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Index Transforms
Associated with Bessel and Lommel Functions

S. B. Yakubovich

Abstract. In this paper we extend a variety of index integral transforms (i.e. integral trans-
forms over an index as integration variable) with Bessel and Lommel functions as kernels by
considering mapping properties of the related integral operators. This class of transforms
includes, for instance, operators of Titchmarsh type. Useful integral representations of the
considered kernels are deduced and boundedness properties, Parseval equalities, Plancherel
type theorem and inversion formula are given.
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1. Introduction and preliminary results

The aim of this paper is to study boundedness and inversion properties in weighted
Lebesgue spaces of the non-convolution integral transform

(Tµf)(x) = 21−µ

∫ ∞

0

[
Sµ,iτ (x)− sµ,iτ (x)

]
f(τ)

dτ∣∣Γ(µ+iτ+1
2 )

∣∣2 (1.1)

where x > 0 is a variable, µ ∈ R is a parameter, Γ(z) is Euler’s Gamma function and
Sµ,iτ (x) as well as sµ,iτ (x) are Lommel’s functions (cf. [1: Vol. II]). Such type of integral
transforms, where the integration process is realized over the index (a subscript) of the
kernel consisting of special functions had been studied intensively in [6]. Recently (see
[7, 8]) similar Titchmarsh transforms of index type associated with Bessel functions
as kernel have been considered. However, despite the kernel in (1.1) is related to the
Titchmarsh kernel via the identity [1: Vol. II]

Sµ,ν(x) = sµ,ν(x) + 2µ−1 Γ(µ−ν+1
2 )Γ(µ+ν+1

2 )
sin(νπ)

×
[
cos

(µ− ν)π
2

J−ν(x)− cos
(µ + ν)π

2
Jν(x)

]
,

(1.2)
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transform (1.1) has completely different structure and should be studied independently
from our consideration of Titchmarsh operators. Note that the kernel (1.2) can be
simplified by letting there ν = iτ (τ ∈ R+). Hence it is not difficult to obtain the
representation

Sµ,iτ (x)− sµ,iτ (x)

= 2µ−1
∣∣Γ(µ+iτ+1

2 )
∣∣2

[
sin πµ

2

cosh πτ
2

ReJiτ (x)− cos πµ
2

sinh πτ
2

ImJiτ (x)
]

(1.3)

where we denote as usual by ReJiτ (x) and ImJiτ (x) the real and imaginary parts of
the Bessel function Jiτ (x). Furthermore, it is also worth mentioning that the Lommel
functions Sµ,iτ (x) and sµ,iτ (x) are particular solutions of the inhomogeneous Bessel
differential equation x2 d2ω

dx2 + xdω
dx + (x2 + τ2)ω = xµ+1.

Since all special functions considered here are of hypergeometric type, we will use
their integral representations through the pair of the Mellin direct and inverse transforms
[2, 4]

fM(s) =
∫ ∞

0

f(x)xs−1dx

f(x) = 1
2πi

∫ γ+i∞

γ−i∞
fM(s)x−sds

(s = γ + it, x > 0) (1.4)

as one of the essential tools of our investigation. The integrals in (1.4) are convergent, in
particular, in the norm of the spaces L2(γ−i∞, γ+i∞) and L2(R+; x2γ−1), respectively.
In addition, the Parseval equality

∫ ∞

0

|f(x)|2x2γ−1dx = 1
2π

∫ ∞

−∞
|fM(γ + it)|2dt (1.5)

is true. For example, Mellin transforms (1.4) of the Lommel functions Sµ,iτ (x) and
sµ,iτ (x) can be obtained via [2: Vol. III/Relations (8.4.27.1) and (8.4.27.3)]. Precisely,
we find

21−µ

∣∣Γ(µ+iτ+1
2 )

∣∣2
∫ ∞

0

sµ,iτ (x)xs−1dx = 2s−1 Γ( s+µ+1
2 )Γ( 1−µ−s

2 )
Γ( 2+iτ−s

2 )Γ(2−iτ−s
2 )

