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Tensor Algebras and Displacement Structure
II: Non-Commutative Szegö Polynomials

T. Constantinescu and J. L. Johnson

Abstract. In this paper we continue to explore the connection between tensor algebras and
displacement structure. We focus on recursive orthonormalization and we develop an analogue
of the Szegö-type theory of orthogonal polynomials in the unit circle for several non-commuting
variables. Thus we obtain recurrence equations and Christoffel-Darboux formulas for Szegö
polynomials in several non-commuting variables, as well as a Favard type result. Also, we
continue to study a Szegö-type kernel for the N -dimensional unit ball of an infinite-dimensional
Hilbert space.
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1. Introduction

In the first part of this paper [5] we explored the connection between tensor algebras
and displacement structure. The displacement structure theory was initiated in [13] as
a recursive factorization theory for matrices whose implicit structure is encoded by a
so-called displacement equation. This has been useful in several directions including
constrained and unconstrained rational interpolation, maximum entropy, inverse scat-
tering, H∞-control, signal detection, digital filter design, nonlinear Riccati equations,
certain Fredholm and Wiener-Hopf equations, etc. (see [14]). Aspects of the Szegö
theory can be also revealed within the displacement structure theory. Our main goal is
to develop an analogue for polynomials in several non-commuting variables of the Szegö
theory of orthogonal polynomials on the unit circle. An analogue of the Szegö theory of
orthogonal polynomials on the real line is being developed in the companion paper [6].

The paper is organized as follows. In Section 2 we review notation and several
results from [5]. In this way, this paper can be read independently of [5]. In Section
3 we introduce orthogonal polynomials in several non-commuting variables associated
to certain representations of the free semigroup and discuss their algebraic properties,
mostly related to the recursions that they satisfy. In Section 4 we consider several
positive definite kernels on the N -dimensional unit ball of an infinite-dimensional Hilbert
space. In particular, we prove a basic property of the Szegö-type kernel studied in [4] by

T. Constantinescu: Univ. of Texas at Dallas, Dept. Math., Richardson, TX 75083, USA
J. L. Johnson: Wagner Coll., Dept. Math. & Comp. Sci., Staten Island, NY 10301, USA
tiberiu@utdallas.edu and jlj@utdallas.edu

ISSN 0232-2064 / $ 2.50 c© Heldermann Verlag Berlin



612 T. Constantinescu and J. L. Johnson

characterizing its Kolmogorov decomposition. In Section 5 we discuss the problem of
recovering the representation from orthogonal polynomials and we prove a Favard-type
result.

We plan a more detailed study of applications to multiscale systems in a sequel of
this paper.

2. Preliminaries

We briefly review several constructions of the tensor algebra and introduce necessary no-
tation. We also review the connection with displacement structure theory as established
in [7].

2.1 Tensor algebras. The tensor algebra over CN is defined by the algebraic direct
sum

TN = ⊕k≥0(CN )⊗k

where (CN )⊗k denotes the k-fold tensor product of CN with itself. The addition is
taken componentwise and the multiplication is defined by juxtaposition as

(x⊗ y)n =
∑

k+l=n

xk ⊗ yl.

If {e1, . . . , eN} is the standard basis of CN , then
{
ei1 ⊗ · · · ⊗ eik

: 1 ≤ i1, . . . , ik ≤ N
}

is a basis of TN . Let F+
N be the unital free semigroup on N generators 1, . . . , N with

lexicographic order ≺. The empty word is the identity element, the length of the word
σ is denoted by |σ|, and the length of the empty word is 0. If σ = i1 · · · ik, then we
write eσ instead of ei1 ⊗ · · · ⊗ eik

, so that any element of TN can be uniquely written
in the form x =

∑
σ∈F+

N
cσeσ, where only finitely many of the complex numbers cσ are

different from 0.
Another construction of TN can be obtained as follows. Let S be a unital semigroup

and denote by F0(S) the set of functions φ : S → C with the property that φ(s) 6= 0
for only finitely many values of s. This set has a natural vector space structure and
BS = {δs : s ∈ S} is a vector basis for F0(S), where δs is the Kronecker symbol
associated to s ∈ S. Also, F0(S) is a unital associative algebra with respect to the
product

φ ∗ ψ =
( ∑

s∈S

φ(s)δs

)
∗

( ∑

t∈S

ψ(t)δt

)
=

∑

s,t∈S

φ(s)ψ(t)δst.

It is readily seen that F0(F+
N ) is isomorphic to TN . Since each element φ in F0(F+

N ) can
be uniquely written as a (finite) sum φ =

∑
σ∈F+

N
cσδσ, the isomorphism is the linear

extension Φ1 of the mapping δσ → eσ (σ ∈ F+
N ).

