
Zeitschrift für Analysis und ihre Anwendungen
Journal for Analysis and its Applications

Volume 21 (2002), No. 3, 599–610

Weighted Hölder Continuity
of

Hyperbolic Harmonic Bloch functions

Guangbin Ren and U. Kähler

Abstract. Characterizations of weighted Hölder continuity and weighted Lipschitz continuity
are obtained for the hyperbolic Bloch functions on the unit ball of Rn. Similar results are
extended to hyperbolic little Bloch and Besov spaces.
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1. Introduction

Let B be the unit ball in Rn with n ≥ 2, dν the normalized measure on B and dσ the
normalized surface measure on the unit sphere S = ∂B. We shall consider the Poincaré
metric in B

ds2 =
|dx|2

(1− |x|2)2 .

The corresponding Laplace-Beltrami operator and gradient are given by

4̃f(x) = (1− |x|2)2
(
4f(x) +

2(n− 2)
1− |x|2

n∑

i=1

xi
∂f

∂xi
(x)

)
,

∇̃f(x) = (1− |x|2)∇f(x),

where 4 and ∇ denote the usual Laplacian and gradient, respectively. They are invari-
ant in the sense

4̃f(x) = 4(f ◦ ϕx)(0),

∇̃f(x) = ∇(f ◦ ϕx)(0),

where the Möbius transformation ϕx ∈ Aut(B), x ∈ B, is an involutionary automor-
phism of B with ϕx(0) = x. Notice that for any f ∈ C2(B)

|∇̃f(x)| = (1− |x|2)|∇f(x)|.
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A function f ∈ C2(B) is called hyperbolic harmonic or simply H-harmonic if it is anni-
hilated by the invariant Laplacian on B. The
- H-harmonic Bloch space B is the space of all H-harmonic functions on B for which

supx∈B |∇̃f(x)| < ∞
- H-harmonic little Bloch space B0 consists of all functions f ∈ B such that

lim|x|→1 |∇̃f(x)| = 0
- H-harmonic Besov space Bp is the space of all -harmonic functions on B for which∫

B |∇̃f(x)|pdτ(x) < ∞ where dτ(x) = (1− |x|2)−ndν(x) is the invariant measure on
B.

Let α, β ≥ 0 and 0 < λ < 1, and let f be a continuous function in B. If there exist a
constant C such that

(1− |x|2)α(1− |y|2)β |f(x)− f(y)| ≤ C|x− y| (1.1)

for any x, y ∈ B, then we say that f satisfies a weighted Lipschitz condition of indices
(α, β). If there exist a constant C such that

(1− |x|2)α(1− |y|2)β |f(x)− f(y)| ≤ C|x− y|λ (1.2)

for any x, y ∈ B, then we say that f satisfies a weighted Hölder condition of indices
(α, β, λ).

The main purpose of this paper is to give some characterizations of B, B0 and
Bp in terms of weighted Hölder or Lipschitz conditions. We refer to [3, 4, 7, 8] for
corresponding results in the complex unit ball for holomorphic orM-harmonic functions.
See [6, 9, 12, 13, 15, 16] for various characterization of the Bloch, little Bloch, and Besov
spaces in the unit ball of Cn.

Our main results are the following three theorems.

Theorem 1.1. Let f be a hyperbolic harmonic function on B. Then the following
statements are equivalent:

(i) f ∈ B.
(ii) f satisfies a weighted Lipschitz condition of indices (α, β) with α + β = 1,

α, β > 0.
(iii) f satisfies a weighted Hölder condition of indices (α, β, λ) with α + β = λ,

α, β > 0 and 0 < λ < 1.

Theorem 1.2. Let 0 < λ < 1 and α, β > 0 with α + β = λ. For any hyperbolic
harmonic function f on B, f ∈ B0 if and only if

lim
|x|→1−

sup
{

(1− |x|2)α(1− |y|2)β |f(x)− f(y)|
|x− y|λ : y ∈ B, y 6= x

}
= 0.

