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On Resonant Differential Equations
with

Unbounded Non-Linearities

A. M. Krasnosel’skii, N. A. Kuznetsov and D. I. Rachinskii

Abstract. We present a method to study asymptotically linear degenerate problems with
sublinear unbounded non-linearities. The method is based on the uniform convergence to zero of
projections of non-linearity increments onto some finite-dimensional spaces. Such convergence
was used for the analysis of resonant equations with bounded non-linearities by many authors.
The unboundedness of nonlinear terms complicates essentially the analysis of most problems:
existence results, approximate methods, systems with parameters, stability, dissipativity, etc.
In this paper we present statements on projection convergence for unbounded non-linearities
and apply them to various resonant asymptotically linear problems: existence of forced periodic
oscillations and unbounded sequences of such oscillations, existence of unbounded solutions,
sharp analysis of integral equations with simple degeneration of the linear part (a scalar two-
point boundary value problem is considered as an example), existence of non-trivial cycles for
higher order autonomous ordinary differential equations, and Hopf bifurcations at infinity.

Keywords: Non-linearity sublinear at infinity, degenerate linear parts, periodic solutions, cy-
cles, integral equations, two-point problems, Hopf bifurcation, existence results
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1. Projections of non-linearity increments

1.1 Introduction. Consider the equation x = Tx in a Banach space E with an
asymptotically linear 1) completely continuous operator T . If its main linear part x = Ax
is non-degenerate (has no non-trivial solutions), then various problems related to this
equation are rather simple. If 1 is an eigenvalue of the linear operator A (degenerate
case), the analysis is much more complicated – it is necessary to use some properties
of sublinear non-linearities F = T −A. An important property that can be used is the
uniform convergence ∆F = φ

(
F (ξe+h)−F (ξe)

) → 0 as ξ →∞. Here φ is some linear
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1) Tx = Ax + Fx where A is linear and F is sublinear, i.e. the nonlinear operator F satisfies
‖Fx‖ ‖x‖−1 → 0 at infinity.
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functional, the convergence must be uniform with respect to all normed eigenvectors
e = Ae of the operator A, and with respect to all vectors h ∈ E from some special sets
depending on ξ. The same convergence can be used also in some problems that cannot
be reduced directly to equations of the type x = Tx.

Here we present sufficient conditions for the convergence ∆F → 0 for unbounded
non-linearities F and consider some applications to ordinary differential equations. Most
applications are concerned with periodic and Dirichlet problems for second order equa-
tions and for equations arising in control theory. Theorems 1 and 2 on the convergence
∆F → 0 are formulated in the space L2 for non-linearities Fx(t) = f(t, x(t)); the unifor-
mity of the convergence is proved for rather special classes of increments h. The choice
of formulations is determined by the applications. The applications presented are new
for the case of unbounded non-linearities. If the non-linearity is bounded, corresponding
analogs of our theorems are known.

The paper is organized as follows.
In the next subsection we present three Theorems 1 - 3. They are used in all

other results of the paper. Especially, in some sense all other results are applications of
Theorems 1 and 2. Theorem 3 is slightly more general than Theorems 1 and 2, but we do
not present its applications. The last subsection of this section contains some remarks.
In Section 2 there are results about existence of forced periodic oscillations. In Section 3
we give a generalization of results by R. Ortega and J. Alonso concerning the existence
of unbounded solutions. In Section 4 we consider integral equations and two-point
boundary value problems. Sections 5 and 6 are concerned with self-induced oscillations:
in Section 5 we present existence theorems for cycles of higher order quasilinear ordinary
differential equations while in Section 6 Hopf bifurcations at infinity are considered. In
Section 7 we give a lemma to compute some values that we use throughout the paper.
The other sections, Sections 8 - 12, contain proofs.

1.2 Convergence conditions. Let Θ : [0, +∞) → [1,∞) be a monotone function
increasing sublinear at infinity function:

lim
ξ→+∞

Θ(ξ)
ξ

= 0.

We suppose that for any constant M > 0 there exists a number C = C(M) such that
Θ(Mξ) ≤ CΘ(ξ) for all ξ ≥ C. Let a function e be defined on the interval [a, b], k > 1
times continuously differentiable. Let its derivative e′ take the zero value in a finite
set of critical points and let the highest order of tangency of the graph of e with a
horizontal line equal k. The last assumption means that if e′(t0) = 0, then at least one
of the numbers e′′(t0), . . . , e(k)(t0) is non-zero. Further, let a continuous scalar-valued
function f : [a, b]× R→ R satisfy the estimate

|f(t, x)| ≤ c Θ(|x|) (t ∈ [a, b], x ∈ R) (1)

and the Lipschitz condition with respect to the first variable

|f(t, x)− f(s, x)| ≤ c Θ(|x|) |t− s| (t, s ∈ [a, b], x ∈ R). (2)

At last, let g : [a, b] → R satisfy the Lipschitz condition

|g(t)− g(s)| ≤ c |t− s| (s, t ∈ [a, b])

with some constant c > 0.
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Theorem 1. Let

lim
ξ→+∞

Θ2k(ξ)
ξ

= 0. (3)

Then for any R > 0 the relation

lim
ξ→∞

sup
‖h‖C1≤RΘ(ξ)

∣∣∣∣∣
∫ b

a

g(t)
(
f(t, ξe(t) + h(t))− f(t, ξe(t))

)
dt

∣∣∣∣∣ = 0 (4)

is valid.

Relation (4) is the convergence ∆F → 0 for the non-linearity Fx(t) = f(t, x(t)).
With the use of some additional information about the function f , it is possible to
weaken condition (3). Namely, let f satisfy the Lipschitz condition

|f(t, x)− f(t, y)| ≤ d(ξ)|x− y| (|x|, |y| ≥ ξ) (5)

where d(ξ) decreases and d(ξ) → 0 as ξ → ∞. We suppose that for any µ > 0 there
exists a number C∗ = C∗(µ) such that the estimate d(µξ) ≤ C∗(µ)d(ξ) holds for all
ξ ≥ C∗. We will use this estimate and the relation Θ(Mξ) ≤ C(M)Θ(ξ) without special
references.

Theorem 2. Let e(τ) 6= 0 whenever e′(τ) = 0, let (1), (2) and (5) be valid and

lim
ξ→+∞

Θ2k(ξ)d2k−2(ξ)
ξ

= lim
ξ→+∞

Θ2(ξ)
ξ

= 0. (6)

Then for any R > 0 relation (4) holds.

The proofs of Theorems 1 and 2 will be given in Section 8.

We use the function Θ in both Theorems 1 and 2 twice: in the estimate for ‖h‖ in
the supremum in (4) and in estimate (1) for the function f . In the next theorem we use
two different functions in these places.

If relation (4) is valid for some functions fj with the same Θ = Θ(ξ), then it is valid
for their sum f0 =

∑
j fj . The functions fj may satisfy (1) and (5) with different Θj

and dj ; naturally, f0 =
∑

j fj satisfies (1) with Θ = maxj Θj .

Theorem 3. Let |f(t, x)| ≤ c Θ∗(|x|) for all (t, x) ∈ [a, b]× R and let either

lim
ξ→+∞

Θ2k−1
∗ (ξ)Θ(ξ)

ξ
= 0, (7)

or e(τ) 6= 0 if e′(τ) = 0, (5) holds and

lim
ξ→+∞

Θ∗(ξ)Θ2k−1(ξ)d2k−2(ξ)
ξ

= lim
ξ→+∞

Θ∗(ξ)Θ(ξ)
ξ

= 0. (8)

Then for any R > 0 relation (4) holds.
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In Theorem 3, condition (8) can be more restrictive than condition (7). Applications
of this theorem are not considered in the paper. We also do not give the proof; it can
be obtained by slight modifications of the proofs of Theorems 1 and 2.

