivative of a function (see [5]
or [6]) we can write equation (1) in the form

d?u(t)
dp?

rp(t)u(t) =0 (t > to).

The v-transformation (see [5] or [6]) of this equation, with v = ¢, yields the
equation

y"(s) +r(d(s)p(e(s)y(s) =0 (0<s<po) (7)

and we know that a function y = y(s) (s € (0, po]) is a solution of equation (7)
if and only if u(t) = y(p(t)) (t € [to,0)) is a solution of equation (1). Now we
transform equation (7) by change of the independent variable. Putting = = %
and z(z) = y(2) we obtain the equation

(22 (2)) + %r(qﬁ(é))p(qﬁ(é))z(ag) =0 (z € [pio, 00)). (8)

From the above transformations we see that either equations (1) and (8) are
oscillatory or both are non-oscillatory. Now, for a € R, we take into consider-
ation the Euler equation

(2?0 (z)) + aw(z) =0 9)
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which is oscillatory if a > % and non-oscillatory if a < i. Using the Sturm
comparison theorem to equations (8) and (9) we know that equation (8) (and
thus also equation (1)) is oscillatory if

it 5 (o)) (o(5)) > 5

But using the substitution x = ﬁ we get

1 1 1
liminf Z5(6(2) )2(¢(3)) = imint OO
iminf —57(o( ) )p(o im inf p°(¢)r(t)p(t)
and the first part of Theorem 1 is proved. The second part can be proved in
a similar way il

Note that Theorem 1 is an analogy of [5: Theorem 2.3] concerning differ-
ential equation (1) in canonical form when the role of the function p?(t)r(t)p(t)
appearing in conditions (5) and (6) takes over the function R?(t)r(¢)p(t) where
R(t) = fti %. Hence the result due to E. Hille (see [7: p. 194]) which says
that equation (2) is oscillatory if liminf, . ¢*p(t) > 1 and non-oscillatory if
lim sup,_, ., t2p(t) < § we have transferred to equation (1) in both the canon-
ical and the non-canonical cases.

In the following example we remit on a relation of Theorem 1 to another
result known for equation (1).

Example 1. We consider the non-canonical differential equation
(t+ D2 ) +(t+1D%ut)=0  (t>0). (10)

It is easy to see that

frp:/om%/otp@)dsdt:oo

in the case of equation (10) and thus by [1: Theorem 1/i4] we know that every
solution u of equation (10) is either oscillatory or such that wu(¢)u’(t) < 0 for
sufficiently large ¢ and limy . o, u(t) = 0. On the other hand, lim; . p?(t)r(t)p(t) =Jj
oo and by our Theorem 1 it is clear that equation (10) is oscillatory what is a
stronger assertion than the previous one. Note that one solution of equation

(10) is the function u(t) = S”ﬁ—il)
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We see that the above Theorem 1 can not be used if p?(t)r(t)p(t) — %
as t — oo. The same problem in the case of equation (2) was solved by
P. Hartman [2], and thus we know that equation (2) is oscillatory or non-

oscillatory if

1 1
lim inf 2 In? t[p(t) - —} > or lim sup ¢2 In? t[p(t) - —} <1

t—o0 t—o00

respectively. In the case of equation (1) we have the following analogy of
Hartman’s result.

Theorem 2. Let assumptions (i) and (ii) be satisfied. Then equation (1)
18 oscillatory if

litrgg)lfln2 (111 (ﬁ)) [4p2(t)r(t)p(t) In (%) — In? (%) - 1] > 1

and non-oscillatory if

li?lscgpth (ln (ﬁ)) {4p2(t)r(t)p(t) In (ﬁ) —In? <%> — 1] <L

Proof. Consider equation (8) on some interval [xg, 00) where xg > 1 and
transform it by a change of the dependent and independent variables in the
form

r=e’ and z(x) = x_%V(s). (11)
Then equation (8) acquires the form
V() + (2 r(0(e o6 )~ 1)V(5) =0 (nag <s < o). (12)

From (11) we see that equation (12) is oscillatory if and only if equation (8) is
oscillatory. This means that equation (12) is oscillatory if and only if equation
(1) is oscillatory. With regard to Hartman’s result equation (12) is oscillatory
if

: : 2 2 —2s —s —s 1 1 1

liminf s“In” s|{e”**r(p(e”%))p(p(e %)) — =~ — — | > 7

§— 00

But using the substitution s = In ﬁ we get

lim inf 52 In? s {eQST(¢(eS))p(¢)(eS)) L L}

8§—00 482

= }llitrgglfIHQ (ln (ﬁ)) [4p2(t)r(t)p(t) In? (%) — In? <$> — 1]

and the proof of the first part of Theorem 2 is complete. The second part can
be proved in a similar way il

W
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We illustrate the meaning of Theorem 2 by the following example.

Example 2. We consider the differential equation

(t3/ ()" + tu(t) = 0. (13)

In this case lim; o p?(t)r(t)p(t) = 1 and thus Theorem 1 is not applicable.

However,

liiri)sogpln2 <ln (ﬁ)) [4p2(t)r(t)p(t) In <$> — In? (%) — 1] = —00

and by Theorem 2 we know that equation (13) is non-oscillatory. Note that

one solution of equation (13) is the function u(t) = 1.
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