Another copy of the tensor algebra is given by the algebra P0
N of polynomials in

N non-commuting indeterminates X1, . . . , XN with complex coefficients. Each element
P ∈ P0

N can be uniquely written in the form P =
∑

σ∈F+
N

cσXσ with cσ 6= 0 for finitely

many σ’s and Xσ = Xi1 · · ·Xik
where σ = i1 · · · ik ∈ F+

N . The linear extension Φ2 of
the mapping δσ → Xσ (σ ∈ F+

N ) gives an isomorphism of TN with P0
N .
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Yet another copy of TN inside the algebra of lower triangular operators allowed for
the connection with displacement structure established in [7]. Thus let E be a Hilbert
space and define E0 = E and, for k ≥ 1,

Ek = Ek−1 ⊕ · · · ⊕ Ek−1︸ ︷︷ ︸
N terms

= E⊕N
k−1. (2.1)

For E = C we have that Ck can be identified with (CN )⊗k and TN is isomorphic to the
algebra L0

N of lower triangular operators T = [Tij ] ∈ L(⊕k≥0Ck) with the property

Tij = Ti−1,j−1 ⊕ · · · ⊕ Ti−1,j−1︸ ︷︷ ︸
N terms

= T⊕N
i−1,j−1 (2.2)

for i, j ≥ 1 with i ≤ j and Tj0 = 0 for all sufficiently large j′s. The isomorphism is
given by the map Φ3 defined as follows: Let x = (x0, x1, . . .) ∈ TN (xp ∈ (CN )⊗p is the
pth homogeneous component of x). Then xp =

∑
|σ|=p cσeσ and, for j ≥ 0, Tj0 denotes

the column matrix [cσ]T|σ|=j , where ”T” denotes the matrix transpose. Then Tj0 = 0 for
all sufficiently large j’s and we can define T ∈ L(⊕k≥0Ck) by using (2.2). Finally, set
Φ3(x) = T .

2.2 Displacement structure. We can now describe the displacement structure of the
tensor algebra. We write this connection for L0

N . Then it can be easily translated into
any other realization of the tensor algebra. Let Fk = [T k

ij ] ∈ L(⊕k≥0Ck) (k = 1, . . . , N)
be isometries defined by the formulae Tij = 0 for i 6= j + 1 and Ti+1,i is a block-column
matrix consisting of N blocks of dimension dim Ci, all of them zero except for the kth
block which is the identity on Ck. We have the following result noticed in [7].

Theorem 2.1. Let T ∈ L0
N and define A = I − TT ∗. Then

A−
N∑

k=1

FkAF ∗k = GJ11G
∗ (2.3)

where

G =




1 T00

0 T01
...

...


 and J11 =

[
1 0
0 −1

]
.

The model L0
N of the tensor algebra is also useful in order to extend this algebra to

some topological tensor algebras (see [12]). Here we consider only the norm topology
and denote by LN the algebra of all lower triangular operators T = [Tij ] ∈ L(⊕k≥0Ck)
satisfying (2.2).

2.3 Multiscale processes. Multiscale processes are stochastic processes indexed by
nodes on a tree. They became quite popular lately (see [1, 2]) and have potential to
model the self-similarity of fractional Brownian motion leading to iterative algorithms
in computer vision, remote sensing, etc. Here we restrict our attention to the case of
the Cayley tree, in which each node has N branches. The vertices of the Cayley tree
are indexed by F+

N .
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Let (X,F , P ) be a probability space and let {vσ}σ∈F+
N
⊂ L2(P ) be a family of

random variables. Its covariance kernel is

K(σ, τ) =
∫

X

vσvτ dP

and assume that the process is stationary in the sense (considered earlier, e.g. [10]) that

K(τσ, τσ′) = K(σ, σ′) (τ, σ, σ′ ∈ F+
N ) (2.4)

K(σ, τ) = 0 if there is no α ∈ F+
N such that σ = ατ or τ = ασ. (2.5)

Conversely, by the invariant Kolmogorov decomposition theorem (see, e.g., [15: Chapter
II]) there exists an isometric representation u of F+

N on a Hilbert space K and a mapping
v : F+

N → K such that

- K(σ, τ) = 〈v(τ), v(σ)〉K and u(τ)v(σ) = v(τσ) for all σ, τ ∈ F+
N

- the set {v(σ) : σ ∈ F+
N} is total in K

- u(1), . . . , u(N) are isometries with orthogonal ranges.
This class of multiscale processes would be suitable to model branching processes with-
out ”past”. If a ”past” should be attached to a process as above, we could try to
consider processes indexed by the nodes of the tree associated to the free group on N
generators 1, . . . , N . As mentioned in Introduction, we plan to look at this matter in a
sequel of this paper. Here we focus on processes with covariance kernel satisfying (2.4)
- (2.5). It was shown in [5] that such a kernel has displacement structure. Also, it is
clear that for all j, k ≥ 1

[K(σ, τ)]|σ|=j,|τ |=k =
(
K(σ′, τ ′)]|σ′|=j−1,|τ ′|=k−1)⊕N (2.6)

so that the kernel is determined by the elements sσ = K(∅, σ) (σ ∈ F+
N ).