Theorem 1.3. Let p ∈ (2(n− 1),∞). For any hyperbolic harmonic function f on
B, f ∈ Bp if and only if

∫

B

∫

B
(1− |x|2) p

2 (1− |y|2) p
2

( |f(x)− f(y)|
|x− y|

)p

dτ(x)dτ(y) < ∞.
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2. Preliminaries

We shall be using the following notation: for x, y ∈ Rn we write in polar coordinates
x = |x|x′ and y = |y|y′. For any y, w ∈ Rn the symmetric lemma (see [2: p. 10]) shows∣∣|y|w − y′

∣∣ =
∣∣|w|y − w′

∣∣. (2.1)
The same deduction yields∣∣|y|w − (1− |w|2)y′∣∣ =

∣∣|w|y − (1− |w|2)w′∣∣
so that ∣∣|y|2w − (1− |w|2)y∣∣ = |y| ∣∣|w|y − (1− |w|2)w′∣∣. (2.2)

For any a ∈ B we denote the Möbius transformation in B by ϕa. It is an involution-
ary automorphism of B such that ϕa(0) = a and ϕa(a) = 0, which is of the form (see
[1: p.25])

ϕa(x) =
|x− a|2a− (1− |a|2)(x− a)∣∣|x|a− x′

∣∣2 (a, x ∈ B). (2.3)

From (2.2) with w = a and y = x− a we have

|ϕa(x)| = |x− a|∣∣|a|x− a′
∣∣ (2.4)

such that

1− |ϕa(x)|2 =
(1− |x|2)(1− |a|2)∣∣|a|x− a′

∣∣2 . (2.5)

For any a ∈ B and δ ∈ (0, 1) we denote
E(a, δ) =

{
x ∈ B : |ϕa(x)| < δ

}
,

B(a, δ) =
{
x ∈ B : |x− a| < δ

}
.

Clearly, E(a, δ) = ϕa(B(0, δ)).

Lemma 2.1. Let x,w ∈ B and y ∈ E(w, δ). Then
1− δ

1 + δ

∣∣|x|w − x′
∣∣ ≤

∣∣|x|y − x′
∣∣ ≤ 1 + δ

1− δ

∣∣|x|w − x′
∣∣.

Proof. From (2.4) and (2.1) we have |ϕy(w)| = |ϕw(y)|, so that y ∈ E(w, δ) is
equivalent to w ∈ E(y, δ). By symmetry, we need only to prove the right inequality.
Since ∣∣|x|y − x′

∣∣ ≤
∣∣|x|(y − w)

∣∣ +
∣∣|x|w − x′

∣∣
it is enough to show

|y − w| ≤ 2δ

1− δ

∣∣|x|w − x′
∣∣

for any y ∈ E(w, δ). Denoting η = ϕw(y) we have y = ϕw(η) and |η| < δ. From (2.3),
a direct computation yields

|ϕw(η)− w| = |η|∣∣|w|η − w′
∣∣ (1− |w|

2).

Therefore, by the simple inequality 1− |w| ≤ ∣∣|x|w − x′
∣∣ we get

|y − w| = |ϕw(η)− w| ≤ δ

1− δ
(1− |w|2) ≤ δ

1− δ
2
∣∣|x|w − x′

∣∣
as desired
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As a direct corollary, we have

1− |x|2 ' 1− |y|2 (x ∈ E(y, δ)). (2.6)

In fact, taking w = x in Lemma 2.1 we get
∣∣|x|y − x′

∣∣ ' 1 − |y|2. The assertion now
follows from (2.1).

Let F be the hypergeometric function (see [5, 10])

F (a, b; c; s) =
∞∑

k=0

(a)k(b)k

k!(c)k
sk

for a, b, c ∈ R and c neither zero nor a negative integer, where (a)k denotes the Pochham-
mer symbol with (a)0 = 1 and (a)k = a(a + 1) · · · (a + k − 1), k ∈ N. These functions
have some well-known properties:

(i) Bateman’s integral formula

F (a, b; c + µ; s) =
Γ(c + µ)
Γ(c)Γ(µ)

∫ 1

0

tc−1(1− t)µ−1F (a, b; c; ts) dt (2.7)

with c, µ > 0 and s ∈ (−1, 1).
(ii) For any integer m [12: p. 69]

F (−m, b; c; 1) =
(c− b)m

(c)m

F (−m, a + m; c; 1) =
(−1)m(1 + a− c)m

(c)m
.