(1.6)

where −1− µ < γ < 1− µ, 3
2 and

21−µ

∣∣Γ(µ+iτ+1
2 )

∣∣2 sµ,iτ (x) = 1
πi

∫ γ+i∞

γ−i∞
2s−2 Γ( s+µ+1

2 )Γ( 1−µ−s
2 )

Γ( 2+iτ−s
2 )Γ( 2−iτ−s

2 )
x−sds,

and

21−µ
∣∣Γ( 1−µ+iτ

2 )
∣∣2

∫ ∞

0

Sµ,iτ (x)xs−1dx = 2s−1π
Γ( s+iτ

2 )Γ( s−iτ
2 )

cos π(µ+s)
2

(1.7)

where −1− µ, 0 < γ < 1− µ and

21−µ
∣∣Γ( 1−µ+iτ

2 )
∣∣2Sµ,iτ (x) = −i

∫ γ+i∞

γ−i∞
2s−2 Γ( s+iτ

2 )Γ( s−iτ
2 )

cos π(µ+s)
2

x−sds.
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Further, in view of [2: Vol.II/Relation (2.16.3.15)] the Lommel function Sµ,iτ (x) in turn
can be represented through the known Widder transform [5] of the Macdonald function
Kiτ (x). Namely, we have the formula

∣∣Γ( 1−µ+iτ
2 )

∣∣2Sµ,iτ (x) = (2x)1+µ

∫ ∞

0

y−µ

x2 + y2
Kiτ (y) dy (|µ| < 1). (1.8)

The Macdonald function Kiτ (x) just appeared is a very important kernel in index trans-
forms theory and represents the kernel of the familiar Kontorovich-Lebedev transform
[6]

(KLf)(x) =
∫ ∞

0

Kiτ (x)f(τ) dτ. (1.9)

The Mellin-Barnes type integral representation for the Macdonald function is due to [2:
Vol. III/Relation (8.4.23.1)] and has the form

Kiτ (x) = 1
πi

∫ γ+i∞

γ−i∞
2s−3Γ( s+iτ

2 )Γ( s−iτ
2 )x−sds (x, γ > 0). (1.10)

Moreover, we mention here its Fourier-type integral

Kiτ (x) =
∫ ∞

0

e−x cosh u cos(τu) du (x > 0). (1.11)

We put down here one more important integral, which gives the representation of
the Gauss hypergeometric function in terms of the Laplace integral of the Macdonald
function (1.10) (cf. [2: Vol. II/Relation (2.16.6.3)]). Precisely, we find

xiτ−α

2α

√
π
|Γ(α + iτ)|2
Γ(α + 1

2 ) 2F1

(
α−iτ

2 , α−iτ+1
2 ;α + 1

2 ; 1− 1
x2

)

=
∫ ∞

0

tα−1e−xtKiτ (t) dt

(1.12)

for x, α > 0. Concerning the kernel in (1.1) one can calculate its Mellin transform (1.4)1
using relations (1.6) - (1.7). Thus we obtain

21−µ

∣∣Γ(µ+iτ+1
2 )

∣∣2
∫ ∞

0

[
Sµ,iτ (x)− sµ,iτ (x)

]
xs−1dx

=
2s−1

π
Γ( s+iτ

2 )Γ( s−iτ
2 ) cos

(
π
2 (µ− s)

)

where Re s = γ and 0 < γ < 3
2 . If we call now formula (1.10) and the integral [2: Vol.

