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Inequalities
for the Tail of the Exponential Series

H. Alzer
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We prove: if α, β > 0 are real numbers and n ≥ 1 is an integer, then the inequalities
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hold for all real numbers x > 0 if and only if α ≤ 1 and β ≥ 2. Our result improves
inequalities published by M. Merkle in 1997.
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1. Introduction

In 1943, P. Kesava Menon [7] proved the inequality
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denotes the tail of the Maclaurin series of the exponential function. Inequality
(1.1) can be refined and complemented as

n + 1
n + 2

<
Jn−1(x)Jn+1(x)

(Jn(x))2
< 1 (x > 0; n ∈ N). (1.2)

Both bounds are sharp (see [2, 6, 8]).
In the recent past, several mathematicians continued the research of in-

equalities (1.1) and (1.2) and provided different extensions of these results
(see [3 - 5, 8 - 11]). Of special interest is a paper of Merkle [10] published in
1997. He presented remarkable properties of Jn(x), where x is a negative real
number, that is, he investigated

In(x) = e−x −
n∑

k=0

(−1)k xk

k!
=

∞∑

k=n+1

(−1)k xk

k!
(x > 0; n ∈ N0).

His main result is the following striking companion of (1.2).

Proposition. Let n ≥ 1 be an integer. Then, for all real numbers x > 0,

n

n + 1
≤ In−1(x)In+1(x)

(In(x))2
≤ n + 1

n + 2
. (1.3)

Both bounds are best possible.

Moreover, Merkle established the representation

(−1)n+1In(x) =
xn+1

(n + 1)!
[
1 + x

n+θ(n,x)

] (1.4)

where θ(n, x) ∈ (1, 2) with limx→∞ θ(n, x) = 1 and

lim
x→0+

θ(n, x) = 2. (1.5)

An application of (1.4) leads to an additive counterpart of (1.3). If n ≥ 1 is
an integer, then for all x > 0

0 < x−2(n+1)
[(

In(x)
)2 − In−1(x)In+1(x)

]
<

1
(n + 1)! (n + 2)!

where both bounds are sharp.

It is not difficult to show that the ratio In+1(x)
In(x) can be approximated by

linear functions. Indeed, for all integers n ≥ 0 and real numbers x > 0 we
have

anx <
In+1(x)
In(x)

< bnx (1.6)
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where the best possible factors (which depend only on n) are given by an =
− 1

n+1 and bn = − 1
n+2 . In view of (1.6) it is natural to look for simple rational

functions r1 and r2 such that the double-inequality

r1(x) ≤ In−1(x)In+1(x)
(In(x))2

≤ r2(x) (1.7)

is valid for all x > 0 and n ≥ 1. It is the aim of this paper to show that in fact
there exist four quadratic polynomials p1, p2 and q1, q2 such that (1.7) holds
with r1 = p1

q1
and r2 = p2

q2
. It turns out that our upper and lower bounds for

In−1(x)In+1(x)
(In(x))2 improve those given in (1.3).

2. Main result

The following rational approximation to In−1(x)In+1(x)
(In(x))2 is valid.

Theorem. Let α, β > 0 be real numbers and let n ≥ 1 be an integer. The
inequalities
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(2.1)

hold for all real numbers x > 0 if and only if α ≤ 1 and β ≥ 2.

Proof. First, we prove: if 0 < α ≤ 1 and β ≥ 2, then (2.1) is valid for all
n ≥ 1 and x > 0. We define for t > 0

δ(t, n, x) =
(1 + x

n+t )
2

(1 + x
n−1+t )(1 + x

n+1+t )

and set z = n + t > 1. Then we obtain

∂δ(t, n, x)
∂t

= 2x δ(t, n, x)
x2 + 3zx + 3z2 − 1

z(z2 − 1)(x + z)
(
(x + z)2 − 1

) > 0

which implies that t 7→ δ(t, n, x) is strictly increasing on (0,∞). Thus, it
suffices to establish (2.1) for α = 1 and β = 2.