1.3 Remarks. Here we give the following comments.
A. Lipschitz condition (5) with d(ξ) → 0 as ξ → +∞ is rather restrictive. Under

this condition it is possible to prove statements on relation (4), which do not use the
derivatives of e and h, statements about vector functions [12], etc. Final formulations
are weaker than that of Theorem 2 (see [7]). The conclusion of Theorem 2 is valid for
functions e satisfying e(τ) = e′(τ) = 0 for some τ , the corresponding analog of (6) is
more restrictive. In natural applications the assumptions of Theorem 2 are valid. The
conclusion of Theorem 2 is also valid for monotone differentiable functions e satisfying
e′(t) ≥ η > 0 in [a, b]. In this case, relation (4) follows from Θ2(ξ)

ξ → 0 as ξ → +∞.
Theorems 1 - 3 can be easily extended for piecewise differentiable functions e.
B. The natural case is k = 2. Theorems 1 - 3 are formulated for arbitrary k due

to rare but possible applications. Consider an example. Let e be an eigenfunction of
the differential operator Lx = x(4) with boundary conditions x′(0) = x′′(0) = x′(1) =
x′′(1) = 0. The leading eigenvalue of this operator is 0, the corresponding eigenfunction
is a constant. Its derivative is identically zero and Theorems 1- 3 are inapplicable.
Other eigenvalues (they are equal to µ4, where µ denotes any non-zero root of the
transcendental equation cos µ · cosh µ = 1) correspond to eigenfunctions e with k = 3,
both Theorems 1 and 2 are applicable.

In general, conditions (6) are different for different k. For the function f = xα +b(t)
conditions (6) do not depend on k and have the form 2α < 1.

C. Theorems 1 - 3 can be easily modified if the non-linearity is a sum of functions
with different asymptotic properties at infinity. Suppose f = f1 +f2 and mes {t : e(t) =
0} = 0. Let f1 satisfy all the conditions of Theorems 1 or 2 and let f2 be uniformly
bounded. Then for any R > 0 relation (4) holds.

In the following example Theorem 3 can be used. Let f1(t, x) = (1 + |x|)α and
f2(t, x) ≤ (1 + |x|)β for some β < α, let k = 2 and suppose f2 to satisfy condition (5).
Then Theorem 1 with Θ = (1+ξ)α is applicable if α < 1

4 , but Theorem 2 is inapplicable.
Theorem 3 with Θ = (1 + ξ)α is applicable if α < 1

2 and β < 1−α
3 , since f1 satisfies (1)

and (5) with Θ1 = (1+ξ)α and d1 = α(1+ξ)α−1 and f2 satisfies (1) with Θ2 = (1+ξ)β .
D. Theorems 1 and 2 give sufficient conditions for (4). The necessity of these

conditions can be illustrated with the following example. Fix an α ∈ (0, 1) and set

[a, b] = [−1, 1], f = (1 + |x|)α, Θ = (1 + ξ)α, e = 1 + t2, h = ξα, g = 1.

Here k = 2, f ′ = α(1 + |x|)α−1sgnx and therefore d = α(1 + ξ)α−1. The inequality
α < 1

2 is necessary and sufficient for (4) as well as for conditions (6) of Theorem 2.
E. Let [a, b] = [0, 2π] and e = sin t. It would be interesting to obtain sufficient

conditions for the relation

lim
ξ→+∞

sup
‖h‖C1≤R Θ(ξ)

∣∣∣∣
∫ 2π

0

g(t)
(
f
(
t, ξe(t) + h(t), ξe(tw) + h(tw)

)

−f
(
t, ξe(t), ξe(tw)

))
dt

∣∣∣∣ = 0
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where tw = t−w if t ≥ w and tw = 2π + t−w if t < w. This relation can be applied to
study periodic oscillations in systems with non-linearities Fx(t) = f

(
t, x(t), x(t − w)

)
.

Some simple conditions are considered in [13].

2. Existence of forced periodic oscillations

2.1 Second order equation. Everywhere we use the following

Definition 1. We say that the non-linearity f has a proper growth at infinity if it
satisfies (1) and (2), and either relation (3) is valid for k = 2 or estimate (5) holds and
relations (6) are valid for k = 2.

Consider the equation
x′′ + n2x = f(x) + b(t) (9)

where n ∈ N, b is continuous and 2π-periodic, and f is continuous and unbounded
in general. Theorems 4 and 5 below generalize some results from [11] where bounded
non-linearities f are considered.

Set

Ψ(ξ) =
∫ 2π

0

sin nt f(ξ sinnt) dt (10)

ψ+ = lim inf
ξ→+∞

|Ψ(ξ)|, ψ+ = lim sup
ξ→+∞

|Ψ(ξ)| (11)

b =
∫ 2π

0

eintb(t) dt.

Limits (11) may be finite or infinite, computation of such limits see in Section 7. The
function Ψ is always odd.

Theorem 4. Let f in equation (9) have a proper growth at infinity. If the relations

ψ+ < |b| < ψ+ (12)

hold, then equation (9) has an unbounded sequence of 2π-periodic solutions. If

|b| < ψ+, (13)

then equation (9) has at least one 2π-periodic solution and the set of all such solutions
is bounded.

The proof of Theorem 4 will be given in Section 9.
If ψ+ < |b|, then the set of 2π-periodic solutions of equation (9) is bounded but

may be empty. If |b| = ψ+ or |b| = ψ+, then the knowledge of the values ψ+, ψ+ and
|b| is not sufficient to determine whether the set of 2π-periodic solutions is bounded or
not. The special case |b| = ψ+ = 0 is essentially different from the case |b| > 0, the
corresponding analysis for bounded non-linearities f can be found in [11]. The reasons
why these cases are different do not depend on the boundedness or unboundedness of
f .
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2.2 Control theory equations with delay. Analogs of Theorem 4 are valid for
forced oscillations in more complex systems. Let us formulate one statement for control
theory equations with delay. For this, consider the equation

L
( d

dt

)
x(t) = M

( d

dt

)(
f(x(t)) + f1(x(t− w)) + b(t)

)
. (14)

Here L and M are coprime real polynomials, the degree of L is greater than that of M .
If M = 1 and w = 0, then (14) is a usual higher order ordinary differential equation.
Let L(±ni) = 0 for some positive integer n and L(±mi) 6= 0 for any integer m 6= n. Let
limits (11) be determined by the function

Ψ(ξ) =
∫ 2π

0

sin nt f(ξ sin nt) dt + cos nw

∫ 2π

0

sinnt f1(ξ sin nt) dt.

Theorem 5. Let both functions f and f1 in equation (14) have a proper growth
at infinity. If relations (12) are valid, then equation (14) has an unbounded sequence
of 2π-periodic solutions. If relation (13) is valid, then equation (14) has at least one
2π-periodic solution and the set of all such solutions is bounded.

Theorem 5 generalizes Theorem 4 in two directions: its linear part is more general
and there is a delay in the non-linearity. The proofs of both theorems are almost the
same, thus we omit that of Theorem 5. Analogs of this theorem for bounded f and f1

can be found in [8].

3. Existence of unbounded solutions

Consider again equation (9) with 2π-periodic function b. Now we are interested in non-
periodic solutions of (9), namely, we study the existence of unbounded (at +∞ or −∞)
solutions. This problem was analyzed by J. M. Alonso and R. Ortega for equations
with bounded non-linearities [1]. Theorems 1 and 2 allow to obtain similar results for
equation (9) with unbounded non-linearities f .