I/Relation (2.2.4.25)]

1
π

∫ ∞

0

x−
1+µ−s

2

1 + x
dx =

1
cos

(
π
2 (µ− s)

) ,

then appealing to the Mellin-Parseval formula (1.5) we deduce the very useful integral
representation

Kiτ (x) =
(2x)1−µ

∣∣Γ(µ+iτ+1
2 )

∣∣2
∫ ∞

0

yµ[Sµ,iτ (y)− sµ,iτ (y)]
x2 + y2

dy (|µ| < 1) (1.13)

of the Macdonald function through the Widder transform of the kernel in (1.1).
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2. Boundedness properties of the Lommel and Bessel
function transforms

In this section we will study the behaviour in Lebesgue spaces of the integral operator
given by (1.1). Namely, we will consider a space of summable functions where there
exists the regular Fourier cosine transform given by

(Fcf)(τ) =
√

2
π

∫ ∞

0

f(t) cos(τt) dt. (2.1)

For the time being we assume that f ∈ C∞0 (R+), i.e. f belongs to the space of smooth
functions with compact support, which is dense, for instance, in Lp (p ≥ 1). Conse-
quently, the integral in (1.1) converges absolutely for each x > 0 since its kernel is a
continuous function of τ ∈ R+.

Let us introduce auxiliary operators by the formulas

(ReJ [f ])(x) =
∫ ∞

0

f(τ)
cosh πτ

2

ReJiτ (x) dτ

(ImJ [f ])(x) =
∫ ∞

0

f(τ)
sinh πτ

2

ImJiτ (x) dτ.

(2.2)

Taking into account identity (1.3) we obtain

(Tµf)(x) = sin πµ
2 (ReJ [f ])(x)− cos πµ

2 (ImJ [f ])(x). (2.3)

Furthermore, we will use below boundedness properties in the space L2(R+) of the
singular operator or integral transform of Hilbert type (see [4: Chapter 8])

(Φf)(x) = 2
π lim

N→∞

∫ N

1/N

tf(t)
t2 − x2

dt. (2.4)

In order to prove the main results of this section we denote by X(R+) the space of
Lebesgue measurable functions, which are summable over the measure x dx and let the
indefinite integral

ψf (t) =
∫ ∞

t

f(y) dy (2.5)

be such that limt→0 ψf (t) = 0. It is not difficult to show that X(R+) is a closed subspace
of L1(R+; x dx).

Theorem 1. Let f ∈ X(R+). Then the integral operators ReJ [f ], ImJ [f ] : X(R+) →
L2(R+) satisfy the isometric identity

‖ReJ [f ]‖L2(R+) = ‖ImJ [f ]‖L2(R+) (2.6)

in L2(R+) and for f, g ∈ X(R+) the Parseval-type relations in terms of the Fourier
cosine operator (2.1)

∫ ∞

0

(ReJ [f ])(x) (ReJ [g])(x) dx =
∫ ∞

0

(Fcf)(τ) (Fcg)(τ)
dτ

sinh τ∫ ∞

0

(ImJ [f ])(x) (ImJ [g])(x) dx =
∫ ∞

0

(Fcf)(τ) (Fcg)(τ)
dτ

sinh τ

(2.7)
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hold true. Furthermore, the reciprocal formulas in mean convergence sense through
operator (2.4)

(ImJ [f ])(x) = 2
π lim

N→∞

∫ N

1/N

t(ReJ [f ])(t)
t2 − x2

dt

(ReJ [f ])(x) = 2
π lim

N→∞

∫ N

1/N

x(ImJ [f ])(t)
x2 − t2

dt

(2.8)

take place. Finally, for almost all x > 0 operators (2.2) are defined by the formulas

(ReJ [f ])(x) =
d

dx

∫ ∞

0

∫ x

0

f(τ)
cosh πτ

2

ReJiτ (y) dydτ

(ImJ [f ])(x) =
d

dx

∫ ∞

0

∫ x

0

f(τ)
sinh πτ

2

ImJiτ (y) dydτ.

