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Inequalities
for the Tail of the Exponential Series

H. Alzer
Abstract. Let
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We prove: if a, 8 > 0 are real numbers and n > 1 is an integer, then the inequalities
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hold for all real numbers z > 0 if and only if « < 1 and 8 > 2. Our result improves
inequalities published by M. Merkle in 1997.
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1. Introduction

In 1943, P. Kesava Menon [7] proved the inequality
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denotes the tail of the Maclaurin series of the exponential function. Inequality
(1.1) can be refined and complemented as

n -+ 1 Jn_l(ﬂf)Jn+1(I)
n+ 2 (Jn(z))?

Both bounds are sharp (see [2, 6, 8]).

In the recent past, several mathematicians continued the research of in-
equalities (1.1) and (1.2) and provided different extensions of these results
(see [3 - 5, 8 - 11]). Of special interest is a paper of Merkle [10] published in
1997. He presented remarkable properties of J,,(x), where z is a negative real
number, that is, he investigated

<1 (x > 0; n € N). (1.2)

I 2k o0 2k
I,(z)=¢ _Z(_l)kﬁ = Z (—1)’“5 (x > 0; n € Np).
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His main result is the following striking companion of (1.2).

Proposition. Letn > 1 be an integer. Then, for all real numbers x > 0,

n_ . In_1(x) 41 () o nt 1

1S (L()? “n+2 (13)
Both bounds are best possible.
Moreover, Merkle established the representation
(1)) = (14)
(n+ D1 + gt
where 0(n,z) € (1,2) with lim,_,, 6(n,z) =1 and
lim (n,z) = 2. (1.5)

rz—07+

An application of (1.4) leads to an additive counterpart of (1.3). If n > 1 is
an integer, then for all z > 0

1
(n+ 1! (n+2)!

2

0< x—2(n+1) [(In(a:)) - n—l(x)In-l-l(x)} <

where both bounds are sharp.

It is not difficult to show that the ratio 22+1%) can be approximated by

I, (x)
linear functions. Indeed, for all integers n > 0 and real numbers x > 0 we
have I
anr < In1(@) < bpx (1.6)

In<x)
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where the best possible factors (which depend only on n) are given by a,, =
—%ﬂ and b,, = +2 In view of (1.6) it is natural to look for simple rational
functions r; and 75 such that the double-inequality

Ly—1(z)Lnq1(z)
(Ln(2))?

is valid for all z > 0 and n > 1. It is the aim of this paper to show that in fact

there exist four quadratic polynomials p1,ps and ¢1,¢2 such that (1.7) holds

with r = % and ro = Z 2 It turns out that our upper and lower bounds for

% improve those given in (1.3).

ri(z) < < ro(z) (1.7)

2. Main result

The following rational approximation to W is valid.

Theorem. Let a, 3 > 0 be real numbers and let n > 1 be an integer. The
mequalities

n+1 ( n+a)2
n+2 (1+m)(1+ n+1+a) ) (2.1)
Ln-1(2)ngi(z)  n+1 (1+735)
(In(x))? n+2 1+ =t5) L+ 5555)

hold for all real numbers x > 0 if and only if a <1 and 3 > 2.

Proof. First, we prove: if 0 < o <1 and 3 > 2, then (2.1) is valid for all
n >1and x > 0. We define for ¢t > 0

2
(1+ nLth)
(1 +5 1+t)(1 + n+€+t)

and set z=n -+ ¢ > 1. Then we obtain

ot,n,z) =

2 2 _
d(t,n,x) 25 6(tn, ) x®+ 3z +32°—1 -0
ot 2(22 = 1)(z + 2)((z + 2)2 — 1)

which implies that t — §(¢t,n,z) is strictly increasing on (0,00). Thus, it
suffices to establish (2.1) for « =1 and § = 2.