Let limits (11) be finite and let

|b| > ψ+. (15)

For example, limits (11) are finite if the odd part of f is bounded. Let any initial values
x(0) and x′(0) define a unique solution of equation (9).

Theorem 6. Let f have a proper growth at infinity. Then any solution of equation
(9) with sufficiently large |x(0)|+ |x′(0)| is unbounded, i.e. at least one of the realtions

lim
t→±∞

(|x(t)|+ |x′(t)|) = +∞ (16)

holds.

The proof of Theorem 6 will be given in Section 10.
Theorem 6 is similar to [1: Proposition 3.4]. The main condition (15) is less re-

strictive than its analog from that Proposition 3.4 even for bounded f . From the proof
of Theorem 6 in Section 10 it follows that under its assumptions there exist solutions
satisfying both relations (16).
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4. Integral equations, two-point boundary value problems

4.1 Integral equation. Consider the integral equation of Hammerstein type

x(t) =
∫ b

a

K(t, s)f1(s, x(s)) ds (17)

with non-linearity f1 = µx+ f(t, x), where µ 6= 0 and f is sublinear in x. Let the linear
operator

(Ax)(t) =
∫ b

a

K(t, s)x(s) ds

be completely continuous in L2 = L2(a, b). If µ is not a characteristic value of A, then
equation (17) has at least one solution and the set of all its solutions is bounded.

Let µ be a simple characteristic value of A (i.e. µ−1 is a simple eigenvalue) and
let e be a corresponding normed eigenfunction of A. The adjoint operator A∗ has the
eigenfunction g that corresponds to the characteristic value µ, satisfies (g, e)L2 = 1, and
is supposed to be Lipschitz continuous. Let A be a continuous operator from L2 to C1

and from C1 to C2. Suppose e′(t) = 0 for a finite number of critical points and e(t) 6= 0,
e′′(t) 6= 0 at these points. Set

Ψ(ξ) =
∫ 2π

0

g(t)f(t, ξe(t)) dt

ϕ± = lim inf
ξ→±∞

Ψ(ξ), ϕ± = lim sup
ξ→±∞

Ψ(ξ). (18)

The following theorem gives sharp conditions for the existence of solutions to equation
(17) and for the boundedness of the solution set. Moreover, the index ind∞Φ at infinity
[3, 16] of the vector field Φ(x) = x− µAx−Af(·, x) in L2 is calculated.

Theorem 7. Let the non-linearity f have a proper growth at infinity and let the
operator A satisfy all the conditions above. Then:

(i) If either ϕ+ < 0 < ϕ− or ϕ− < 0 < ϕ+, then the index at infinity of the vector
field Φ is well defined, |ind∞Φ| = 1, and equation (17) has at least one solution.

(ii) If either ϕ− > 0, ϕ+ > 0 or ϕ− < 0, ϕ+ < 0, then the index at infinity of the
vector field Φ is well defined, ind∞Φ = 0.

(iii) If either ϕ− < 0 < ϕ− or ϕ+ < 0 < ϕ+, or both these relations together are
valid, then the index at infinity of the vector field Φ is not defined and there exists an
unbounded sequence of solutions of equation (17) xn ∈ L2, ‖xn‖L2 →∞.

The proof of Theorem 7 will be given in Section 11.
The only situation not considered in Theorem 7 is that one of zero limits (18) and

neither ϕ− < 0 < ϕ− nor ϕ+ < 0 < ϕ+. If ϕ+ < 0 < ϕ+, then the unbounded sequence
of solutions of equation (17) has the form xn = ξne+hn with ξn → +∞ and ‖hn‖L2

ξn
→ 0

where (g, hn)L2 = 0. If ϕ− < 0 < ϕ−, then ξn → −∞. If 0 ∈ (ϕ−, ϕ−)∩ (ϕ+, ϕ+), then
there exist two sequences of solutions x±n = ξ±n e + h±n with ξ±n → ±∞. If ϕ− = ϕ− and
ϕ+ = ϕ+, then the non-linearity is asymptotically homogeneous in the sense of [6] and
the case 3 of Theorem 7 is impossible.
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Some methods to compute limits (18) will be discussed in Section 7 (see also [12]).

4.2 Application to two-point boundary value problems. Consider the problem

x′′ + n2x + f(t, x) = 0

x(0) = x(π) = 0

}
(19)

where n ∈ N. Suppose f : [0, π]×R→ R is continuous in x ∈ R and uniformly Lipschitz
continuous in t ∈ [0, π]. Set

e(t) =
√

2
π sin nt, Ψ(ξ) =

∫ π

0

e(t)f(t, ξe(t)) dt (20)

and define values (18) for this function.

Theorem 8. Let the non-linearity f have a proper growth at infinity. If either
ϕ+ < 0 < ϕ− or ϕ− < 0 < ϕ+, then problem (19) has at least one solution and the set
K ⊂ C2 of all its solutions is bounded. If either ϕ− < 0 < ϕ− or ϕ+ < 0 < ϕ+ or both
these relations together hold, then problem (19) has an infinite number of solutions and
the set K of all its solutions is unbounded.

Theorem 8 follows directly from Theorem 7.
As an illustration, consider the set of solutions of the problem

x′′ + n2x + f(t, x)− λe(t) = 0

x(0) = x(π) = 0

}
(21)

with scalar parameter λ. Define the function Ψ by (20) and let values (18) satisfy

−∞ = ϕ− < ϕ− < 0 < ϕ+ < ϕ+ = ∞.

Then for any ξ ∈ R there exists at least one λ and a function h, (e, h)L2 = 0, such that
x = ξe + h is a solution of problem (21). If f ′x is sufficiently small, then these λ and
h are unique for each ξ. The set (−∞, ϕ−] ∪ [ϕ+,∞) is that of asymptotic bifurcation
points [16] for problem (21). On Figure 1 this set is drawn by thick horizontal lines.

Figure 1: The set of asymptotic bifurcation points for problem (21)
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5. Cycles in autonomous higher oder ordinary differential
equations

Consider the equation

L
( d

dt

)
x = f(x) (22)

where L is a real polynomial, f is continuous and sublinear, f(0) = 0.

Theorem 9. Let the polynomials L(wi) and Im L(wi) have a pair of common real
roots ±w0 (w0 > 0) of the same odd multiplicity. Let there exist an interval Ω =
[w1, w2] (w0

2 < w1 < w0 < w2) such that

L(nwi) 6= 0 (w ∈ Ω, n ∈ N0 \ {1}) and ImL(wi) 6= 0 (w0 6= w ∈ Ω),

let
q < inf

w∈Ω
inf

n∈N0\{1}
|L(nwi)|

and let the inequality

|ImL(wi)|(|L(nwi)|2 − q2
)

+ n
(
q2 − |Im L(wi)|2)sgn (Im L(wi))ImL(nwi) > 0 (23)

be valid for w = w1, w = w2 and 2 ≤ n ∈ N. Suppose that the non-linearity has a proper
growth at infinity, |f(x)| ≤ q|x| (x ∈ R), f ′(0) exists with f ′(0) 6= 0 and the function

Ψ(ξ) =
∫ 2π

0

sin t f(ξ sin t) dt (24)

satisfies for all sufficiently large ξ > 0 the estimate

Ψ(ξ)f ′(0) ≤ −c0 < 0. (25)

Then there exists a non-trivial cycle of equation (9) with period a T ∈ [ 2π
w2

, 2π
w1

].

The proof of Theorem 9 will be given in Section 12.