By [3: Theorem 1.5.3] each positive definite kernel K on F+
N is uniquely determined

by a family of contractions {γσ,τ : σ, τ ∈ F+
N , σ ¹ τ} such that γσ,σ = 0 (σ ∈ F+

N ) and
otherwise γσ,τ ∈ L(Dγσ+1,τ ,Dγ∗

σ,τ−1
) (for a contraction T between two Hilbert spaces

DT = (I − T ∗T )1/2 denotes the defect operator of T and DT is the defect space of T
defined as the closure of the range of DT – note that in our case γσ,τ are just complex
numbers and the condition γσ,τ ∈ L(Dγσ+1,τ ,Dγ∗

σ,τ−1
) for σ ≺ τ encodes the fact that

|γσ+1,τ | = 1 or |γσ,τ−1| = 1 implies γσ,τ = 0; also, τ − 1 denotes the predecessor of τ
with respect to the lexicographic order ≺ on F+

N , while σ + 1 denotes the successor of
σ). In addition, the positive definite kernel K satisfies (2.4) - (2.5) if and only if

γτσ,τσ′ = γσ,σ′ (τ, σ, σ′ ∈ F+
N ) (2.7)

γσ,τ = 0 if there is no α ∈ F+
N such that σ = ατ or τ = ασ. (2.8)

We define γσ = γ∅,σ (σ ∈ F+
N ) and we notice that {γσ,τ : σ, τ ∈ F+

N , σ ¹ τ} is uniquely
determined by {γσ}σ∈F+

N
by the formula

[γσ,τ ]|σ|=j,|τ |=k =
(
[γσ′,τ ′ ]|σ′|=j−1,|τ ′|=k−1

)⊕N (j, k ≥ 1). (2.9)
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3. Szegö polynomials

We introduce polynomials in several non-commuting variables orthogonal with respect
to a positive definite kernel K satisfying (2.4) - (2.5). We extend some elements of the
Szegö theory to this setting.

The kernel K being given, we can introduce an inner product on F0(F+
N ) in the

usual manner by
〈φ, ψ〉K =

∑

σ,τ∈F+
N

K(σ, τ)φ(τ)ψ(σ). (3.1)

By factoring out the subspace NK = {φ ∈ F0(F+
N ) : 〈φ, φ〉K = 0} and completing with

respect to the norm induced by (3.1) we obtain a Hilbert space denoted HK . A similar
structure can be introduced on P0

N . Let P =
∑

σ∈F+
N

cσXσ and Q =
∑

σ∈F+
N

dσXσ be
elements in P0

N . Then define

〈P,Q〉K =
∑

σ,τ∈F+
N

K(σ, τ)cτdσ. (3.2)

By factoring out the subspace MK = {P ∈ P0
N : 〈P, P 〉K = 0} and completing with

respect to the norm induced by (3.2) we obtain a Hilbert space denoted L2(K). One
can check that the map Φ2 defined by δσ → Xσ (σ ∈ F+

N ) extends to a unitary operator
from HK onto L2(K).

From now on we assume that for any α ∈ F+
N the matrix [K(σ, τ)]σ,τ¹α is invertible.

This implies that MK = 0 and P0
N can be viewed as a subspace of L2(K). Also, for any

α ∈ F+
N , {Xσ}σ¹α is a linearly independent family in L2(K). Then the Gram-Schmidt

procedure gives a family {ϕσ}σ∈F+
N

of elements in P0
N such that

ϕσ =
∑

τ¹σ

aσ,τXτ (aσ,σ > 0) (3.3)

〈ϕσ, ϕτ 〉K = 0 (∅ ¹ σ ≺ τ). (3.4)

An explicit formula for the orthogonal polynomials ϕσ can be obtained in the same
manner as in the classical (one variable) case. Define for σ ∈ F+

N

Dσ = det [K(σ′, τ ′)]σ′,τ ′¹σ (3.5)

and let {γσ}σ∈F+
N

be the parameters associated to K as described in Subsection 2.3.

Note that since all the matrices [K(σ, τ)]σ,τ¹α (α ∈ F+
N ) are assumed to be invertible,

it follows that |γσ| < 1 for all σ ∈ F+
N .

Theorem 3.1.

(1) ϕ∅ = 1 and, for ∅ ≺ σ,

ϕσ = 1√
Dσ−1Dσ

det
[

[K(σ′, τ ′)]σ′≺σ;τ ′¹σ

1 X1 · · · Xσ

]
. (3.6)
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(2) For ∅ ≺ σ = i1 · · · ik,

ϕσ =
1∏

1≤j≤k(1− |γij ...ik
|2)1/2

(
Xσ + lower order terms

)
.

Proof. The proof is similar to the classical one. Thus we deduce from orthog-
onality condition (3.4) that 〈ϕσ, Xτ ′〉K = 0 for ∅ ¹ τ ′ ≺ σ, which implies that∑

τ¹σ aσ,τK(τ ′, τ) = 0 for ∅ ¹ τ ′ ≺ σ. Using the Cramer rules for the system
∑

τ¹σ

aσ,τK(τ ′, τ) = 0 (∅ ¹ τ ′ ≺ σ)

∑

τ¹σ

aσ,τXτ = ϕσ





with unknowns aσ,τ , we deduce

aσ,σ =
ϕσDσ−1

det
[

[K(σ′, τ ′)]σ′≺σ;τ ′¹σ

1 X1 · · · Xσ

] .