Taylor’s formula yields the integral representations

T 1
n! (=1)" I, (2) = / (x —t)"etdt = z"Tle™™ / t"etdt. (2.2)
0 0
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From (2.2) we conclude that the right-hand side of (2.1) with § = 2 is equiv-
alent to

[f(n—l,m)f(n—kl,x)}l/z < f(n,z) (2.3)

where

flna) = HOEZED) | St
0

n—+ 2

Inequality (2.3) is a consequence of the stronger inequality

[f(n— 1,x) —i—f(n—l—l,m)] < f(n,x). (2.4)

DN | —

We prove (2.4) for real numbers n > 1 and = > 0. Using

(n+2)(n+3+x) , (n+2)>*(n+3+u)

fln+1,2)= (n+ 3z e _(n+3)(n+2+x)xf(n’x)
nt+l+z . (n+2)(n+1+x)T
f(n—1,z)= —— e’ — (n+1)2(n+2+m)f(n’$)
and ) 1 )
/0 tnextdt = pov /(; s"eSds (25)
we obtain
2f(nx) — f(n—1,2) — f(n+1,2)
= tutn) [ [Cvreas - ] 29
where
u(n,) = — Jlr -’ 3:j24x2 L +i>i3g 8 et 1)(n+2)
v(n,z) = 2® + (n+i)fg+5)x+ (n+1)(n+2)
2
w(n,z) =z + (n+?11)5_3721+4)x2 " (n+ 1n)j533n+8)96+ (n+1)2(n +2).
Let N
R R e (27)

Partial differentiation leads to

89(71,1‘) — 2 A(’I’L,CE) xn—l—?)e:r
Ox (B(n,x))2
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where
A(n,z) = [n* + 5n + 62>
+ [4n® + 22n* + 36n + 18]x
+ 6n* + 44n® + 11612 + 130n + 52
B(n,z) = [n* + 5n + 6]2°
+ [3n® 4 1602 4 25n + 12]22
+ [3n* 4 20n® + 47n? + 460 + 16]z
+n° +9n* 4+ 31n3 4+ 51n2 4 40n + 12.

Thus, x — g(n, z) is strictly increasing on [0, 00). Hence,
g(n,x) > g(n,0) =0 (2.8)

so that (2.6) - (2.8) imply the validity of inequality (2.4).
Next, we consider the left-hand inequality of (2.1). Let

1
h(n,z) = (n+ 1+ ac)/ t"etdt.
0

Applying (2.2) we obtain that the first inequality of (2.1) with @ = 1 is
equivalent to
(h(n,z))* < h(n —1,2)h(n + 1,z). (2.9)

We establish (2.9) for real numbers n > 1 and = > 0. Using

n+2+xem_ (n+1)(n+2+x)

hln+12)=— mtitoe )
n+x (n+x)x
— ]_ = T _
hln—1,2) n o n(n+1+x) hin, z)

and (2.5) we obtain
h(n—1,2)h(n+1,z) — (h(n, ac))2 = lx*QR*QA(n,x)u(n,a:) (2.10)
n
where
An,z) =24+ 2n+ 2z +n’ +n
T T 2
p(n, z) = e**p(n,x) — exq(n,x)/ s"eds + </ s"esds>
0 0
g1 (M +x)(n+24+x)
A(n, z)
a(n+x)(n+l+z)(n+2+x)
A(n, x) '

p(n,z) ==

q(n,z) =2z
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Differentiation gives

(9,u(n, CE) _ b(n, x)) xn—lem CL(?’L, IL’) mn+1e$ _ / sn65d8:| (211)
T 0

where
a(n,z) = x° + [5n + 4]z*

+ [10n? + 15n + 4]2*

+ [10n3 + 21n® + 8n)x?

+ [5n* 4+ 13n® + 6n* — 2n)x

+n° + 3n* +2n3

b(n,r) = 2% + [6n + 4)z°

+ [15n® + 20n + 4]2*

+ [20n3 + 40n* + 18n]z*

+ [15n* + 401> + 29n? + 4n]2?