(2.8)

The following identity furnishes the hypergeometric function with an integral rep-
resentation.

Lemma 2.2. Let t > 1, λ ∈ R and r ∈ (−1, 1). Then
∫ 1

−1

(1− u2)(t−3)/2

(1− 2ru + r2)λ
du =

Γ( t−1
2 )Γ(1

2 )
Γ( t

2 )
F

(
λ, λ + 1− t

2 ; t
2 ; r2

)
. (2.9)

Proof. Let Cλ
m be the Gegenbauer polynomials. These polynomials can be defined

by the generating function

(1− 2ru + r2)−λ =
∞∑

m=0

Cλ
m(u)rm (2.10)

where

Cλ
2m(u) = (−1)m (λ)m

m!
F

(−m,m + λ; 1
2 ;u2

)

Cλ
2m+1(u) = (−1)m (λ)m

m!
2uF

(−m,m + λ + 1; 3
2 ; u2

)
.

(2.11)

To calculate the integral in (2.9), we apply (2.10) and (2.11) and can deduce that it is
only left to evaluate the integral∫ 1

−1

(1− u2)(t−3)/2F
(−m,m + λ; 1

2 ; u2
)
du

or rather an integral over the interval (0, 1) by the simple change of variables t = u2.
For this integral, we first use Bateman’s integral formula (2.7) with s = 1, then we apply
(2.8) so that it can be represented by Pochhammer symbols. The calculation of integral
(2.9) leads to a series which by definition is the desired hypergeometric function
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Lemma 2.3. Let α > −1 and β ∈ R. Then for any x ∈ B

∫

B

(1− |y|2)α

∣∣|x|y − x′
∣∣n+α+β

dν(y) ≈




(1− |x|2)−β if β > 0
log 1

1−|x|2 if β = 0
1 if β < 0

where a(x) ≈ b(x) means the ratio a(x)
b(x) has a positive finite limit as |x| → 1.

Proof. Denote the above integral by Jα,β(x). From Stirling’s formula we need only
to show

Jα,β(x) =
Γ(n

2 + 1)Γ(α + 1)
Γ(α + n

2 + 1)
F

(
n+α+β

2 , 2+α+β
2 ;α + n

2 + 1; |x|2).

For any continuous function f of one variable and any η ∈ ∂B, we have the formula (see
[2: p. 216])

∫

∂B
f(〈ζ, η〉) dσ(ζ) =

Γ(n
2 )

Γ(n−1
2 )Γ( 1

2 )

∫ 1

−1

(1− u2)
n−3

2 f(u) du

where 〈ζ, η〉 stands for the inner product in Rn. Taking

f(u) =
(
1− 2ru + r2

)−n+α+β
2

(
r ∈ (0, 1) fixed

)

and combining it with Lemma 2.2 we get

∫

∂B

(
1− 2r〈ζ, η〉+ r2

)−n+α+β
2 dσ(ζ)

=
Γ(n

2 )
Γ(n−1

2 )Γ( 1
2 )

∫ 1

−1

(1− u2)
n−3

2

(
1− 2ru + r2

)n+α+β
2

du

= F
(

n+α+β
2 , 2+α+β

2 ; n
2 ; r2

)
.

Consequently, from the polar coordinates formula we get

Jα,β(x) = n

∫ 1

0

rn−1(1− r2)αdr

∫

S

(
1− 2r|x|〈x′, ζ〉+ r2|x|2)−

n+α+β
2 dσ(ζ)

= C

∫ 1

0

rn−1(1− r2)αF
(

n+α+β
2 , 2+α+β

2 ; n
2 ; r2|x|2)dr.

The assertion now follows from Bateman’s integral formula (2.7)
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3. Bloch space

In this section we give the proof of Theorems 1.1 and 1.2. Theorem 1.1 can be rephrased
as the following

Theorem 3.1. Let 0 < α < λ ≤ 1. For any hyperbolic harmonic function f on B,
f ∈ B if and only if

sup
{

(1− |x|2)α(1− |y|2)λ−α |f(x)− f(y)|
|x− y|λ : x, y ∈ B, x 6= y

}
< ∞. (3.1)

Proof. We may assume α ≤ λ
2 , since one of the indices α and λ− α is no greater

than λ
2 .