(2.9)

Proof. First we observe that the indefinite integral (2.5) is an absolutely continuous
function on (a,∞) (a > 0) tending to zero in the origin and belonging according to the
conditions of the theorem to L1(t,∞) for each t > 0. Indeed, we have

|ψf (t)| ≤
∫ ∞

t

|f(y)| dy ≤ t−1

∫ ∞

t

y|f(y)| dy <
C

t

where C > 0 is an absolute constant. Hence taking the Fourier cosine transform (2.1)
of f ∈ X(R+), after integration by parts and elimination of the outintegrated terms we
represent it as

(Fcf)(τ) = τ
√

2
π

∫ ∞

0

ψf (t) sin(τt) dt = τ (Fsψf )(τ) (2.10)

where Fsψf is the Fourier sine transform of the function ψf . As a consequence of
relations (2.7) we will prove the norm equality

‖ReJ [f ]‖L2(R+) =
( ∫ ∞

0

|(ReJ [f ])(x)|2dx

) 1
2

=
( ∫ ∞

0

|(Fcf)(τ)|2 dτ

sinh τ

) 1
2

.

(2.11)

Making use of representation (2.10) it is majorized by the expression

√
2
π

( ∫ ∞

0

τ2dτ

sinh τ

( ∫ ∞

0

|ψf (t) sin(τt)| dt

)2) 1
2

. (2.12)

However, ∫ ∞

0

|ψf (t) sin(τt)| dt ≤
∫ ∞

0

|ψf (t)| dt

≤
∫ ∞

0

dt

∫ ∞

t

|f(y)| dy

=
∫ ∞

0

|f(y)| dy

∫ y

0

dt

=
∫ ∞

0

y|f(y)| dy.
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Therefore, combining with (2.12) it becomes

( ∫ ∞

0

|(Fcf)(τ)|2 dτ

sinh τ

) 1
2

≤
√

2
π

( ∫ ∞

0

τ2dτ

sinh τ

) 1
2

‖f‖L1(R+;x dx)

=
√

7
π ζ(3) ‖f‖X(R+)

where ζ = ζ(z) is Riemann’s zeta function (see [1: Vol. I]).
Now, in order to deduce Parseval type equalities (2.7) we appeal to the integral

representation
π

2 cosh πτ
2

ReJiτ (x) =
∫ ∞

0

sin(x cosh t) cos(τt) dt. (2.13)

of the kernel in (2.2)1 (see [8]). We substitute it into (2.2)1, take into account the
uniform convergence by τ ∈ suppf and change the order of integration. As the result,
for all f ∈ C∞0 (R+) after the substitution cosh t = u we have

(ReJ [f ])(x) =
√

2
π

∫ ∞

0

sin(x cosh t)(Fcf)(t) dt

=
√

2
π

∫ ∞

1

sin(xu)
(Fcf)

(
log(u +

√
u2 − 1

)
√

u2 − 1
du.

(2.14)

Hence applying the Parseval equality for the Fourier sine and cosine transforms and
returning to the original variable we obtain

‖Re J [f ]‖L2(R+) =
( ∫ ∞

1

∣∣(Fcf)
(
log(u +

√
u2 − 1)

)∣∣2
u2 − 1

du

) 1
2

=
( ∫ ∞

0

|(Fcf)(t)|2 dt

sinh t

) 1
2

≤
√

7
π ζ(3) ‖f‖X(R+)

(2.15)

which yields (2.11) for the dense set of functions of C∞0 (R+). Consequently, equality
(2.7)1 follows immediately invoking the Parseval equality for the Fourier transform of
functions f, g ∈ C∞0 (R+). Hence, as it is easily to verify from (2.15), the desired equality
(2.7)1 holds true by continuity for all functions from the space X(R+). Moreover, we
have the boundedness of the operator given by (2.2)1 and acting from X(R+) into
L2(R+).