+ [6n° + 20n* + 200> + 4n? — 2n]x

+n8 +4n® + 5nt + 2n°.

Let
o(n,z) = Majwflem - /l‘ s"e®ds. (2.12)

0

Then

where
c(n, ) = 62° + [36n + 29]2°

+ [90n? 4 137n + 43]2*

+ [120n° + 258n° + 147n + 12]2°

+ [90n* + 242n° + 18912 4 250 — 12]22
+ [36n° 4 113n* + 109n® + 26n* — 6nx
4 6n° 4 2105 + 24n* + 9n3.

This implies that z +— ¢(n, z) is strictly increasing on [0, 00). Hence,
o(n,x) > ¢(n,0) = 0. (2.13)
From (2.11) - (2.13) we conclude

pu(n,z) > p(n,0) =0 (2.14)
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so that (2.10) and (2.14) lead to inequality (2.9).

It remains to prove that in (2.1) the parameters & = 1 and 3 = 2 are best

possible. We assume that there exist numbers o, 5 > 0 and n > 1 such that

Inti(z)

ey = —nil, we obtain from the

(2.1) is valid for all z > 0. Since lim,_,
left-hand side of (2.1) if x — oo

n+ln—1+a)(n+1+a) o N
n+ 2 (n+a)? “n+1

which is equivalent to aw < 1. Applying (1.4) we conclude that the right-hand
side of (2.1) is equivalent to

2 - 2
0 < ( n+ﬁ) . (1 + n+9(n,m))

U+ 755) U+ s Ut somwes) U srmsesy)
(2.15)
Denote herein the right part by o(n,z,3). A short computation gives that
(1.5) and (2.15) lead to

. o(n,x, B)
< .
0< tim T ) - win,2) 2.16)
where
g - 2L 1
Y n+y n—14y n+l+4+y
Since
ow(n,y) 2[3(n+y)? —1]
= >0 0
0y it 9P— 1+ g+ 14 ) >0

we conclude that y — w(n,y) is strictly increasing on (0,00). Thus, we get
from (2.16) that 8 > 2. This completes the proof of the Theorem B

Remarks.

(1) A simple calculation shows that the inequalities

n n+1 (1+n—+1)2

<
n+1 n + 2 1—|——
(T 20+ 552) -
n+1 (1+m) <n+1
n+2(1+:25)1+ %) n+2

hold for all n > 1 and = > 0. Hence, (2.1) (with @ = 1 and = 2) improves
the bounds given in (1.3). Moreover, from (2.1) and (2.17) we conclude that
inequalities (1.3) are strict.
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(2) Let

An(a,z) = (n+ 1)!%|]n(m)| (n € No).

The Theorem yields: if 0 < o <1 and = > 0, then n — A, («,z) is strictly
log-convex, whereas, if 5 > 2 and x > 0, then n — A, (0, x) is strictly log-
concave.

(3) Applying (2.2) we obtain an identity, which connects the functions I,
and J,, with the integral

1
Bn(z) :/_1 t"e” " dt.

We have

Bu(e) = e n(a) — La(a)] (x>0 m € Ny).

This formula and further properties of 3,, are given in [1: Chapter 5].
Let A, (x) be the arithmetic mean of the function ¢t — exp(zt) (x > 0) on
[0, 1] with the weight function t — " (n € Ny), that is,

1
tn Itdt 1
Ay (z) = fo—e =(n+1) [ tredt.
L indt
fo 0

The Theorem and (2.2) imply the following integral inequalities.

Corollary. Let a, 3 > 0 be real numbers and let n > 1 be an integer. The
double-inequality

€T 2 T 2
(1+ %) _ A (@A (@) (1++35)

(1 + ﬁ) (1 + Jm) (An(x))2 (1 + n—910+ﬁ) (1 + n-l—alj-i—ﬁ)

1s valid for all real numbers x > 0 if and only if a« <1 and 8 > 2.
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