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On Topological Singular Set of Maps
with Finite 3-Energy into S3

M. R. Pakzad

Abstract. We prove that the topological singular set of a map in W 1,3(M,S3) is the boundary
of an integer-multiplicity rectifiable current in M , where M is a closed smooth manifold of
dimension greater than 3 and S3 is the three-dimensional sphere. Also, we prove that the
mass of the minimal integer-multiplicity rectifiable current taking this set as the boundary is
a strongly continuous functional on W 1,3(M,S3).
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1. Introduction

Let M be an oriented smooth closed Riemannian manifold of dimension n, and N any
closed Riemannian manifold isometricly embedded into RN . Let

W 1,p(M,N) =
{
u ∈ W 1,p(M,RN ) : u(x) ∈ N a.e. on M

}
.

For u ∈ W 1,p(M, N) the p-energy is given by the functional

E(u) =
∫

M

|∇u|pdvolM .

In [6], F. Bethuel and X. Zheng proved that smooth maps are not strongly dense in
W 1,p(M, N) if p < n and π[p](N) 6= 0, [p] being the integer part of p. In this case, one
may want to characterize the maps in W 1,p(M, N) which are approximable by smooth
maps and identify the obstruction for maps which are not. Precisely, we would like to
associate to any map u ∈ W 1,p(M, N) a topological singular set Su which characterizes
the approximability of u by smooth maps, i.e. u would be the strong limit of smooth
maps if and only if Su = 0.

In this line, F. Bethuel proved in [3] that u ∈ W 1,2(Bn, S2) is strongly approximable
by maps in C∞(Bn,S2) if and only if d(u∗ωS2) = 0 in the sense of distributions, where
Bn is the n-dimensional unit disk and S2 is the two-dimensional sphere. The same
result holds for the space W 1,p(Bn, Sp) for any other integer p (see [5]). Thus, the
“local” topological obstruction for maps in W 1,p(M, S[p]) can be defined as a current:
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Definition 1. Let p < n and u ∈ W 1,p(M, S[p]). The topological singular set of u,
Su ∈ Dn−[p]−1(M), is the current defined by

Su(α) =
∫

M

u∗ω ∧ dα
(
α ∈ Dn−[p]−1(M)

)
.

Here Dk(M) is the set of smooth k-forms on M with compact support (see [14: Vol.
I/Section 2.2.3]) and ω is any [p]-form on S[p] for which

∫
S[p] ω = 1.

Remark 1. Recent developments by F. Hang and F. H. Lin [15] showed that the
condition Su = 0, though being necessary for the strong approximability of a map
u ∈ W 1,p(M, Sp) by smooth maps in this space, is not always sufficient due to some
obstructions lying in the “global” topological structure of certain domains. Precisely,
there is a map u ∈ H1(CP2,S2) for which d(u∗ω) = 0 while u is not in the strong closure
of smooth maps in H1(CP2, S2).

Two important problems about Su for u ∈ W 1,p(M, Sp) are still open for almost
every integer p. First, we do not know whether Su is always the boundary of an integer-
multiplicity rectifiable current, i.e. if it is an integral flat chain. This has been proved
for p = 1 and p = n − 1 (see [14: Vol. II/Section 5.4.3]) and p = 2 (see [19]). The
second problem arises if the answer to the first one is positive. Set for S, any integral
flat chain in M of dimension k,

mi(S) = inf
{
M(T) : T ∈ Rk+1(M) and ∂T = Su

}
,

the minimal mass of integer-multiplicity rectifiable currents taking S as the boundary.
Then the question would be to determine whether mi(Sum − Su) → 0 if um → u
strongly in W 1,p(M, Sp). The answer is yes for p = 1 and p = n − 1 (see [4] and [14:
Vol. II/Section 5.4.2]), while we do not know whether this is the case for the maps
in H1(B4,S2). We encounter this case when considering the problem of relaxing the
Dirichlet energy for maps into S2. As we saw in [19], generalizing to higher dimensions
the algebraic formula given in [4] for the relaxed Dirichlet energy from a 3-dimensional
domain into S2 is possible if we prove that mi(Su) is strongly continuous on H1(B, S2).