First, let us assume that f ∈ B. For any a ∈ B we have

f(a)− f(0) =
∫ 1

0

df

dt
(ta) dt =

n∑

k=1

ak

∫ 1

0

∂f

∂xk
(ta) dt

so that

|f(a)− f(0)| ≤ n‖f‖B
∫ 1

0

|a|
1− t2|a|2 dt =

n

2
‖f‖B log

1 + |a|
1− |a| .

Now, replacing f by f ◦ ϕy and substituting x = ϕy(a) we get

|f(x)− f(y)| ≤ n

2
‖f‖B log

1 + |ϕy(x)|
1− |ϕy(x)| .

To estimate the last factor, we can apply the fact that

log
1 + |a|
1− |a| = 2|a|

∞∑
n=0

|a|2n

2n + 1
≤ C|a|

∞∑
n=0

Γ(n + α)
n!Γ(α)

|a|2α = C
|a|

(1− |a|2)α

for any 0 < α < 1 and a ∈ B. Now, from identities (2.4) - (2.5), we get

log
1 + |ϕy(x)|
1− |ϕy(x)

≤ C
|ϕy(x)|

(1− |ϕy(x)|2)α

≤ C
|ϕy(x)|λ

(1− |ϕy(x)|2)α

= C
|x− y|λ

(1− |x|2)α(1− |y|2)λ−α

( 1− |y|2
‖x|y − x′|

)λ−2α

≤ C
2λ−2α|x− y|λ

(1− |x|2)α(1− |y|2)λ−α
.

Here we used the assumption α ≤ λ
2 and the inequality 1 − |y| ≤ ∥∥x|y − x′

∣∣ for any
x, y ∈ B. Notice that 2λ−2α ≤ 2λ ≤ 2, which combined with the above results yields

|f(x)− f(y)| ≤ nC
|x− y|λ

(1− |x|2)α(1− |y|2)λ−α
‖f‖B.
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This proves the necessity.
Conversely, suppose that f is hyperbolic harmonic and (3.1) is satisfied. We will

show that f ∈ B. For any fixed δ ∈ (0, 1), it is known that

|∇̃f(0)| ≤ C

∫

δB

|f(a)|dτ(a).

Now, replacing f by f ◦ ϕx − f(x) and taking y = ϕx(a) we get

|∇̃f(x)| ≤ C

∫

E(x,δ)

|f(x)− f(y)| dτ(y). (3.2)

Therefore,
|∇̃f(x)| ≤ C sup

{
|f(x)− f(y)| : y ∈ E(x, δ), x ∈ B

}
.

Note that, for any y ∈ E(x, δ), |ϕy(x)| ≤ δ and 1− |x|2 ' 1− |y|2, so that

(1− |x|2)α(1− |y|2)λ−α

|x− y|λ ' (1− |x|2)λ/2(1− |y|2)λ/2

|x− y|λ

=
(√

1− |ϕy(x)|2
|ϕy(x)|

)λ

≥ C.

(3.3)

Consequently,

|∇̃f(x)| ≤ C sup
{

(1− |x|2)α(1− |y|2)λ−α

|x− y|λ |f(x)− f(y)| : y ∈ E(x, δ), x ∈ B

}

≤ C sup
{

(1− |x|2)α(1− |y|2)λ−α

|x− y|λ |f(x)− f(y)| : x, y ∈ B

}
.

This completes the proof of Theorem 3.1

Theorem 3.2. Let 0 < α < λ ≤ 1. For any hyperbolic harmonic function f on B,
f ∈ B0 if and only if

lim
|x|→1−

sup
{

(1− |x|2)α(1− |y|2)λ−α |f(x)− f(y)|
|x− y|λ : y ∈ B, y 6= x

}
= 0. (3.4)

Proof. Assume that f ∈ B0 and let ft(x) = f(tx) (t ∈ (0, 1)). By (3.1), we have

(1− |x|2)α(1− |y|2)λ−α

∣∣(f − ft)(x)− (f − ft)(y)
∣∣

|x− y|λ ≤ C‖f − ft‖B

and

(1− |x|2)α(1− |y|2)λ−α |ft(x)− ft(y)|
|x− y|λ

= tλ
(1− |x|2)α(1− |y|2)λ−α

(1− |tx|2)α(1− |ty|2)λ−λ
(1− |tx|2)α(1− |ty|2)λ−α |f(tx)− f(ty)|

|tx− ty|λ

≤ C
tλ

(1− t2)λ
(1− |x|2)α‖f‖B.
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By the triangle inequality we obtain

sup
{

(1− |x|2)α(1− |y|2)λ−α |f(x)− f(y)|
|x− y|λ : y ∈ B, y 6= x

}

≤ C
tλ

(1− t2)λ
(1− |x|2)α‖f‖B + ‖f − ft‖B.