Equations L( d
dt )x = M( d

dt )f(x) with bounded non-linearities f were considered in
[2]. As an example, consider the equation

x′′′ + x′′ + x′ + x = f(x) (26)

where L(p) = p3 + p2 + p + 1, Im L(wi) = w(1 − w2) and w0 = 1. Suppose that the
non-linearity f has a proper growth at infinity, (25) holds for all sufficiently large ξ and
|f(x)| ≤ 0.745|x| (x ∈ R). Then equation (26) has at least one cycle with a period
T ∈ [6.283, 7.652].
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6. Hopf bifurcation at infinity

Consider the differential equation

L
( d

dt
, λ

)
x = M

( d

dt
, λ

)
f(x, λ) (27)

where the real polynomials L(p, λ) and M(p, λ) of degrees ` and m (` > m) are coprime
for each value of the scalar parameter λ ∈ Λ = (a, b).

Definition 2. A parameter value λ0 is called a Hopf bifurcation point at infinity
(shortly, a bifurcation point) for equation (27) with a frequency w0 if for any sufficiently
large r > 0 there exists a λr such that (27) with λ = λr has a Tr-periodic solution xr

and λr → λ0, ‖xr‖C →∞, Tr → 2π
w0

as r →∞.

The following result is formulated in [9]. Suppose the continuous non-linearity
f(x, λ) is sublinear in x, the polynomial L has a pair of simple conjugate roots σ(λ)±
w(λ) i (w(λ) > 0) depending continuously on λ where σ(λ0) = 0, and the function σ
takes values of both sign in every neighborhood of λ0. Further, suppose L

(
nw(λ0) i, λ0

) 6=
0 for n ∈ N0 \ {1}. Then λ0 is a Hopf bifurcation point at infinity for equation (27)
with frequency w(λ0).

Here we consider the differential equation

L
( d

dt

)
x = M

( d

dt

)
f(x, λ) (28)

where the linear part is independent of the parameter. We suppose that the real poly-
nomials L and M are coprime 2), their degrees satisfy ` > m, and the polynomial L has
a pair of imaginary roots ±iw0 (w0 > 0). The function f : R × Λ → R is continuous
with respect to its arguments and sublinear uniformly in λ ∈ Λ, i.e. |f(x, λ)| ≤ Θ(|x|)
where Θ is independent of λ.

Theorem 10. Let the following conditions hold:
1. The number w0 is a root of the polynomials Im [L(wi)M(−wi)] and L(wi) of the

same odd multiplicity K and L(nw0i) 6= 0 for every n ∈ N0 \ {1}.
2. The function f has a proper growth at infinity.
3. For every λ there exists the limit

ψ(λ) = lim
ξ→+∞

∫ 2π

0

sin t f(ξ sin t, λ) dt (29)

and the function ψ takes values of both sign in every neighborhood of the point λ0.
Then λ0 is a Hopf bifurcation point at infinity for equation (28) with the frequency

w0.

We do not give the proof of Theorem 10. A close result is proved in [13] for equations
(28) with bounded non-linearities. To obtain the proof for unbounded non-linearities it
suffices to combine the method of [13] with Theorems 1 and 2.

2) Above we supposed this for polynomials depending on a parameter.
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Lemma 1 below explains when limit (29) exists. Assumption 1 of Theorem 10
implies that the polynomial Im [L(wi)M(−wi)] is non-zero. One can show that the
identity Im [L(wi)M(−wi)] = 0 holds if and only if both polynomials L and M are
even. In this case the equation L

(
d
dt

)
x = M

(
d
dt

)
f(x) with any continuous non-linearity

f is Hamiltonian [14, 15]. Moreover, if assumption 1 holds and f is bounded, then
this equation has a continuum of periodic cycles x(·; ξ) such that ‖x(·; ξ)‖C → ∞ and
T (ξ) → 2π

w0
as ξ → ∞ where T (ξ) is the period of the cycle x(t; ξ) and ξ ≥ ξ0 is a

parameter. Therefore, the identity Im [L(wi)M(−wi)] = 0 implies that all values λ ∈ Λ
are Hopf bifurcation points at infinity for equation (28) with frequency w0. The simplest
example of an equation that can be studied with Theorem 10 is x′′′+x′′+x′+x = f(x, λ).

7. Computation of ϕ+ and ϕ+

In this section, we present algorithms to compute limits (18) for function (19).

Lemma 1. Let f = f1 + f2 + f3 + f4 + f5 where for the summands the follwing
conditons are satisfed:

f1(x) = 1
2 [f(x) + f(−x)] is the unbounded even part of f(x)

fi (2 ≤ i ≤ 5) are odd and bounded
f2(x) → 0 as x →∞
f3(x) → ±f 6= 0 as x → ±∞
f4 have sublinear primitive F4: limx→∞

F4(x)
x = 0, F4(x) =

∫ x

0
f4(u) du.

Then

ϕ+ = 4f + lim inf
ξ→+∞

∫ 2π

0

sin nt f5(ξ sin nt) dt

ϕ+ = 4f + lim sup
ξ→+∞

∫ 2π

0

sin nt f5(ξ sin nt) dt.

Proof. The proof of this simple statement coincides with its analog from [11] for
bounded non-linearities. Since f1 is even and f2(x) → 0 as x →∞,

∫ 2π

0

sinnt f1(ξ sin nt) dt = lim
ξ→∞

∫ 2π

0

sin nt f2(ξ sin nt) dt = 0.

The relations f3(x) → ±f as x → ±∞ imply

lim
ξ→+∞

∫ 2π

0

sinnt f3(ξ sin nt) dt = 4f.

Finally,
∫ 2π

0

sinnt f4(ξ sin nt) dt

= 4
∫ π

2

0

sin t f4(ξ sin t) dt

= 4
∫ π

2−ε

ε

sin t f4(ξ sin t) dt + 4
∫

[0,ε]∪[ π
2−ε, π

2 ]

sin t f4(ξ sin t) dt
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≤ 4ξ−1

∫ π
2−ε

ε

tan t dF4(ξ sin t) + 8ε sup |f4(x)|

= cε + 4ξ−1 tan t F4(ξ sin t)
∣∣t= π

2−ε

t=ε
− 4

∫ π
2−ε

ε

F4(ξ sin t)
ξ cos2 t

dt.

Since ε is arbitrarily small and F4(x)
x → 0 as x →∞, this implies

lim
ξ→+∞

∫ 2π

0

sin nt f4(ξ sin nt) dt = 0

and the lemma is proved

For example, f4 has a sublinear primitive if f4 is periodic or almost periodic with
zero average; the functions sin x3 and sin

√
|x| sgnx also have sublinear primitives. The

primitive of the functions sin ln(1 + |x|)sgnx and arctan x are not sublinear. Non-
linearities with sublinear derivatives were considered in [1] for existence problems of
unbounded solutions.

8. Proof of Theorems 1 and 2

8.1 Change of variables. The first part of the proof is common for both Theorems 1
and 2. Under their conditions, Θ2(ξ)

ξ → 0 as ξ → +∞. Consider a decreasing function
δ : R+ → R+ such that

lim
ξ→+∞

δ(ξ) = 0 and lim
ξ→+∞

Θ2(ξ)
ξδ2k−2(ξ)

= 0. (30)

Since Θ(ξ) ≥ 1 and k ≥ 2, this implies also

lim
ξ→+∞

δ∗(ξ) = 0 where δ∗(ξ) =
Θ(ξ)

ξδk(ξ)
. (31)

Under the assumptions of Theorems 1 and 2 the choice of δ is different, but it is not
essential now.