Therefore,

ϕσ =
aσ,σ

Dσ−1
det

[
[K(σ′, τ ′)]σ′≺σ;τ ′¹σ

1 X1 . . . Xσ

]
.

We now compute aσ,σ and Dσ in terms of the parameters {γσ}σ∈F+
N

of K. First we
notice that 〈

det
[

[K(σ′, τ ′)]σ′≺σ;τ ′¹σ

1 X1 · · · Xσ

]
, Xσ

〉

K

= Dσ

and since Xσ = 1
aσ,σ

ϕσ +
∑

τ≺σ cτXτ we deduce

Dσ =
〈

Dσ−1

aσ,σ
ϕσ,

1
aσ,σ

ϕσ +
∑
τ≺σ

cτXτ

〉

K

=
Dσ−1

a2
σ,σ

so that 1
a2

σ,σ
= Dσ

Dσ−1
which gives (3.6).

In order to compute Dσ in terms of {γσ}σ∈F+
N

we use [3: Theorem 1.5.10] and the
special structure of Dσ. Thus

Dσ =
∏

∅≺σ′,τ ′¹σ

(1− |γσ′,τ ′ |2)

and for ∅ ≺ σ = i1 . . . ik we deduce
1

a2
σ,σ

=
Dσ

Dσ−1
=

∏

1≤j≤k

(1− |γij ...ik
|2).

Then
ϕσ = aσ,σXσ +

∑
τ≺σ

aσ,σcτXτ

=
1∏

1≤j≤k(1− |γij ...ik
|2)1/2

(Xσ + lower order terms)

which gives (3.7)
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We illustrate this result for N = 2. From now on it is convenient to use the notation
dσ = (1− |γσ|2)1/2 (σ ∈ F+

N − {∅}).
Example. Let N = 2 and assume the positive kernel K satisfies the conditions in

Theorem 3.1. We have D∅ = 1 and the next three determinants are

D1 = det
[

1 s1

s1 1

]
= d2

1

D2 = det




1 s1 s2

s1 1 0
s2 0 1


 = d2

1d
2
2

D11 = det




1 s1 s2 s11

s1 1 0 s1

s2 0 1 0
s11 s1 0 1


 = d4

1d
2
2d

2
11.

Using Theorem 3.1 we can easily calculate the first four orthogonal polynomials of K.
Thus, ϕ∅ = 1 and then

ϕ1 =
1
d1

det
[

1 s1

1 X1

]
= −γ1

d1
+

1
d1

X1

ϕ2 =
1

d2
1d2

det




1 s1 s2

s1 1 0
1 X1 X2


 = − γ2

d1d2
+

γ1γ2

d1d2
X1 +

1
d2

X2

where we used the fact that s2 = d1γ2. Then, after some calculations,

ϕ11 =
1

d3
1d

2
2d11

det




1 s1 s2 s11

s1 1 0 s1

s2 0 1 0
1 X1 X2 X2

1




= − γ11

d1d2d11
+

(
− γ1

d1d11
+

γ11γ1

d1d2d11

)
X1 +

γ11γ2

d2d11
X2 +

1
d11d1

X2
1 .

We establish now that the orthogonal polynomials introduced above satisfy equa-
tions similar to the classical Szegö difference equations.

Theorem 3.2. The orthogonal polynomials satisfy the recurrences ϕ∅ = ϕ]
∅ = 1

and, for k ∈ {1, . . . , N} and σ ∈ F+
N ,

ϕkσ =
1

dkσ

(
Xkϕσ − γkσϕ]

kσ−1

)
(3.8)

ϕ]
kσ =

1
dkσ

(− γkσXkϕσ + ϕ]
kσ−1

)
. (3.9)

Proof. We deduce this result from similar formulae obtained for an arbitrary
positive definite kernel. In this way we can show the meaning of the polynomials
ϕ]

σ (σ ∈ F+
N ). Let [ti,j ]i,j≥1 be a positive definite kernel on N and assume that each

matrix A(i,j) = [tk,l]1≤i≤k,l≤j is invertible. Also, assume tk,k = 1 for all k ≥ 1. Let
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Fi,j be the upper Cholesky factor of A(i,j), so that Fi,j is an upper triangular matrix
with positive diagonal and A(i,j) = F ∗i,jFi,j . A dual, lower Cholesky factor is obtained
as follows: define the symmetry of appropriate dimension

J =




0 0 . . . 0 I
0 0 I 0
...