In the above inequality, by first letting |x| → 1−, the first term on the right side
converges to 0, and then letting t → 1−, the second term on the right side also converges
to 0.

Now suppose that f is hyperbolic harmonic and (3.3) is satisfied. We will show that
f ∈ B0. Fix r ∈ (0, 1). From (3.2) - (3.3) we have

|∇̃f(x)| ≤ C(n, r)
∫

E(x,r)

(1− |x|2)α(1− |y|2)λ−α |f(x)− f(y)|
|x− y|λ dτ(y).

By assumption (3.4), for any given ε > 0 there exists δ ∈ (0, 1) such that

sup
{

(1− |x|2)α(1− |y|2)λ−α |f(x)− f(y)|
|x− y|λ : y ∈ B, y 6= x

}
< ε

whenever |x| > δ. Since

∫

E(x,r)

dτ = τ(E(a, r)) = τ(B(0, r)) = n

∫ r

0

tn−1(1− t2)−ndt

we have |∇̃f(x)| < Cε for any |x| > δ, which means |∇̃f(x)| → 0 as |x| → 1−. This
completes the proof

4. H-Besov spaces

In this section, we give the Holland-Walsh characterization for H-Besov spaces. When
p →∞, it also reveals the weighted Lipschitz characterization of Bloch spaces.

Theorem 4.1. Let p ∈ (2(n − 1),∞) and f be hyperbolic harmonic on B. Then
f ∈ Bp if and only if

∫

B

∫

B
(1− |x|2) p

2 (1− |y|2) p
2

( |f(x)− f(y)|
|x− y|

)p

dτ(x)dτ(y) < ∞. (4.1)

To prove this theorem, we need the following

Lemma 4.2. Let p ≥ 1 and α > −1. If f is hyperbolic harmonic on B, then

∫

B

( ∫ 1

0

|∇̃f(ta)|
1− t|a| dt

)p

dνα(a) ≤ C

∫

B
|∇̃f(a)|pdνα(a). (4.2)
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Proof. Fix ε ∈ (0, 1). Observe that for any t ∈ [0, 1] and a ∈ B if at least one of t
and |a| is less than ε, then |ta| = t|a| < ε, such that 1

1−t|a| ≤ 1
1−ε . Thus the left side in

(4.2) can be controlled by

∫

B−εB

(∫ 1

ε

|∇̃f(ta)|
1− t|a| dt

)p

dνα(a) + C sup
x∈εB

|∇̃f(x)|p.

Denote the first summand above by I. From the polar coordinate integral formula and
Minkowski’s inequality we get

I = n

∫ 1

ε

∫

∂B

( ∫ 1

ε

|∇̃f(tsζ)|
1− ts

dt

)p

dσ(ζ)sn−1(1− s2)αds

≤ C

∫ 1

ε

( ∫ 1

ε

Mp(ts, |∇̃f |)
1− ts

dt

)p

sn−1(1− s2)αds

≤ C

∫ 1

ε

( ∫ s

ε2
h(ρ)dρ

)p

(1− s2)αds

where

h(ρ) =
ρ(n−1)/pMp(ρ, |∇̃f |)

1− ρ
.

From Hölder’s inequality and Fubini’s theorem, we can get the following Hardy’s
inequality:

∫ 1

0

(∫ s

0

h(ρ)dρ

)p

(1− s)αds ≤
∫ 1

0

∫ s

0

hp(ρ)dρ(1− s)αds

≤
∫ 1

0

∫ 1

ρ

(1− s)αdshp(ρ) dρ

≤ C

∫ 1

0

hp(t)(1− t)α+1dt

for any p ≥ 1, α > −1, and h ≥ 0. As a result,

I ≤ C

∫ 1

0

(∫ s

0

h(ρ)dρ

)p

(1− s)αds

≤ C

∫ 1

0

tn−1(1− t)αMp
p (t, |∇̃f |) dt

= C

∫

B
|∇̃f(a)|pdνα(a).