Let t1 < t2 < . . . < tn−1 be the set of all critical points of the function e in the
interval (a, b), set t0 = a and tn = b. Consider the intervals

o0 = [t0, t0 + δ0)

oj = (tj − δj , tj + δj) (1 ≤ j ≤ n− 1)

on = (tn − δn, tn]

where δj = δ(ξ) if e′(tj) = 0 and δj = δ∗(ξ) otherwise (the relation e′(tj) 6= 0 may hold
for j = 0 and j = n only). The estimate mes {∪oj} ≤ 2nδ + 2δ∗ implies mes {∪oj} → 0
as ξ → +∞. Suppose that ξ is so large that the closures of the intervals oj are disjoint.
Then the set [a, b] \ ∪oj is the unification of n disjoint segments [aj , bj ] ⊂ (tj , tj+1)
(the points aj and bj depend on ξ, the segments [aj , bj ] become larger as ξ increases).



On Resonant Differential Equations 651

By construction, [aj − δj

2 , bj + δj

2 ] ⊂ (tj , tj+1) for each j and the function e is strictly
monotone on every interval (tj , tj+1). Moreover, the relations e(`)(tj) 6= 0 with ` = `j ≤
k imply the estimate

|e′(t)| ≥ c1δ
k−1

(
t ∈ [aj − δj

2 , bj + δj

2 ]; j = 0, . . . , n− 1
)

(32)

where c1 > 0 is independent of ξ.
To prove relation (4) we estimate separately the integrals over the sets ∪[aj , bj ]

and ∪oj and show that for some appropriate choice of δ both integrals tend to zero as
ξ → +∞. First, fix some j, consider the segment [aj , bj ] and the corresponding integral

I(aj , bj) =
∫ bj

aj

g(t)
(
f
(
t, ξe(t) + h(t)

)− f(t, ξe(t))
)
dt. (33)

Since the function e is strictly monotone on the segment
[
aj − δj

2 , bj + δj

2

]
, the inverse

function e−1 is well defined on the segment e
([

aj − δj

2 , bj + δj

2

])
and (32) implies

∣∣∣ d

dτ
e−1(τ)

∣∣∣ ≤ c−1
1 δ1−k

(
τ ∈ e

([
aj − δj

2 , bj + δj

2

]))
. (34)

From (31) and ‖h‖C1 ≤ R Θ(ξ) the relations

ξ−1‖h‖C1 =
{

o(δk)
o(δk−1δ∗)

(ξ → +∞)

follow, therefore estimate (32) implies that the function e + ξ−1h is strictly monotone
on the segment [aj , bj ], their values belong to the segment e

([
aj − δj

2 , bj + δj

2

])
and

∣∣e′(t) + ξ−1h′(t)
∣∣ ≥ c1

δk−1

2
(t ∈ [aj , bj ]) (35)

if ξ is sufficiently large. Let us change the variable in integral (33) by the formula
e(τ) = e(t)+ ξ−1h(t); the change t → τ is correct due to the monotonicity of both sides
of this formula.

Let us prove two preliminary estimates. Namely, the relations

τ = e−1
(
e(t) + ξ−1h(t)

)
= t + e−1

(
e(t) + ξ−1h(t)

)− e−1(e(t))

and (34) imply the estimate |τ−t| ≤ c−1
1 ξ−1δ1−k|h(t)|, therefore |τ−t| ≤ r1

Θ(ξ)
ξδk−1(ξ)

(here
and everywhere rm > 0 are constants the exact values of which do not play any role).
The next preliminary estimate follows from the formula e′(τ) =

(
e′(t) + ξ−1h′(t)

)
t′(τ)

which implies

|t′(τ)− 1| =
∣∣∣∣

e′(τ)
e′(t) + ξ−1h′(t)

− 1
∣∣∣∣

=
∣∣∣∣
e′(τ)− e′(t)− ξ−1h′(t)

e′(t) + ξ−1h′(t)

∣∣∣∣

≤ r2

|τ − t|+ Θ(ξ)
ξ

δk−1(ξ)

≤ r3
Θ(ξ)

ξδ2k−2(ξ)
.
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From (30) we see that t′(τ) is close to 1 for large ξ.
Now let us come back to integral (33). Since

∫ bj

aj

g(t)f
(
t, ξe(t) + h(t)

)
dt =

∫ τ(bj)

τ(aj)

g(t(τ)) f
(
t(τ), ξe(τ)

)
t′(τ) dτ

it follows that I(aj , bj) ≤ ε1 + ε2 + e3 + ε4 where

ε1 =

∣∣∣∣∣
∫ τ(bj)

τ(aj)

g(t(τ))f
(
t(τ), ξe(τ)

)
t′(τ) dτ −

∫ bj

aj

g(t(τ))f
(
t(τ), ξe(τ)

)
t′(τ) dτ

∣∣∣∣∣

ε2 =

∣∣∣∣∣
∫ bj

aj

g(t(τ))f
(
t(τ), ξe(τ)

)
t′(τ) dτ −

∫ bj

aj

g(τ)f
(
t(τ), ξe(τ)

)
t′(τ) dτ

∣∣∣∣∣

ε3 =

∣∣∣∣∣
∫ bj

aj

g(τ)f
(
t(τ), ξe(τ)

)
t′(τ) dτ −

∫ bj

aj

g(τ)f(τ, ξe(τ))t′(τ) dτ

∣∣∣∣∣

ε4 =

∣∣∣∣∣
∫ bj

aj

g(τ) f(τ, ξe(τ))t′(τ) dτ −
∫ bj

aj

g(τ)f(τ, ξe(τ)) dτ

∣∣∣∣∣ .

Estimates (1) - (2) and |g(t)− g(s)| ≤ |t− s| imply

ε1, ε2, ε3 ≤ r4Θ(ξ)max |τ − t(τ)| and ε4 ≤ r5Θ(ξ)max |t′(τ)− 1|

and from the above estimates for |τ − t(τ)| and |t′(τ)− 1| we conclude

ε1, ε2, ε3 ≤ r6
Θ2(ξ)

ξδk−1(ξ)
, ε4 ≤ r7

Θ2(ξ)
ξδ2k−2(ξ)

, I(aj , bj) ≤ r8
Θ2(ξ)

ξδ2k−2(ξ)
.

Therefore relation (30) implies that all integrals (33) vanish as ξ → +∞.

8.2 Completion of the proof. It remains to show that the integral

J(ξ) =
∫

∪oj

g(t)
(
f
(
t, ξe(t) + h(t)

)− f(t, ξe(t))
)
dt

vanishes as ξ → +∞ uniformly with respect to h, ‖h‖C1 ≤ RΘ(ξ), for some appropriate
δ(ξ) satisfying (30). Under the conditions of Theorem 1 set

δ(ξ) =
1

Θ(ξ)

(Θ2k(ξ)
ξ

) 1
3k−3

.

Then Θ2(ξ)
ξδ2k−2(ξ)

=
(Θ2k(ξ)

ξ

) 1
3 . Due to (3), these relations and the estimates

|J(ξ)| ≤ r9Θ(ξ)mes{∪oj} ≤ r9Θ(ξ)
(
2nδ(ξ) + 2δ∗(ξ)

) ≤ r10

(
Θ(ξ)δ(ξ) +

Θ2(ξ)
ξδ2k−2(ξ)

)
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imply (30) and J(ξ) → 0 as ξ → +∞. Theorem 1 is proved.

Suppose that the conditions of Theorem 2 are satisfied. Consider an interval oj . If
e′(tj) = 0, then by assumption of this theorem e(tj) 6= 0 and relation (5) implies for
t ∈ oj

∣∣f(
t, ξe(t) + h(t)

)− f(t, ξe(t))| ≤ d
(

min
t∈∪oj

{|ξe(t)|, |ξe(t) + h(t)|}
)
|h(t)|

≤ r11d(ξ)Θ(ξ),

hence ∣∣∣∣
∫

oj

g(t)
(
f
(
t, ξe(t) + h(t)

)− f(t, ξe(t))
)
dt

∣∣∣∣ ≤ r12d(ξ)Θ(ξ)δj(ξ)

= r12d(ξ)Θ(ξ)δ(ξ).