. . .
0 I 0
I 0 0 0




and then let F̃i,j denote the upper Cholesky factor of B(i,j) = JA(i,j)J . If Gi,j =
J F̃i,jJ , then

A(i,j) = JB(i,j)J = JF ∗i,jFi,jJ = G∗i,jGi,j

and Gi,j is a lower triangular matrix with positive diagonal, called the lower Cholesky
factor of A(i,j). Let Pi,j be the last column of F−1

i,j and let P ]
i,j be the first column of G−1

i,j ,
that is Pi,j = F−1

i,j E and P ]
i,j = G−1

i,j JE where E = [0 · · · 0 I]T . Let {ri,j}1<i≤j be the
parameters associated to [ti,j ]i,j≥1 by [3: Theorem 1.5.3] and let ρi,j = (1− |ri,j |2)1/2.
We have

P1,n =
1

d1,n

[
0

P2,n

]
− r1,n

d1,n

[
P ]

1,n−1

0

]
(3.10)

P ]
1,n = − r1,n

d1,n

[
0

P2,n

]
+

1
d1,n

[
P ]

1,n−1

0

]
. (3.11)

These formulae are presumable known to the experts. For the sake of completeness we
give a proof here based on results and notation from [3]. First we introduce for i < j
the elements

L
(j)
i = L

({ri,k}j
k=i+1

)
=

[
ri,i+1 ρi,i+1ri,i+1 · · · ρi,i+1 · · · ρi,j−1ri,j

]
(3.12)

C
(i)
j =




rj−1,j

...
ri+1,jρi+2,j · · · ρj−1,j

ri,jρi+1,j · · · ρj−1,j




K
(j)
i =




ri,i+1ρi,i+2 · · · ρi,j

...
ri,j−1ρi,j

ri,j


 =

[
K

(j−1)
i ρi,j

ri,j

]
.

Also, we define inductively D
(i+1)
i = ρi,i+1 and

D
(j)
i = D

({ri,k}j
k=i+1

)
=

[
D

(j−1)
i −K

(j−1)
i ri,j

0 ρi,j

]
. (3.13)
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We also need to review the factorization of unitary matrices. This is an extension of
Euler’s description of SO(3). First we define

Rj−i(ri,k) = Ik−1−i ⊕
[

ri,k ρi,k

ρi,k −ri,k

]
⊕ Ij−k−1

where Ik−1−i is the identity matrix of size k − 1− i. Then

Ri,j = Rj−i(ri,i+1) · · ·Rj−i(ri,j)

Ui,j = Ri,j(Ui+1,j ⊕ 1).

It turns out that any unitary matrix can be written as a matrix of the form of Ui,j . The
main idea for the proof of (3.10) is to use the identity

Ui,jJGi,j = Fi,j (3.14)

which follows from [3: Relations (1.6.10), (6.3.8) and (6.3.9)]. Thus, we notice that
(3.14) implies P ]

i,j = Fi,jUi,jE which is more tractable than the original definition of
P ]

i,j . This is seen from the following calculations. Using [3: Formula (1.5.7)], the above

definition of D
(n)
1 and the notation D

−(n)
1 = (D(n)

1 )−1 we obtain

P1,n =

[
1 −L

(n)
1 D

−(n)
1

0 F−1
2,nD

−(n)
1

]
E

=

[
−L

(n)
1 D

−(n)
1 E

F−1
2,nD

−(n)
1 E

]

=




−L
(n)
1

[
D
−(n−1)
1

r1,n

ρ1,n
D
−(n−1)
1 K

(n−1)
1

0 1
ρ1,n

]
E

F−1
2,n

[
D
−(n−1)
1

r1,n

ρ1,n
D
−(n−1)
1 K

(n−1)
1

0 1
ρ1,n

]
E




=




−L
(n)
1

[ r1,n

ρ1,n
D
−(n−1)
1 K

(n−1)
1

1
ρ1,n

]

F−1
2,n

[
r1,n

ρ1,n
D
−(n−1)
1 K

(n−1)
1

1
ρ1,n

]




=
1

ρ1,n

[
0

F−1
2,nE

]
+




−L
(n)
1

[
r1,n

ρ1,n
D
−(n−1)
1 K

(n−1)
1

1
ρ1,n

]

F−1
2,n

[
r1,n

ρ1,n
D
−(n−1)
1

−1
K

(n−1)
1

0

]




=
1

ρ1,n

[
0

P2,n

]
+

r1,n

ρ1,n



−L

(n−1)
1 D

−(n−1)
1 K

(n−1)
1 − ρ1,2 · · · ρ1,n−1

F−1
2,n

[
D
−(n−1)
1 K

(n−1)
1

0

]

 .
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The proof of [3: Formula (1.6.15)] gives

L
(n−1)
1 D

−(n−1)
1 K

(n−1)
1 + ρ1,2 · · · ρ1,n−1 =

1
ρ1,2 · · · ρ1,n−1

and using [3: Formula (1.5.6)] we deduce

F−1
2,n

[
D
−(n−1)
1 K

(n−1)
1

0

]
=

[
F−1

2,n−1D
−(n−1)
1 K

(n−1)
1

0

]
.

Therefore

P1,n =
1

ρ1,n

[
0

P2,n

]
− r1,n

ρ1,n




1
ρ1,2···ρ1,n−1

−F−1
2,n−1D

−(n−1)
1 K

(n−1)
1

0


 .

It remains to show that

P ]
1,n−1 =

[ 1
ρ1,2···ρ1,n−1

−F−1
2,n−1D

−(n−1)
1 K

(n−1)
1

]
.