Taylor’s formula yields the integral representations

n! (−1)n+1In(x) =
∫ x

0

(x− t)ne−tdt = xn+1e−x

∫ 1

0

tnextdt. (2.2)
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From (2.2) we conclude that the right-hand side of (2.1) with β = 2 is equiv-
alent to [

f(n− 1, x)f(n + 1, x)
]1/2

< f(n, x) (2.3)

where

f(n, x) =
(n + 1)(n + 2 + x)

n + 2

∫ 1

0

tnextdt.

Inequality (2.3) is a consequence of the stronger inequality

1
2
[
f(n− 1, x) + f(n + 1, x)

]
< f(n, x). (2.4)

We prove (2.4) for real numbers n ≥ 1 and x > 0. Using
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(n + 3)x
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and ∫ 1

0

tnextdt =
1

xn+1

∫ x

0

snesds (2.5)

we obtain

2f(n, x)− f(n− 1, x)− f(n + 1, x)

= x−n−2u(n, x)
[∫ x

0

snesds− v(n, x)
w(n, x)

xn+1ex

] (2.6)

where
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1

n + 1
x3 +

3n + 4
n + 2
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Let
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0
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Partial differentiation leads to
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∂x

= 2
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where
A(n, x) = [n2 + 5n + 6]x2

+ [4n3 + 22n2 + 36n + 18]x

+ 6n4 + 44n3 + 116n2 + 130n + 52

B(n, x) = [n2 + 5n + 6]x3

+ [3n3 + 16n2 + 25n + 12]x2

+ [3n4 + 20n3 + 47n2 + 46n + 16]x

+ n5 + 9n4 + 31n3 + 51n2 + 40n + 12.

Thus, x 7→ g(n, x) is strictly increasing on [0,∞). Hence,

g(n, x) > g(n, 0) = 0 (2.8)

so that (2.6) - (2.8) imply the validity of inequality (2.4).
Next, we consider the left-hand inequality of (2.1). Let

h(n, x) = (n + 1 + x)
∫ 1

0

tnextdt.

Applying (2.2) we obtain that the first inequality of (2.1) with α = 1 is
equivalent to

(h(n, x))2 < h(n− 1, x)h(n + 1, x). (2.9)

We establish (2.9) for real numbers n ≥ 1 and x > 0. Using
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n + 2 + x

x
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n + x

n
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and (2.5) we obtain

h(n− 1, x)h(n + 1, x)− (
h(n, x)

)2 =
1
n

x−2n−2λ(n, x)µ(n, x) (2.10)

where

λ(n, x) = x2 + (2n + 2)x + n2 + n

µ(n, x) = e2xp(n, x)− exq(n, x)
∫ x

0

snesds +
( ∫ x

0

snesds

)2

p(n, x) = x2n+1 (n + x)(n + 2 + x)
λ(n, x)

q(n, x) = xn (n + x)(n + 1 + x)(n + 2 + x)
λ(n, x)

.
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Differentiation gives

∂µ(n, x)
∂x

=
b(n, x)

(λ(n, x))2
xn−1ex

[
a(n, x)
b(n, x)

xn+1ex −
∫ x

0

snesds

]
(2.11)

where
a(n, x) = x5 + [5n + 4]x4

+ [10n2 + 15n + 4]x3

+ [10n3 + 21n2 + 8n]x2

+ [5n4 + 13n3 + 6n2 − 2n]x

+ n5 + 3n4 + 2n3

b(n, x) = x6 + [6n + 4]x5

+ [15n2 + 20n + 4]x4

+ [20n3 + 40n2 + 18n]x3

+ [15n4 + 40n3 + 29n2 + 4n]x2

+ [6n5 + 20n4 + 20n3 + 4n2 − 2n]x

+ n6 + 4n5 + 5n4 + 2n3.

Let

φ(n, x) =
a(n, x)
b(n, x)

xn+1ex −
∫ x

0

snesds. (2.12)

Then
∂φ(n, x)

∂x
= 2n

c(n, x)
(b(n, x))2

xn+2ex

where
c(n, x) = 6x6 + [36n + 29]x5

+ [90n2 + 137n + 43]x4

+ [120n3 + 258n2 + 147n + 12]x3

+ [90n4 + 242n3 + 189n2 + 25n− 12]x2

+ [36n5 + 113n4 + 109n3 + 26n2 − 6n]x

+ 6n6 + 21n5 + 24n4 + 9n3.