The relation e′(tj) 6= 0 may be valid for j = 0 and j = n; in these cases δj = δ∗(ξ) and

∣∣∣∣
∫

oj

g(t)
(
f
(
t, ξe(t) + h(t)

)− f(t, ξe(t))
)
dt

∣∣∣∣ ≤ r13Θ(ξ)δ∗(ξ) ≤ r13
Θ2(ξ)

ξδ2k−2(ξ)
.

Therefore

|J(ξ)| ≤ r14

(
d(ξ)Θ(ξ)δ(ξ) +

Θ2(ξ)
ξδ2k−2(ξ)

)
.

Under the conditions of Theorem 2 we set

δ(ξ) =
(Θ2(ξ)

ξ

) 1
3k−3

min
{(

d(ξ)Θ(ξ)
)− 1

3 , 1
}
.

Then
Θ2(ξ)

ξδ2k−2(ξ)
= max

{(Θ2k(ξ)d2k−2(ξ)
ξ

) 1
3
,
(Θ2(ξ)

ξ

) 1
3
}

and

d(ξ)Θ(ξ)δ(ξ) =





(
Θ2k(ξ)d2k−2(ξ)

ξ

) 1
3k−3

if d(ξ)Θ(ξ) ≥ 1

Θ(ξ)
(

Θ2(ξ)
ξ

) 1
3k−3

if d(ξ)Θ(ξ) < 1
,

i.e.

d(ξ)Θ(ξ)δ(ξ) ≤
( Θ2(ξ)

ξδ2k−2(ξ)

) 1
k−1

.

Therefore relations (6) imply (30) and J(ξ) → 0 as ξ → +∞. Theorem 2 is also proved.
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9. Proof of Theorem 4

9.1 General scheme. The proof consists of several steps. First we formulate a sim-
ple auxiliary statement on the explicit form of the superposition operator in some 2-
dimensional subspace of L2. Then the periodic problem is replaced by the equivalent
operator equation

x = A
(
µx− f(x)− b

)
(36)

of Hammerstein type with a proper linear operator A and a proper µ.
In the next step, the index at infinity of the vector field x − A

(
µx − f(x) − b

)

is calculated for the case ψ+ > |b|. It turns out that the index is not zero which
proves the second part of Theorem 4. The index is calculated by the usual homotopic
methods: all the zeroes of some deformation Φ = Φ(λ, x) satisfy an a priori estimate,
Φ(1, x) = x− A

(
µx− f(x)− b

)
, and Φ(0, ·) is a vector field of Landesman-Lazer type.

The index of such vector fields was calculated, e.g., in [5, 17, 18].

The case ψ+ < |b| < ψ+ is more cumbersome. We prove that for any ξ0 there
exist ξ∗ > ξ0 and ξ∗ > ξ∗ such that equation (36) has at least one solution x(t) =
ξ sin(nt + λ) + h(t) with ξ ∈ (ξ+, ξ∗). This proves the first part of Theorem 4.

9.2 Planar mapping. If x is a 2π-periodic solution of equation (9), then

∫ 2π

0

(
f(x(t)) + b(t)

)
cos nt dt =

∫ 2π

0

(
f(x(t)) + b(t)

)
sin nt dt = 0. (37)

Consider the orthogonal projector P defined by

(Pu)(t) = 1
π

∫ 2π

0

cos n(t− τ)u(τ) dτ

in L2 = L2(0, 2π). Equalities (37) are equivalent to Pf(x) + Pb = 0. Denote by Πn the
2-dimensional subspace of L2 spanned on the functions cosnt and sin nt. By definition,
PL2 = Πn and any e ∈ Πn has the form e = ξ sin(nt + λ) where ξ ≥ 0 and λ ∈ [0, 2π).
The proof of the following lemma is by simple computations and we omit it.

Lemma 2. For every ξ ≥ 0 and θ ∈ [0, 2π),

Pf
(
ξ sin(nt + θ)

)
= 1

π Ψ(ξ) sin(nt + θ) (38)

where Ψ is defined by (10).

9.3 Equivalent integral equation. Consider the linear operator x = Au that maps
any function u ∈ L2 to a unique solution x of the problem

−x′′ + x = u

x(0) = x(2π), x′(0) = x′(2π)

}
.

This operator acts in L2, it is completely continuous in L2, self-adjoint, and positive def-
inite. Moreover, A is an integral operator which can be considered in various functional
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spaces: it is continuous as an operator from L2(0, 2π) to C1(0, 2π) and from C(0, 2π) to
C2(0, 2π). Its spectrum is the sequence of eigenvalues n2 + 1 (n ∈ N0). The eigenvalue
1 is simple, it corresponds to constant eigenfunctions; the other eigenvalues have the
multiplicity 2. The eigenvalue n2 + 1 corresponds to the eigenfunctions ξ sin(nt + θ)
with arbitrary ξ > 0 and θ ∈ [0, 2π), these eigenfunctions and the zero function form
the plane Πn in L2.

Now we can rewrite the 2π-periodic problem for equation (9) equivalently in form
(36) with µ = n2 + 1. A function x ∈ L2 is a solution of operator equation (36) if and
only if it is a classical 2π-periodic solution of equation (9).

The principal linear part x = µAx of equation (36) is degenerate at infinity: the
linear operator I − µA has the non-trivial kernel Πn. Recall that P is the orthogonal
projector onto the plane Πn in L2. Set Q = I − P .

9.4 The case ϕ+ > |b|. This estimate implies Ψ(ξ) 6= 0 and has the same sign for all
sufficiently large ξ. Fix an a ∈ R such that ψ+ > |a| > |b| and aΨ(ξ) > 0 for large ξ.
Define the function

s(ξ) =

{ 1 if ξ ≥ 1
ξ if |ξ| < 1
−1 if ξ ≤ −1

(39)

and consider the deformation

Φ(λ, x) = x−A
(
µx− λf(x)− a(1− λ)s(x)

4
− b

)
.

To prove the existence of at least one solution of equation (36), it suffices to establish
the two facts:

- to prove that all the zeroes of the deformation Φ satisfy an a priori estimate
- to show that the index at infinity of the vector field Φ(0, x) is non-zero.

We begin with the a priori estimate. Let x(t) = ξ sin(nt + θ) + h(t) where h = Qx,
and let Φ(λ, x) = 0. Then QΦ(λ, x) = 0 and PΦ(λ, x) = 0. Since the linear operator
I − µA is continuously invertible in the subspace QL2 ⊂ L2, the equality QΦ(λ, x) = 0
implies the estimate ‖h‖C1 ≤ c Θ(ξ). The equality PΦ(λ, x) = 0 can be rewritten as

λPf(x) +
(1− λ)aPs(x)

4
= −Pb. (40)

Theorems 1 and 2 imply Pf(x)−Pf
(
ξ sin(nt+θ)

) → 0 and similarly Ps(x)−Ps
(
ξ sin(nt+

θ)
) → 0 as ξ → +∞. From (38)

Pf
(
ξ sin(nt + θ)

)
= 1

π Ψ(ξ) sin(nt + θ)

Ps
(
ξ sin(nt + θ)

)
=

(
4
π + O(ξ−1)

)
sin(nt + θ)

follows. Therefore

lim inf
ξ→+∞

∥∥∥λPf(x) +
(1− λ)aPs(x)

4

∥∥∥
L2

= lim inf
ξ→+∞

1√
π

∣∣λΨ(ξ) + (1− λ)a
∣∣ ≥ |a|√

π
.
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Since
√

π‖Pb‖L2 = |b| < |a|, relation (40) is not true for large ξ. This proves the
required a priori estimate.