To that end we notice that using [3: Formula (1.5.8)], the definition of U1,n−1, the fact
that R1,n−1 is a unitary matrix, and the notation L

∗(n−1)
1 = (L(n−1)

1 )∗ we obtain

P ]
1,n−1 =

[
0 1

ρ1,2···ρ1,n−1

F−1
2,n−1 − 1

ρ1,2···ρ1,n−1
F−1

2,n−1L
∗(n−1)
1

]
R∗1,n−1R1,n−1

[
U2,n−1 0

0 1

]
E

=

[ 1
ρ1,2···ρ1,n−1

− 1
ρ1,2···ρ1,n−1

F−1
2,n−1L

∗(n−1)
1 )

]
.

It follows that all we have to show is the equality

F−1
2,n−1D

−(n−1)
1 K

(n−1)
1 =

1
ρ1,2 · · · ρ1,n−1

F−1
2,n−1L

∗(n−1)
1 .

Now this is a simple consequence of the formula T ∗DT∗ = DT T ∗ for the contraction
T = L

(n−1)
1 . Formula (3.11) can be proved in a similar manner.

We rewrite (3.10) - (3.11) for a positive definite kernel K satisfying (2.4) - (2.5).
We notice that P ]

1,n−1 is replaced by ϕ]
kσ−1 and then we have to show that P2,n can be

expressed in terms of ϕσ. This follows by taking into account relations (2.7) - (2.8) and
using systematically (3.10). We can omit the details

The previous recurrence equations look quite similar to the classical Szegö recur-
sions. This type of recurrence equations was also found in [4] in connection with some
derivations on LN . It turns out that these derivations are related to those considered
in [11] and later studied in [9].

We also notice a graded form of the recurences (3.8) - (3.9). It is convenient to
introduce, using (3.12), for n ≥ 1 the notation

gn = L({γσ}|σ|=n).
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It was explained in [5] that gn are the parameters associated to the kernel K in [16].
We also use (3.13) in order to introduce the notation

Hn = D({γσ}|σ|=n) (n ≥ 1).

Let σ(n) be the largest word (with respect to the lexicographic order) of lenght n, that
is σ(n) = N · · ·N︸ ︷︷ ︸

N terms

.

Corollary 3.3. The Szegö polynomials satisfy the recurrences

[ϕσ]|σ|=k =
(
[X1 . . . XN ] [ϕσ]⊕N

|σ|=k−1 − ϕ]
σ(k)−1gk

)
H−1

k (3.15)

ϕ]
σ(k) =

∏

|τ |=k

d−1
τ

(
−[X1 . . . XN ] [ϕσ]⊕N

|σ|=k−1g
∗
k + ϕ]

σ(k)−1

)
. (3.16)

for k ≥ 1.

Proof. Both statements follow by direct calculations from Theorem 3.2

4. Christoffel-Darboux formula

A first consequence of the Szegö formula in the classical case is the Christoffel-Darboux
formula. Here we find a similar formula in several non-commuting variables. To that
end we introduce additional notation.

Let E be a Hilbert space. In this paper E will always be infinite-dimensional. The
N -dimensional unit ball of E is defined by

BN (E) =
{

Z = (Z1 · · · ZN ) : (Z|Z) < IE
}

where for two elements Z = (Z1 · · · ZN ) and W = (W1 · · · WN ) in L(E)N we define

(Z|W ) =
N∑

k=1

ZkW ∗
k . (4.1)

We also need a sort of Szegö kernel for BN (E). One suggestion was given in [4] to
consider the following construction. For Z ∈ BN (E) define

E(Z) = [Zσ]∞|σ|=0 ∈ L(⊕k≥0Ek, E). (4.2)

Also, we use the notation diag(S) to denote the diagonal operator in L(⊕k≥0Ek) with
diagonal S. A Szegö-type kernel on BN (E) is given by the formula

KS(Z,W ) = E(Z)E(W )∗
(
Z, W ∈ BN (E)

)
.

The next result explains two important properties of K.
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Lemma 4.1.

(a) For T ∈ L(E) and Z,W ∈ BN (E), E(Z)diag
(
T −∑N

k=1 ZkTW ∗
k

)
E(W )∗ = T .

(b) The set
{
E(W )∗E : W ∈ BN (E)

}
is total in ⊕k≥0Ek.

Proof. Statement (a): Using directly the definitions,

E(Z)diag
(

T −
N∑

k=1

ZkTW ∗
k

)
E(W )∗

= T +
∑

|σ|≥1

ZσTW ∗
σ −

N∑

k=1

E(Z)diag(ZkTW ∗
k )E(W )∗

= T +
∑

|σ|≥1

ZσTW ∗
σ −

N∑

k=1

∑

|σ|≥0

ZσZkTW ∗
k W ∗

σ

= T +
∑

|σ|≥1

ZσTW ∗
σ −

∑

|σ|≥1

ZσTW ∗
σ

= T.