In order to prove the isometric identity (2.6), which will immediately imply equality
(2.7)2, we use the Mellin transform formulas

1
cosh πτ

2

∫ ∞

0

ReJiτ (x)xs−1dx = 2s−1 Γ( s+iτ
2 )Γ( s−iτ

2 )
Γ( s

2 )Γ(1− s
2 )

− 1
sinh πτ

2

∫ ∞

0

ImJiτ (x)xs−1dx = 2s−1 Γ( s+iτ
2 )Γ( s−iτ

2 )
Γ( 1+s

2 )Γ(1−s
2 )

(2.16)
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(see [7]) for the kernels of the operators given by (2.2). Indeed, applying the Mellin
transform (1.4) through operators (2.2) we employ formulas (2.16). Interchanging the
order of integration for functions from the dense set C∞0 (R+) we obtain

(ReJ [f ])M( 1
2 + it) cot

(
π
2 ( 1

2 + it)
)

= −(ImJ [f ])M( 1
2 + it).

Since, however,
∣∣ cot

(
π
2 ( 1

2 +it)
)∣∣ = 1, the isometric identity (2.6) immediately follows by

virtue of the Mellin-Parseval equality (1.6) with γ = 1
2 . It can be extended continuously

for all f ∈ X(R+). Moreover, in view of [4: Theorem 129] it is not difficult to establish
the reciprocal formulas (2.8) in terms of the singular operator (2.4).

Formulas (2.9) one can establish in view of representation (2.14) and Fubini’s the-
orem, if we write (2.13) and the corresponding integral for the kernel in (2.3) (see [1:
Vol. II]) as

π

2 cosh πτ
2

ReJiτ (x) = − d

dx

∫ ∞

0

cos(x cosh t)
cosh t

cos(τt) dt

π

2 sinh πτ
2

ImJiτ (x) = − d

dx

∫ ∞

0

sin(x cosh t)
cosh t

cos(τt) dt.

(2.17)

Thus we completed the proof of Theorem 1

Invoking identity (2.3) we obtain

Corollary 1. The integral operators given by (1.1), (2.2), (2.3) and the operator of
Hilbert type given by (2.4) are connected each other by the relations

(Tµf)(x) = sin
πµ

2
(ΦImJ [f ])(x)− cos

πµ

2
(ReJ [f ])(x)

(Tµf)(x) = sin
πµ

2
(ReJ [f ])(x)− cos

πµ

2
(ΦReJ [f ])(x).

Note that the latter equalities are similar in some sense to relations connecting
fractional integrals with singular operators (cf. [3: Chapter 3]).

Corollary 2. The integral operator Tµf : X(R+) → L2(R+) (µ ∈ R) is bounded
and we have

‖Tµf‖2 ≤ 2
√

7
π ζ(3) ‖f‖X(R+).

Moreover, it can be defined for almost all x > 0 by the formula

(Tµf)(x) = 21−µ d

dx

∫ ∞

0

∫ x

0

[
Sµ,iτ (y)− sµ,iτ (y)

]
f(τ)

dydτ∣∣Γ(
µ+iτ+1

2

)∣∣2 . (2.18)
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3. Kontorovich-Lebedev type representation theorem and
inversion of the Lommel function index transformation

In this final section we will establish a representation theorem for the Kontorovich-
Lebedev operator (1.9). As a corollary we obtain an inversion formula for the Lommel
function transformation Tµf defined by (2.18).

Let us consider on R+ the following Banach space of functions f ∈ L∗(R+) or A-
type space (see, for instance, in [5]) whose Fourier cosine transforms (2.1) lie in L1(R+).
We can introduce a norm in L∗ by setting ‖f‖L∗(R+) =

∫∞
0
|(Fcf)(t)| dt. As it is known,

elements of this space are continuous, bounded functions vanishing at infinity.

The following result says about the boundedness of the Kontorovich-Lebedev oper-
ator (1.9) in L∗(R+).

Lemma 1. The Kontorovich-Lebedev operator KLf : L∗(R+) → L∗(R+) defined
by (1.9) is bounded and ‖KLf‖L∗(R+) ≤ π

2 ‖f‖L∗(R+).