Now consider the vector field Φ(0, x) = x−A
(
µx− as(x)

4 −b
)

where the non-linearity
satisfies s(ξ) → ±1 as ξ → ±∞. The computation of the index at infinity of such vector
fields can be found, for example, in [5, 17, 18]. It is proved there that |indΦ(0, ·)| = 1
if |a| > |b|.

The a priori estimate guarantees that ind Φ(λ, ·) does not depend on λ. Therefore,

indΦ(1, ·) = ind Φ(0, ·) 6= 0

and the conclusion of Theorem 4 follows from the general degree theory.

9.5 Unbounded sequence of solutions. Suppose that estimates (12) holds. Then
there exist unbounded sequences {ξk} and {ξk} such that ξk < ξk < ξk+1 and

|Ψ(ξk)|+ ε < |b| < |Ψ(ξk)| − ε (41)

for some ε > 0. Without loss of generality, suppose that all ξk are sufficiently large and
therefore the supremum in (4) for [a, b] = [0, 2π] as well as the trigonometric functions
e and g are sufficiently small for all ξ ≥ ξk.

Let us show that the field x − A
(
µx − f(x) − b

)
is non-zero on the boundary ∂Ωk

of the set Ωk ⊂ L2,

Ωk =
{

x = ξ sin(nt + θ) + h(t) : h = Qx, ‖h‖L2 ≤ R1Θ(ξk) + 1, ξk ≤ ξ ≤ ξk
}

with a proper R1 > 0, and that the rotation γk of this vector field on ∂Ωk is either 1
or −1. The relation γk 6= 0 implies that each set Ωk contains at least one solution of
equation (36); since the sets Ωk are disjoint for different k and ξk → +∞, this implies
the conclusion of Theorem 4.

Let us calculate the value |γk| for some fixed k. Consider the deformation

Ξ(λ, x) = x− µAx + Af(x) + Ab + λA
(
Pf(Px)− f(x)

)
(λ ∈ [0, 1]).

For λ = 0 and λ = 1,

Ξ(0, x) = x−A
(
µx− f(x)− b

)

Ξ(1, x) = x−A
(
µx− Pf(Px)− b

)
.

First we prove that the deformation Ξ is non-zero on ∂Ωk. Let Ξ(λ, x) = 0 for some
λ ∈ [0, 1] and x = ξ sin(nt+θ)+h(t) with h = Qx. Then QΞ(λ, x) = 0 and PΞ(λ, x) = 0.
The first equality implies the estimates

‖h‖L2 ≤ R1Θ(ξ) and ‖h‖C1 ≤ c Θ(ξ) (42)

where the constants c > 0 and R1 > 0 are independent of λ, ξ, k. We use this R1 in the
definition of Ωk. Therefore the relations ‖h‖L2 = R1Θ(ξk) + 1 (ξk ≤ ξ ≤ ξk) imply
QΞ(λ, x) 6= 0.
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The rest of the boundary ∂Ωk consists of functions x = ξ sin(nt + θ) + h(t) with
ξ = ξk and ξ = ξk. The equality PΞ(λ, x) = 0 can be rewritten as

P [f(Px) + b] = (1− λ)P [f(Px)− f(x)].

By Lemma 2, its left-hand side is

P [f(Px) + b] = 1
π Ψ(ξ) sin(nt + θ) + Pb

and due to (41) its norm satisfies
√

π‖P [f(Px) + b]‖L2 > ε for ξ = ξk and ξ = ξk. The
right-hand side (1− λ)P [f(Px)− f(x)] vanishes as ξ → +∞ according to Theorems 1
and 2, therefore the relation Ξ(λ, x) = 0 is impossible for sufficiently large ξ = ξk and
ξ = ξk.

Thus, Ξ(λ, x) 6= 0 on ∂Ωk. Therefore the rotation γ(Ξ(λ, ·), ∂Ωk) of the vector field
Ξ(λ, ·) on ∂Ωk is the same for each λ. For λ = 1 this rotation can be computed by the
rotation product formula (see [16: p. 117/Theorem 22.4] or [3: p. 72/ Theorem 3.15])
which in our case has the form

γ(Ξ(1, ·), ∂Ωk) = (−1)αγ
(
Pf(·) + Pb, ∂Zk

)
.

Here α is an integer and γ(Pf(·)+Pb, ∂Zk) is the rotation of the vector field Pf(x)+Pb
on the boundary ∂Zk of the annulus

Zk =
{

x = ξ sin(nt + θ) : ξk

√
π ≤ ‖x‖L2 = ξ

√
π ≤ ξk

√
π
}
⊂ Πn.

This rotation is defined by the formula γ(Pf(·) + Pb, ∂Zk) = γ2 − γ1, where γ1 and
γ2 are the rotations of the field Pf(x) + Pb on the circles ‖x‖L2 = ξk

√
π and ‖x‖L2 =

ξk
√

π (x ∈ Πn). By Lemma 2,

Pf(x) =
Ψ(ξ)
πξ

x and ‖x‖L2 = ξ
√

π (x ∈ Πn), (43)

hence relations
√

π‖Pb‖L2 = b and (41) imply

‖Pf(x)‖L2 < ‖Pb‖L2 , ‖x‖L2 = ξk

√
π

‖Pf(x)‖L2 > ‖Pb‖L2 , ‖x‖L2 = ξk
√

π.

By the Rouché theorem [16] it follows from these estimates that γ1 is equal to the
rotation of the constant vector field Pb on the circle ‖x‖L2 = ξk

√
π, i.e. γ1 = 0. The

rotation γ2 is equal to the rotation of field (43) on the circle ‖x‖L2 = ξk
√

π, i.e. γ2 = 1.
Therefore,

γk = γ
(
Ξ(1, ·), ∂Ωk

)
= (−1)α(γ2 − γ1) = (−1)α.

Theorem 4 is completely proved.
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10. Proof of Theorem 6

Denote by x(t; ζ, η) the solution of equation (9) satisfying x(0; ζ, η) = ζ and x′(0; ζ, η)
= η. Denote by P : R2 → R2 the operator of translation along the trajectories of
equation (9) from the moment 0 to the moment 2π. This operator maps any initial
point {ζ, η} to the point {x(2π), x′(2π)} of the trajectory of the solution x(t) = x(t; ζ, η)
in the phase plane R2.

Consider the function

h(t) = h(t; ζ, η) := x(t; ζ, η)− ζ cos nt− η
n sin nt. (44)

This function is the solution of the Cauchy problem

h′′ + n2h = f(x(t; ζ, η)) + b(t)

h(0) = h′(0) = 0

}
,

hence it satisfies

h(t) = 1
n

∫ t

0

sin n(t− τ)
(
f(x(τ ; ζ, η)) + b(τ)

)
dτ

h′(t) =
∫ t

0

cosn(t− τ)
(
f(x(τ ; ζ, η)) + b(τ)

)
dτ

and therefore
‖h‖C1 ≤ R0Θ(|ζ|+ |η|) (45)

where R0 > 0 is independent of ζ and η. By Theorems 1 and 2,

lim
ξ→∞

sup
‖h‖C1≤RΘ(ξ)

∣∣∣∣
∫ 2π

0

sin(nt + θ)f
(
ξ sin(nt + θ1) + h(t)

)
dt−Ψ(ξ) cos(θ1− θ)

∣∣∣∣ = 0 (46)

and the convergence herein is uniform with respect to all θ and θ1, for each R > 0.
Relations (44) - (46) imply for each ε > 0 the existence of a ξ0 = ξ0(ε) such that the
inequality ∫ 2π

0

sin(nt + θ)f(x(t; ζ, η)) dt ≤ ψ+ + ε

is valid for all θ ∈ [0, 2π) whenever |ζ|+ |η| ≥ ξ0.