Statement (b): Let e = {eσ}σ∈F+
N

be an element of ⊕k≥0Ek orthogonal to the linear
span of {E(W )∗E : W ∈ BN (E)}. Taking W = 0, we deduce e∅ = 0. Next, we claim
that for each σ ∈ F+

N − {∅} there exist Wl = (W l
1, . . . , W

l
N ) ∈ BN (E) (l = 1, . . . , 2|σ|)

such that range[W ∗1
σ · · · W

∗2|σ|
σ ] = E and W l

τ = 0 for all τ 6= σ with |τ | ≥ |σ|. Once this
claim is proved, a simple inductive argument gives e = 0, so {E(W )∗E : W ∈ BN (E)}
is total in ⊕k≥0Ek. Therefore we focus on the proof of the claim.

Let {en
ij}n

i,j=1 be the matrix units of the algebra Mn of n× n matrices. Each en
ij is

an n× n matrix consisting of 1 in the (i, j)th entry and zeros elsewhere. For a Hilbert
space E1 we define En

ij = en
ij ⊗ IE1 and we notice that

En
ijE

n
kl = δjkEn

il and E∗n
ji = En

ij . (4.3)

Let E be infinite-dimensional and σ = i1 · · · ik, so that E = E⊕2|σ|
1 for some Hilbert

space E1. For s = 1, . . . , N we define

Js =
{
l ∈ {1, . . . , k} : ik+1−l = s

}

W ∗p
s = 1√

2

∑
r∈Js

E
2|σ|
r+p−1,r+p (p = 1, . . . , |σ|).

We show that for each p ∈ {1, . . . , |σ|}

W ∗p
σ = 1√

2k
E

2|σ|
p,k+p (4.4)

W p
τ = 0 for τ 6= σ with |τ | ≥ |σ|. (4.5)
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Using (4.3) we deduce
N∑

s=1

W p
s W ∗p

s =
1
2

N∑
s=1

∑

r∈Js

E
2|σ|
r+p,r+p−1E

2|σ|
r+p−1,r+p

=
1
2

N∑
s=1

∑

r∈Js

E
2|σ|
r+p,r+p

=
1
2

k∑
r=1

E
2|σ|
r+p,r+p

< I,

hence W p ∈ BN (E) for each p = 1, . . . , |σ|. For each word τ = j1 · · · jk ∈ F+
N − {∅} we

deduce by induction that

W ∗p
jk
· · ·W ∗p

j1
= 1√

2k

∑

r∈Aτ

E
2|σ|
r+p−1,r+p+k−1 (4.6)

where Aτ = ∩k−1
p=0(Jjk−p

− p) ⊂ {1, . . . , N} and Jjk−p
− p = {l − p : l ∈ Jik−p

}.
We show that Aσ = {1} and Aτ = ∅ for τ 6= σ. Let q ∈ Aτ . Therefore, for any

p ∈ {0, . . . , k − 1} we must have q + p ∈ Jjk−p
or ik+1−q−p = jk−p. For p = k − 1 we

deduce j1 = i2−q and since 2 − q ≥ 1, it follows that q ≤ 1. Also, q ≥ 1, therefore
the only element that can be in Aτ is q = 1, in which case we must have τ = σ.
Since l ∈ Jik+1−l

for each l = 1, . . . , k − 1, we deduce that Aσ = {1} and Aτ = ∅ for
τ 6= σ. Formula (4.6) implies (4.4). In a similar manner we can construct a family
W p (p = |σ| + 1, . . . , 2|σ|) such that W ∗p

σ = 1√
2k

E
2|σ|
p+k,p and W p

τ = 0 for τ 6= σ with
|τ | ≥ |σ|. Thus for s = 1, . . . , N we define

Ks =
{
l ∈ {1, . . . , k} : ik = s

}

W ∗p
s = 1√

2

∑
r∈Ks

E
2|σ|
r+p−k,r+p−k−1 (p = |σ|+ 1, . . . , 2|σ|).

Now [
W ∗1

σ · · · W ∗2|σ|
σ

]
= 1√

2k

[
E

2|σ|
1,k+1 · · · E

2|σ|
k,2k E

2|σ|
k+1,1 · · · E

2|σ|
2k,k

]

whose range is E . This concludes the proof

We note that the result given by Lemma 4.1/(b) is not true in the case E finite-
dimensional. The meaning of the result is that in the case E infinite-dimensional E is
precisely the Kolmogorov decomposition of the kernel KS .

We now let a polynomial P =
∑

σ∈F+
N

cσXσ ∈ P0
N take values on BN (E) by the

formula
P (Z) =

∑

σ∈F+
N

cσZσ

(
Z ∈ BN (E)

)
. (4.7)

Define the Cristoffel-Darboux kernel by the formula
KCD(Z, W ) =

E(Z)diag
(

ϕ]
σ(n)(Z)ϕ]

σ(n)(W )∗ −
∑

|τ |=n

ϕτ (Z)ϕτ (W )∗
)

E(W )∗ (4.8)

for Z, W ∈ BN (E).
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Theorem 4.2. For any Z, W ∈ BN (E),

KCD(Z, W ) =
∑

0≤|τ |<n

ϕτ (Z)ϕτ (W )∗.