Proof. According to the definition of L∗(R+), we find

f(τ) =
√

2
π

∫ ∞

0

(Fcf)(t) cos(tτ) dt. (3.1)

Consequently, after substituting (3.1) into (1.9) one can change the order of integration
via the Fubini theorem. Then using the reciprocal Fourier cosine formula (1.11) we
obtain

(KLf)(x) =
√

π
2

∫ ∞

0

e−x cosh u(Fcf)(u) du. (3.2)

Further, one can calculate the Fourier cosine transform (2.1) of KLf . Indeed, after
substitution the latter expression we change the order of integration by the Fubini
theorem. Evaluating an elementary integral we arrive at the representation

√
2
π

∫ ∞

0

(KLf)(t) cos(tτ) dt =
∫ ∞

0

(Fcf)(u) cosh u

cosh2 u + τ2
du.

This result will immediately imply the norm estimate

‖KLf‖L∗(R+) ≤
∫ ∞

0

|(Fcf)(u)| cosh u du

∫ ∞

0

dτ

cosh2 u + τ2

=
∫ ∞

0

|(Fcf)(u)| du

∫ ∞

0

dτ

1 + τ2

= π
2 ‖f‖L∗(R+)

and completes the proof of Lemma 1

The next theorem states representation properties of an arbitrary function f ∈
L∗(R+) in terms of the Kontorovich-Lebedev operator (1.9).
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Theorem 2. For any f ∈ L∗(R+) and for all τ ∈ R+, the representation

f(τ) = 2
π2 τ sinh(πτ) lim

ε→0+

∫ ∞

0

xε−1Kiτ (x)(KLf)(x) dx (3.3)

is valid.

Proof. By using formula (3.2) we substitute it in the latter integral and according
to the absolute convergence of the iterated integral change the order of integration.
Hence invoking with formula (1.12), the right-hand side of (3.3) denoted by I(τ, ε) can
be represented as

I(τ, ε) =
2

1
2−ε

π
τ sinh(πτ)

|Γ(ε + iτ)|2
Γ(ε + 1

2 )

∫ ∞

0

(coshu)iτ−ε

× 2F1

(
ε−iτ

2 , ε+iτ
2 ; ε + 1

2 ; tanh2 u
)
(Fcf)(u) du.

(3.4)

In order to deduce (3.3) we only must motivate the passing to the limit under the
integral sign in (3.4). Indeed, due to the Boltz formula for the Gauss hypergeometric
function (see [1: Vol. I/Relation (2.1.4.22)]) we have the equality

(coshu)iτ−ε
2F1

(
ε−iτ

2 , ε−iτ+1
2 ; ε + 1

2 ; tanh2 u
)

= 2F1

(
ε−iτ

2 , ε+iτ
2 ; ε + 1

2 ;− sinh2 u
)
.

Hence owing to well known formulas of the Gauss function and its analytic continuation
and to the definition of the Pochammer symbol we deduce the relations of the latter
hypergeometric function

2F1

(
ε−iτ

2 , ε+iτ
2 ; ε + 1

2 ;− sinh2 u
)

=
Γ(ε + 1

2 )∣∣Γ( ε+iτ
2 )

∣∣2
∞∑

n=0

Γ( ε−iτ
2 + n)Γ( ε+iτ

2 + n)
Γ(ε + 1

2 + n)
(−1)n sinh2n u

n!
(3.5)

when 0 < sinhu ≤ 1 and

2F1

(
ε−iτ

2 , ε+iτ
2 ; ε + 1

2 ;− sinh2 u
)

=
Γ(ε + 1

2 )Γ(iτ)(sinh u)iτ−ε

|Γ( ε+iτ
2 )|2Γ( 1+ε+iτ

2 )
Γ(1− iτ)
Γ( 1−ε−iτ

2 )

×
∞∑

n=0

Γ( ε−iτ
2 + n)Γ( 1−ε−iτ

2 + n)
Γ(1− iτ + n) sinh2n u

(−1)n

n!