Another case where the second problem shows its importance is when we try to
define a topological singular set for maps in W 1,p(Bn, N). In [5], F. Bethuel, J. M.
Coron, F. Demengel and F. Helein gave a description of this set for when N is ([p]− 1)-
connected and π[p](N) is torsion-free. Considering the problem for when π[p](N) has
torsion, the author and T. Rivière remarked that we can define this set as a flat π[p](N)-
chain if these two questions come to have a positive answer for [p]. As an example, the
topological singular set of any map in u ∈ W 1,1(Bn,RP) is a flat Z2-chain, and is equal
to zero if and only if u is the strong limit of smooth maps in W 1,1(Bn,RP2) (see [20]).

In this paper we solve these problems for p = 3 and p = 7. The particularity of
these two cases reside in the fact that S3 and S7 (alongside with S1) are the only spheres
which have this property: There is a smooth multiplication

κ : Sk × Sk → Sk

such that the induced homotopic homeomorphism

κ∗ : πk(Sk)⊕ πk(Sk) → πk(Sk)
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is the sum of elements in πk(Sk). As a result, the method we use does not work for
other values of p.

Here is our main result:

Theorem 1. Let p = 3 or p = 7, p < n = dimM and u ∈ W 1,p(M, Sp). Then Su

is the boundary of an integer-multiplicity rectifiable current in M . Moreover, mi(Sum
−

Su) → 0 if um → u strongly in W 1,p(M, Sp).

If M is not closed, we set

W 1,p
ϕ (M, N) =

{
u ∈ W 1,p(M, N) : u = ϕ on ∂M

}

where ϕ is a given boundary data. We assume that ϕ is in C∞(∂M, N) and can be
extended into M by a smooth map. Then we have

Theorem 1 bis. Let p = 3 or p = 7, p < n = dim M and u ∈ W 1,p
ϕ (M, Sp).

Then Su is the boundary of an integer-multiplicity rectifiable current in M . Moreover,
mi(Sum − Su) → 0 if um → u strongly in W 1,p

ϕ (M, Sp).

Considering the question of topological singular sets, using the methods of [20] we
have the following corollaries. The readers can be referred to [13, 20, 21] for definitions
and more details.

Corollary 1. Let Bn be the n-dimensional unit disk, n > [p] = 3 or n > [p] = 7,
and assume that N is a closed ([p] − 1)-connected Riemannian manifold of dimension
equal or greater than [p]. Then Su, the topological singular set of any u ∈ W 1,p(Bn, N),
is well defined as a flat π[p](N)-chain and the flat norm of Sum − Su converges to 0 if
um → u in W 1,p(Bn, N). Moreover, u is the strong limit of smooth maps in W 1,p(Bn, N)
if and only if Su = 0.

Remark 2. The cases where N is not ([p]− 1)-connected are more involved. The
readers can be referred to [16], where T. Rivière and R. Hardt have treated the relatively
difficult case of W 1,3(B4, S2).

Corollary 1 bis. Let B be the n-dimensional unit disk, n > [p] = 3 or n > [p] = 7,
and assume that N is a closed ([p] − 1)-connected Riemannian manifold of dimension
equal or greater than [p]. We assume also that ϕ ∈ C∞(∂B, N) is smoothly extendable
into B. Then u is the strong limit of smooth maps in W 1,p

ϕ (B, N) if and only if Su = 0.

2. Some known facts

In this section we present some classic definitions and theorems regarding the singular-
ities of maps in Sobolev spaces between manifolds.

Definition 2. We say that u ∈ W 1,p(M, Sp) is in R∞,p(M, Sp) if u is smooth except
on B = ∪m

i=1σi∪B0, a compact subset of M , where Hn−p−1(B0) = 0 and σi are smooth
embeddings of the unit disk of dimension n− p− 1. Moreover, we assume that any two
different faces of B, σi and σj , may meet only on their boundaries.

Theorem 2 (Bethuel [2]). R∞,p(M, Sp) is dense in W 1,p(M, Sp) for the strong
topology.

We recall the definition of the topological singular set Su of u :
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Definition 3. Let u ∈ W 1,p(M, Sp). We define the current Su ∈ Dn−p−1(M) to
be the current defined by

Su(α) =
∫

M

u∗ω ∧ dα
(
α ∈ Dn−p−1(M)

)
(1)

where Dk(M) is the set of smooth k-forms on M with compact support (see [14: Vol.
I/Section 2.2.3]) and ω is some p-form on Sp for which

∫
Sp ω = 1.