Proof. From (3.8) - (3.9) we deduce

ϕ]
kσ(Z)ϕ]

kσ(W )∗ − ϕkσ(Z)ϕkσ(W )∗

= ϕ]
kσ−1(Z)ϕ]

kσ−1(W )∗ − Zkϕkσ(Z)ϕkσ(W )∗W ∗
k

for any k ∈ {1, . . . , N}, σ ∈ F+
N and Z, W ∈ BN (E). Adding all these relations for

k ∈ {1, . . . , N} and 0 ≤ |σ| ≤ n− 1, we deduce

ϕ]
σ(n)(Z)ϕ]

σ(n)(W )∗ −
∑

0≤|σ|≤n

ϕσ(Z)ϕσ(W )∗ =
N∑

k=1

∑

0≤|σ|≤n−1

Zkϕσ(Z)ϕσ(W )∗W ∗
k .

This relation and Lemma 4.1 give

KCD(Z,W ) = E(Z) diag
( ∑

0≤|σ|<n

ϕσ(Z)ϕσ(W )∗

−
N∑

k=1

Zk

( ∑

0≤|σ|<n

ϕσ(Z)ϕσ(W )∗
)

W ∗
k

)
E(W )∗

=
∑

0≤|τ |<n

ϕτ (Z)ϕτ (W )∗

and the statement is proven

We can show one more application of Lemma 4.1. For a formal power series

f =
∑

σ∈F+
N

cσXσ

in N non-commuting variables X1, . . . , XN we denote by Tf the lower triangular infinite
matrix associated to f as described in Subsection 2.1. We denote by SN the Schur class
of those formal power series f with the property that Tf is a contraction in L(⊕k≥0Ck).
If E is an infinite-dimensional Hilbert space, then we can define f(Z) for Z ∈ BN (E) as
in [4] by the formula

f(Z) = E(Z)(Tf ⊗ IE)/E . (4.9)

We notice that this definition is consistent with (4.7). We extend a familiar characteri-
zation of the Schur class to the setting of this paper.

Theorem 4.3. The formal power series f belongs to SN if and only if

Cf (Z, W ) = E(Z)diag
(
I − f(Z)f(W )∗

)
E(W )∗

(
Z, W ∈ BN (E)

)

is a positive definite kernel on BN (E).
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Proof. Using [4: Lemma 3.1] we deduce that for Z, W ∈ BN (E)

E(Z)
(
I − (Tf ⊗ IE)(Tf ⊗ IE)∗

)
E(W )∗

= E(Z)E(W )∗ − E(Z)(Tf ⊗ IE)(Tf ⊗ IE)∗E(W )∗

= E(Z)E(W )∗ − E(Z)diag(f(Z))diag(f(W )∗)E(W )∗

= E(Z)diag
(
I − f(Z)f(W )∗

)
E(W )∗

= Cf (Z, W ).

This relation implies that if f ∈ SN , then Cf is a positive definite kernel on BN (E). For
the converse implication we have to use in addition Lemma 4.1

5. Inverse problems

In this brief section we prove a Favard type result for orthogonal polynomials in several
non-commuting variables.

Theorem 5.1. Let {γσ}σ∈F+
N

be a family of complex numbers with γ∅ = 0 and

|γσ| < 1 for σ ∈ F+
N − {∅}. Then there exists a unique positive definite kernel K

satisfying (2.4)− (2.5) such that the polynomials ϕσ (σ ∈ F+
N ) defined by the recursions

ϕ∅ = ϕ]
∅ = 1 and for k ∈ {1, . . . , N} and σ ∈ F+

N by

ϕkσ =
1

dkσ

(
Xkϕσ − γkσϕsharpkσ−1

)

ϕ]
kσ =

1
dkσ

(− γkσXkϕσ + ϕ]
kσ−1

)

are orthogonal with respect to K.

Proof. Once again we rely on some results that are known for arbitrary positive
definite kernels on the set of integers. In this way, the proof is quite straightforward.
Let {γσ,τ : σ, τ ∈ F+

N with σ ¹ τ} be the family of complex numbers associated to
{γσ}σ∈F+

N
by (2.9). Let K be the positive definite kernel associated to {γσ,τ : σ, τ ∈

F+
N with σ ¹ τ} by [3: Theorem 1.5.3]. By Theorem 3.2, the polynomials ϕσ (σ ∈ F+

N )
defined by the recurrences ϕ∅ = ϕ]

∅ = 1 and for k ∈ {1, . . . , N} and σ ∈ F+
N by

ϕkσ =
1

dkσ

(
Xkϕσ − γkσϕ]

kσ−1

)

ϕ]
kσ =

1
dkσ

(− γkσXkϕσ + ϕ]
kσ−1

)

must be the orthogonal polynomials of K
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häuser Verlag 1992.

[16] Popescu, G.: Structure and entropy for Toeplitz kernels. C.R. Acad. Sci. Paris, Sér. 1
Math. 329 (1999), 129 – 134.
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