+
Γ(ε + 1

2 )Γ(−iτ)(sinh u)−iτ−ε

|Γ( ε+iτ
2 )|2Γ( 1+ε−iτ

2 )
Γ(1 + iτ)
Γ( 1−ε+iτ

2 )

×
∞∑

n=0

Γ( ε+iτ
2 + n)Γ( 1−ε+iτ

2 + n)
Γ(1 + iτ + n) sinh2n u

(−1)n

n!

(3.6)

when sinh u > 1. Therefore, via the Stirling asymptotic formula of the Gamma function
(see [1: Vol. 1]), the elementary inequality |Γ(z)| ≤ Γ(Rez) (Rez > 0) and the
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convergence of the hypergeometric series one can majorize the functions in (3.5) - (3.6)
uniformly for all u, τ ∈ R+ and 0 ≤ ε ≤ ε0 < 1

2 as
∣∣
2F1

(
ε−iτ

2 , ε+iτ
2 ; ε + 1

2 ;− sinh2 u
)∣∣

≤ 1 +
Γ(ε0 + 1

2 )
|Γ( ε+iτ

2 )|2
∞∑

n=1

[Γ( ε0
2 + n)]2

Γ( 1
2 + n)

1
n!

≤ 1 +
1

|Γ( ε+iτ
2 )|2 O

( ∞∑
n=1

1
n

3
2−ε0

)

when 0 < sinhu ≤ 1 and as
∣∣
2F1

(
ε−iτ

2 , ε+iτ
2 ; ε + 1

2 ;− sinh2 u
)∣∣

≤ Γ(ε0 + 1
2 )|Γ(iτ)|(sinh u)−ε

|Γ( ε+iτ
2 )Γ(1+ε+iτ

2 )|

×
[
1 +

1
|Γ( ε−iτ

2 )Γ( 1−ε−iτ
2 )|

∞∑
n=1

Γ( ε
2 + n)Γ( 1−ε

2 + n)
|Γ(1− iτ + n)|n!

]

+
Γ(ε0 + 1

2 )|Γ(−iτ)|(sinh u)−ε

|Γ( ε−iτ
2 )Γ( 1+ε−iτ

2 )|

×
[
1 +

1
|Γ( ε+iτ

2 )Γ( 1−ε+iτ
2 )|

∞∑
n=1

Γ( ε
2 + n)Γ( 1−ε

2 + n)
|Γ(1 + iτ + n)|n!

]

≤ |Γ(iτ)|
|Γ( ε+iτ

2 )Γ(1+ε+iτ
2 )|

[
1 +

1
|Γ( ε−iτ

2 )Γ(1−ε−iτ
2 )|O

( ∞∑
n=1

1
n

3
2

)]

+
|Γ(−iτ)|

|Γ( ε−iτ
2 )Γ( 1+ε−iτ

2 )|

[
1 +

1
|Γ( ε+iτ

2 )Γ( 1−ε+iτ
2 )|O

( ∞∑
n=1

1
n

3
2

)]

when sinh u > 1. The obtained estimates imply that the integrand in (3.4) is uniformly
bounded over the interval (0, ε0) and that it is majorized by Cτ |(Fcf)(u)|, with Cτ > 0
being a constant depending on τ only. Furthermore, since (see [1: Vol. I/Relation
(2.8.11)])

lim
ε→0+

2F1

(
ε−iτ

2 , ε+iτ
2 ; ε + 1

2 ;− sinh2 u
)

= cos(τu),

one can appeal to the Lebesgue dominated convergence theorem. Passing to the limit
in (3.4) when ε → 0+, via (2.1) we obtain the desired representation (3.3) and Theorem
2 is proved

Finally, Theorem 2 allows us to establish an inversion of the Lommel function index
transform (2.18) in the space L∗(R+):

Theorem 3. If f ∈ L∗(R+) and Tµf (|µ| < 1) is given by (2.18), then for all
τ ∈ R+ the inversion formula

f(τ) =
τ sinh(πτ)

π2
lim

ε→0+
2ε−µ

∣∣Γ(
1+ε−µ+iτ

2

)∣∣2

×
∫ ∞

0

xε−1Sµ−ε,iτ (x)(Tµf)(x) dx

(3.7)
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is valid.