Let ω1 and ω2 be two such forms on Sp. We have ω1 − ω2 = dβ where β is some
smooth 1-form on Sp extendable to Rp+1. Let u ∈ W 1,p(M, Sp) and consider a sequence
um ∈ C∞(M,Rp+1) converging to u in W 1,p. We have

u∗m(dβ) = d(u∗mβ),

and by passing to the limit, we observe that this holds true for u in the sense of distri-
butions. This proves the independence of Su from the choice of ω as we have

d(u∗ω1)− d(u∗ω2) = du∗(dβ) = 0

in the sense of distributions. Now the existence of the integral (1) is a direct consequence
of the inequality

|u∗ω| ≤ 1
p

p
2 αp

|∇u|p a.e. on M (2)

where αp = |Sp| and αpω = ωV is the standard volume form of Sp.

We shall give a description of Su for u ∈ R∞,p(M, Sp). Clearly, if u is smooth, a
standard operation on pull-back yields d(u∗ω) = u∗(dω) = 0 and as a consequence we
deduce for u ∈ R∞,p(M, Sp) that Su ⊆ B.

Definition 4. Let u ∈ R∞,p(M, Sp) and let B = ∪σi ∪ B0 be the singular set of
u. Suppose that each σi is oriented by a smooth (n− p− 1)-vector field ~σi. For a ∈ σi

let Na be any (p + 1)-dimensional smooth submanifold of M , orthogonal to σi at a.
Consider the embedded (p + 1)-disk Ma,δ = Bδ(a) ∩Na oriented by the (p + 1)-vector
field ~Ma such that (−1)n−p~σi(a)∧ ~Ma is the fixed orientation of M . Then the topological
degree of u on the p-dimensional topological sphere Σa,δ = ∂Ma,δ is well defined and
is independent of the choice of a and Na for δ small enough. We call this integer the
degree of u on σi and denote it by

degσi
u.

Remember that any k-dimensional rectifiable subset M of M considered with a
multiplicity θ and oriented by a unit k-vector field ξ defines a rectifiable current as

τ(M, θ, ξ)(α) =
∫

M
〈ξ, α〉θ dHk

(
α ∈ Dk(M)

)
.

We should recall some useful results.



On Topological Singular Set of Maps 565

Lemma 1. If {um} is a sequence of maps in W 1,p(M, Sp) converging to u, then
Sum → Su in the sense of currents, i.e. for any smooth (n − p − 1)-form α in M we
have

Su = lim
m→∞

Sum(α).

Equivalently,
mr(Sum

− Su) → 0 if um → u in W 1,p(M, Sp)

where mr(S) is the minimal mass of normal currents taking S as their boundary.

Lemma 2. Let M be a compact Riemannian manifold. Then for any u ∈ R∞,p(M, Sp),
Su is the integer-multiplicity rectifiable current

m∑

i=1

(degσi
u) τ(σi, 1, ~σi).

Meanwhile, if ∂M is empty, or if u|∂M is homotopic to a constant, then Su is the
boundary of some integer-multiplicity rectifiable current of finite mass.

The reader can find the proofs of these statements for the case p = 2 in [18, 19], M
being a domain in Rn. The proofs are essentially the same for other values of p and any
smooth compact manifold.

Remark 3. By Lemma 1, Theorem 1 would come true for any p if mi(S)
mr(S) < C for

any integral flat (n − p − 1)-chain S in M . The existence of such a constant C is an
open problem except for when dimS = 0 or dimS = n− 2, where we have the equality
mi(S) = mr(S) for any integral flat chain. Refer to [1], [8: Lemma 4.2], [10: Section
3 and Appendix], [12: Theorem 5.10] and [14: Vol. II/Section 1.3.4] for proofs and
different aspects of the problem.

Theorem 3 (Almgren, Browder and Lieb [1]). Let M be as above and let u ∈
R∞,p(M, Sp) such that either ∂M is empty or u|∂M is constant. Then

mi(Su) ≤ 1
p

p
2 αp

∫

M

|∇u|pdvolM .