This implies that x 7→ φ(n, x) is strictly increasing on [0,∞). Hence,

φ(n, x) > φ(n, 0) = 0. (2.13)

From (2.11) - (2.13) we conclude

µ(n, x) > µ(n, 0) = 0 (2.14)
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so that (2.10) and (2.14) lead to inequality (2.9).
It remains to prove that in (2.1) the parameters α = 1 and β = 2 are best

possible. We assume that there exist numbers α, β > 0 and n ≥ 1 such that
(2.1) is valid for all x > 0. Since limx→∞

In+1(x)
xIn(x) = − 1

n+1 , we obtain from the
left-hand side of (2.1) if x →∞

n + 1
n + 2

(n− 1 + α)(n + 1 + α)
(n + α)2

≤ n

n + 1

which is equivalent to α ≤ 1. Applying (1.4) we conclude that the right-hand
side of (2.1) is equivalent to

0 <

(
1 + x

n+β

)2

(
1 + x

n−1+β

)(
1 + x

n+1+β

) −
(
1 + x

n+θ(n,x)

)2

(
1 + x

n−1+θ(n−1,x)

)(
1 + x

n+1+θ(n+1,x)

) .

(2.15)
Denote herein the right part by σ(n, x, β). A short computation gives that
(1.5) and (2.15) lead to

0 ≤ lim
x→0+

σ(n, x, β)
x

= ω(n, β)− ω(n, 2) (2.16)

where
ω(n, y) =

2
n + y

− 1
n− 1 + y

− 1
n + 1 + y

.

Since

∂ω(n, y)
∂y

=
2[3(n + y)2 − 1]

(n + y)2(n− 1 + y)2(n + 1 + y)2
> 0 (y > 0)

we conclude that y 7→ ω(n, y) is strictly increasing on (0,∞). Thus, we get
from (2.16) that β ≥ 2. This completes the proof of the Theorem

Remarks.
(1) A simple calculation shows that the inequalities

n

n + 1
<

n + 1
n + 2

(
1 + x

n+1

)2

(
1 + x

n

)(
1 + x

n+2

)

n + 1
n + 2

(
1 + x

n+2

)2

(
1 + x

n+1

)(
1 + x

n+3

) <
n + 1
n + 2

(2.17)

hold for all n ≥ 1 and x > 0. Hence, (2.1) (with α = 1 and β = 2) improves
the bounds given in (1.3). Moreover, from (2.1) and (2.17) we conclude that
inequalities (1.3) are strict.
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(2) Let

∆n(a, x) = (n + 1)!
n + a + x

n + a
|In(x)| (n ∈ N0).

The Theorem yields: if 0 < α ≤ 1 and x > 0, then n 7→ ∆n(α, x) is strictly
log-convex, whereas, if β ≥ 2 and x > 0, then n 7→ ∆n(β, x) is strictly log-
concave.

(3) Applying (2.2) we obtain an identity, which connects the functions In

and Jn with the integral

βn(x) =
∫ 1

−1

tne−xtdt.

We have

βn(x) =
n!

xn+1
[e−xJn(x)− exIn(x)] (x > 0; n ∈ N0).

This formula and further properties of βn are given in [1: Chapter 5].

Let An(x) be the arithmetic mean of the function t 7→ exp(xt) (x > 0) on
[0, 1] with the weight function t 7→ tn (n ∈ N0), that is,

An(x) =

∫ 1

0
tnextdt∫ 1

0
tndt

= (n + 1)
∫ 1

0

tnextdt.

The Theorem and (2.2) imply the following integral inequalities.

Corollary. Let α, β > 0 be real numbers and let n ≥ 1 be an integer. The
double-inequality

(
1 + x

n+α

)2

(
1 + x

n−1+α

)(
1 + x

n+1+α

) <
An−1(x)An+1(x)

(An(x))2
<

(
1 + x

n+β

)2

(
1 + x

n−1+β

)(
1 + x

n+1+β

)

is valid for all real numbers x > 0 if and only if α ≤ 1 and β ≥ 2.
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