Proof. First we observe that from identity (1.3) and integral representations (2.17)
it is not difficult to derive the formula

2−µ

∣∣Γ(
µ+iτ+1

2

)∣∣2
[
Sµ,iτ (x)− sµ,iτ (x)

]
= − 1

π

d

dx

∫ ∞

0

cos(τy)
sin(πµ

2 − x cosh y)
cosh y

dy

(x > 0) for the kernel of the Lommel transform (1.1). Meanwhile, taking integral (1.13)
which is absolutely convergent, we substitute it into the Kontorovich-Lebedev operator
given by (1.9). Then, at least for f ∈ C∞0 (R+), one can immediately invert the order
of integration and arrive at the representation

(KLf)(x) = x1−µ

∫ ∞

0

yµ(Tµf)(y)
x2 + y2

dy. (3.8)

In similar manner one can find

(Tµf)(x) =
√

2
π

∫ ∞

0

(Fcf)(y) cos
(

πµ
2 − x cosh y

)
dy

for each f ∈ C∞0 (R+). The function Tµf is bounded and continuous on R+ and,
moreover,

|(Tµf)(x)| ≤
√

2
π

∫ ∞

0

|(Fcf)(y)|dy =
√

2
π‖f‖L∗(R+). (3.9)

Hence, via (3.8) - (3.9) we obtain

|(KLf)(x)| ≤ x1−µ

∫ ∞

0

yµ|(Tµf)(y)|
x2 + y2

dy

≤
√

2
π‖f‖L∗(R+)x

1−µ

∫ ∞

0

yµ

x2 + y2
dy

=
√

2
π‖f‖L∗(R+)

∫ ∞

0

yµ

1 + y2
dy

=
√

π
2

1
cos πµ

2

‖f‖L∗(R+).

Consequently, the operator KLf presented by (3.8) is bounded as an operator from
L∗(R+) into the space of bounded continuous functions on R+. As already known from
Lemma 1, the Kontorovich-Lebedev operator (1.9) is bounded in L∗(R+). Moreover,
elements of this space are bounded continuous functions vanishing at infinity. It is clear
now that since (3.8) holds true for the dense set of C∞0 -functions, then in view of the
Banach theorem equality (3.8) is true for all f ∈ L∗(R+). Hence one can substitute (3.8)
into integral (3.3) and in view of the Fubini theorem change the order of integration.
Then due to formula (1.8) we immediately arrive at the inversion formula (3.7) and
complete the proof of Theorem 3
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[1] Erdélyi, A., Magnus, W., Oberhettinger, F. and F. G. Tricomi: Higher Transcendental
Functions, Vols. I - II. New York et al.: McGraw-Hill 1953.

[2] Prudnikov, A. P., Brychkov, Yu. A. and O. I. Marichev: Integrals and Series. Vol. I
(1986): Elementary Functions, Vol. II (1986): Special Functions, Vol. III (1989): More
Special Functions. New York - London: Gordon and Breach.

[3] Samko, S. G., Kilbas, A. A. and O. I. Marichev: Fractional Integrals and Derivatives:
Theory and Applications. New York - London: Gordon and Breach 1993.

[4] Titchmarsh, E. C.: Introduction to the Theory of Fourier Integrals. Oxford: Clarendon
Press 1937.

[5] Widder, D. V.: The Laplace Transform. Princeton: Univ. Press 1941.

[6] Yakubovich, S. B.: Index Transforms. Singapore et al.: World Sci. Publ. Comp. 1996.

[7] Yakubovich, S. B.: Index integral transformations of Titchmarsh type. J. Comp. & Appl.
Math. 85 (1997), 169 – 179.

[8] Yakubovich, S. B.: The Titchmarsh integral transformation by the index of a Bessel func-
tion. J. Comp. & Appl. Math. (Special Issue) 118 (2000), 353 – 361.

Received 08.10.2001