3. Proof of Theorem 1

We identify S3 (respectively S7) with the unit spheres in quaternions (respectively Cay-
ley numbers) and observe that they inherit the product structure on these spaces. If
we show the quaternion product (respectively, the Cayley product) by κ(x, y) = x ◦ y,
κ will be a smooth map from Sk × Sk → Sk for k = 3 or k = 7 and will satisfy the
condition that the induced homotopic homeomorphism

κ∗ : πk(Sk)⊕ πk(Sk) → πk(Sk)

is the sum of elements in πk(Sk). The spheres of dimensions 0, 1, 3 and 7 are the only
spheres for which such κ exist (see [7: Section VI.15, p. 412]). By x−1 ∈ Sk we mean
the right inverse of x ∈ Sk. Set

u ◦ v−1(x) = u(x) ◦ v(x)−1

for u, v ∈ W 1,p(M, Sp) and x ∈ M .
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Lemma 3. Let u, v ∈ W 1,p(M, Sp) for p = 3 or p = 7. Then u◦v−1 ∈ W 1,p(M, Sp).
Moreover, if {um} is a strongly convergent sequence in W 1,p(M, Sp), then E(um◦u−1

k ) →
0 if m, k → +∞.

Proof. Straight computations show that

∇(u ◦ v−1) = ∇u ◦ v−1 − u ◦ (
v−1 ◦ (∇v ◦ v−1)

)

which yields
|∇(u ◦ v−1)| ≤ |∇u|+ |∇v|

as |u| = |v| = 1. Thus u ◦ v−1 ∈ W 1,p(M, Sp). The smoothness of operations and the
Lebesgue dominant convergence yields the second part of the lemma

Lemma 4. If u, v ∈ R∞,p(M, Sp) for p = 3 or p = 7, then u ◦ v−1 ∈ R∞,p(M, Sp)
and

Su◦v−1 = Su − Sv. (3)

Proof. That u◦v−1 ∈ R∞,p(M, Sp) is a direct result of smoothness of the product.
Relation (3) can be deduced from Lemma 2 and the fact that for any (n − p − 1)-
dimensional face of B(u ◦ v−1) we have degσ(u ◦ v−1) = degσu− degσv

Now we present the

Proof of Theorem 1. Let u ∈ W 1,p(M, Sp) for p = 3 or p = 7. By Theorem 2
there exists a sequence of maps um ∈ R∞,p(M, Sp) such that um → u in W 1,p(M, Sp).
By Lemma 3 there exist a subsequence umk

of {um} such that

E(umk
◦ u−1

mk+1
) ≤ p

p
2 αp

2k+1
.

Meanwhile, using Theorem 3 and (3) we observe that there is an integer-multiplicity
rectifiable current Lk such that

∂Lk = Sumk
◦u−1

mk+1
= Sumk

− Sumk+1
and M(Lk) ≤ 1

2k
.

Choose a finite mass integer-multiplicity rectifiable current L0 such that ∂L0 = Sum1

and put L = L0 −
∑+∞

i=1 Li. So M(L) < +∞ and L is also an integer-multiplicity
rectifiable current. Observe that if Ik := L0−

∑k
i=1 Li, then ∂Ik = Sumk+1

. Meanwhile
M(Ik − L) → 0. This, using Lemma 1, yields ∂L = Su (so far we have proved that Su

is the boundary of some integer-multiplicity rectifiable current in M). Moreover,

mi(Sumk+1
− Su) ≤ M(Ik − L) → 0 (k → +∞).

Consequently, for any convergent sequence um ∈ R∞,p(M, Sp),

mi(Sum − Su) → 0. (4)

As a result, for any u ∈ W 1,p(M, Sp), mi(Su) ≤ CE(u) for a constant C > 0 independent
of u. Meanwhile, by the strong density of R∞,p(M, Sp) in W 1,p(M, Sp) and Lemma 1,
Lemma 4 is true for maps in W 1,p(M, Sp), too. Using the same method and the proved
facts about Su, we can prove (4) for any convergent sequence um ∈ W 1,p(M, Sp), i.e.
mi(Sum − Su) → 0 if um → u in W 1,p(M, Sp)
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Theorem 1 bis can be proved following the same ideas.
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