It remains to show that supεB |∇̃f(x)|p ≤ C
∫
B |∇̃f(a)|pdνα(a). For this it is sufficient

to prove the inequality

|∇̃f(x)|p ≤ C

∫

E(x,δ)

|∇̃f |p(a) dτ(a). (4.3)
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Since f is hyperbolic harmonic, we have f(0) =
∫

∂B f(rξ) dσ(ξ) for any 0 < r < 1.
Replacing f by f ◦ ϕx, we see that f(x) =

∫
∂B f(ϕx(rξ))dσ(ξ) for any x ∈ B and 0 <

r < 1. Now we take the gradient about x, evaluate at x = 0, and denote ψa(x) = ϕx(a)
to get |∇f(0)| ≤ C

∫
∂B |∇(f ◦ ψrξ)(0) dσ(ξ). Since

|∇(f ◦ ψrξ)(0)| ≤ C|∇f(ψrξ(0))| sup
0<s<1

|∇ψsξ(0)|

and ψrξ(0) = ϕ0(rξ) = rξ, it follows that |∇f(0)| ≤ C
∫

∂B |∇f(rξ)|dσ(ξ). Multiplying
both sides by nrn−1(1− r2)−ndr and integrating from 0 to δ, we notice that |∇f(rξ)| ≤
(1− δ2)−1|∇̃f(rξ)| for any r ∈ (0, δ) and we conclude

|∇f(0)| ≤ C(1− δ2)−1δ−n

∫

δB

|τ̃ f(w)| dλ(w).

If we replace f by f ◦ ϕx, then assertion (4.3) follows. This finishes the proof

Proof of Theorem 4.1 Assume that f ∈ Bp. For any a ∈ B we have

|f(a)− f(0)|
|a| =

∣∣∣∣
∫ 1

0

∇f(ta)
a

|a| dt

∣∣∣∣ ≤
∫ 1

0

|∇̃f(ta)|
1− t|a| dt.

Therefore, Lemma 4.2 means

∫

B

|f(a)− f(0)|p
|a|p dνα(a) ≤ C

∫

B

|∇̃f(a)|pdνα(a).

Replacing f with f ◦ϕx, integrating with respect to dτ(x), taking y = ϕx(a) and setting
α = p

2 − n, we get

∫

B

∫

B

|f(y)− f(x)|p
|ϕx(y)|p

(
1− |ϕx(y)|2)

p
2 dτ(x)dτ(y)

≤ C

∫

B

∫

B

|∇̃f(y)|p(1− |ϕx(y)|2)
p
2 dτ(x)dτ(y)

≤ C

∫

B

|∇̃f(y)|pdτ(y)
∫

B

(
1− |ϕx(y)|2)

p
2 dτ(x)

≤ C

∫

B

|∇̃f(y)|pdτ(y).

In the last step, we used the estimate
∫

B

(
1 − |ϕx(y)|2)

p
2 dτ(x) ≤ C for p > 2(n − 1),

which follows from (2.5) and the Forelli-Rudin estimate in Lemma 2.3. Since

(1− |ϕx(y)|2) p
2

|ϕx(y)|p =
(1− |x|2) p

2 (1− |y|2) p
2

|x− y|p ,

we get (4.1).
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Conversely, supposing that f is hyperbolic harmonic and satisfying (4.1), we will
show that f ∈ Bp. For any fixed δ ∈ (0, 1),

|∇̃f(x)| ≤ C

∫

E(x,δ)

|f(x)− f(y)| dτ(y).

Then, by applying Hölder’s inequality and (3.3) with λ = p and α = p
2 ,

|∇̃f(x)|p ≤ C

∫

E(x,δ)

|f(x)− f(y)|pdτ(y)

≤
∫

E(x,δ)

|f(x)− f(y)|p (1− |x|2) p
2 (1− |y|2) p

2

|x− y|p dτ(y).

Thus, (4.1) implies f ∈ Bp. This completes the proof
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