Set ε = |b|−ψ+

3 . Estimate (15) implies ε > 0. Let θ be any number such that

−
∫ 2π

0

b(t) sin(nt + θ) dt ≥ |b| − ε = ψ+ + 2ε. (47)

Consider the linear guiding function

V (ζ, η; θ) = −η sin θ + nζ cos θ
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on the plane {ζ, η} ∈ R2. If V (ζ, η; θ) > 0 is sufficiently large, then |ζ|+ |η| ≥ ξ0(ε) and
therefore

V
(P(ζ, η); θ

)− V (ζ, η; θ)

= V
(
x(2π; ζ, η), x′(2π; ζ, η); θ

)− V (ζ, η; θ)

= nh(2π; ζ, η) cos θ − h′(2π; ζ, η) sin θ

= −
∫ 2π

0

sin(nt + θ)b(t) dt−
∫ 2π

0

sin(nt + θ)f(x(t; ζ, η)) dt

≥ ε.

Similarly, if −V (ζ, η; θ) > 0 is sufficiently large, then

V
(P−1(ζ, η); θ

)− V (ζ, η; θ) ≤ −ε.

Thus, there are disjoint half-planes V (ζ, η; θ) ≥ c and V (ζ, η; θ) ≤ −c such that any
sequence

{ζ, η},P(ζ, η), . . . ,Pk(ζ, η), . . .

starting in the first half-plane and any sequence

{ζ, η},P−1(ζ, η), . . . ,P−k(ζ, η), . . .

starting in the second half-plane belong to the same half-planes as their initial values
and go to infinity. Therefore the solution x(t; ζ, η) of equation (9) satisfies the first of
estimates (16) whenever {ζ, η} belongs to the half-plane V (ζ, η; θ) ≥ c and the second
of estimates (16) whenever {ζ, η} belongs to the half-plane V (ζ, η; θ) ≤ −c.

Let us choose another θ such that (47) holds. For this θ we can repeat all the
arguments exactly in the same way as above. Consequently, there is another pair of
half-planes consisting of the initial values of unbounded solutions. The unity of these
four half-planes is the whole plane {ζ, η} without a bounded set (a parallelogram). Any
solution with the initial value out of this parallelogram satisfies at least one of relations
(16).

Theorem 6 is proved. The main idea of the proof for bounded f was published in
[1].

11. Proof of Theorem 7

The proof of this theorem is close to that of the main result from [12], some ideas are
similar to the proof of Theorem 4 from that paper. The computations of the index at
infinity of the vector field Φx = x− µAx−AF (x) are different for different conclusions
of Theorem 7. Here and below by F (x) we denote the superposition operator F (x(·)) =
f(·, x(·)).

11.1 Conclusion (i). Let ϕ+ < 0 < ϕ− (the case ϕ− < 0 < ϕ+ can be studied in
a similar way). Set p(x) = (g, x)L2 and Qx = x − p(x)e for all x ∈ L2 = L2(a, b) and
consider the deformation

Ξ1(λ, x) = Qx− µAQx− λAF (x) + (1− λ)µ−1s(p(x))e (λ ∈ [0, 1])
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where s is function (39). Since e = µAe, the equalities

Ξ1(0, x) = Qx− µAQx + µ−1s(p(x))e

Ξ1(1, x) = Φ(x)

are valid. To prove conclusion (i) of Theorem 7 it suffices to establish the relation
|ind∞Ξ1(0, ·)| = 1 and to prove an a priori estimate ‖x‖L2 ≤ const < ∞ for all the
zeroes of the deformation Ξ1.

The first assertion is simple, since the equation Ξ1(0, x) = 0 has a unique solution
x = 0 and the index of this solution equals either 1 or −1. This follows from the
rotation product formula cited above. Indeed, Ξ1(0, ·) is the direct sum of the scalar
field χ(ξe) = µ−1s(ξ)e (ξ ∈ R) and the vector field h− µAh ∈ E, where E = QL2 is a
subspace of L2 with co-dimension 1. The index of the zero ξ = 0 of the scalar field χ
equals sgn µ, while the index of the zero h = 0 of the vector field h − µAh ∈ E equals
(−1)β where β is the sum of the multiplicities of all the real eigenvalues of the operator
µA that are greater than 1, hence ind∞Ξ1(0, ·) = (−1)βsgn µ.

Now let us prove an a priori estimate for the zeroes of Ξ1. If Ξ1(λ, x) = 0 for some
x = ξe + h (h ∈ E) and λ ∈ [0, 1], then

0 = QΞ1(λ, x) = h− µAh− λAQF (ξe + h) (48)
0 = µp(Ξ1(λ, x)) = −λp(F (ξe + h)) + (1− λ)s(ξ). (49)

The first equality rewritten as h = λ(I−µAQ)−1AQF (x) implies the estimate ‖h‖C1 ≤
c Θ(|ξ|). Consider the second equality. If |ξ| ≥ 1, then s(ξ) = sgn ξ. Theorems 1 and 2
imply

p(F (ξe + h))− p(F (ξe)) = p(F (ξe + h))−Ψ(ξ) → 0 (ξ → +∞),

hence
µp(Ξ1(λ, x)) + λΨ(ξ)− (1− λ)sgn ξ → 0 (ξ → ±∞)

and therefore

µp(Ξ1(λ, x))
{≥ 1− λ− λϕ+ + o(1) as ξ → +∞
≤ λ− 1− λϕ− + o(1) as ξ → −∞.

Since
1− λ− λϕ+ ≥ min{1,−ϕ+} > 0

λ− 1− λϕ− ≤ −min{1, ϕ−} < 0

we see that system (48) - (49) has no solutions if |ξ| is sufficiently large. This proves
the required a priori estimate.

11.2 Conclusion (ii). To be definite, consider the case ϕ− > 0 and ϕ+ > 0 (the other
case ϕ− < 0 and ϕ+ < 0 can be studied is similarly). Define the deformation

Ξ2(λ, x) = Qx− µAQx− λAF (x)− (1− λ)µ−1ϕ+e (λ ∈ [0, 1]).
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Now Ξ2(1, x) = Φ(x) and Ξ2(0, x) = Qx−µAQx−µ−1ϕ+e; the equation Ξ2(0, x) = 0 has
no solutions and therefore ind∞Ξ2(0, ·) = 0. To prove the conclusion (ii) of Theorem
7, it suffices to establish an a priori estimate ‖x‖L2 ≤ const < ∞ for all the zeroes
x = ξe + h of the deformation Ξ2. This a priori estimate follows from the estimate
‖h‖C1 ≤ c Θ(|ξ|) and the relations

µp(Ξ2(λ, x)) + λΨ(ξ) + (1− λ)ϕ+ = −λp(F (x)) + λp(F (ξe)) → 0 (ξ → ±∞)

and
lim inf
ξ→±∞

(
λΨ(ξ) + (1− λ)ϕ+

) ≥ min{ϕ+, ϕ−} > 0.

11.3 Conclusion (iii). Let ϕ+ < 0 < ϕ+ (we omit the similar proof for the case
ϕ− < 0 < ϕ−). We need to prove the existence of zeroes xn = ξne + hn of the vector
field Φ with norms ‖xn‖L2 → ∞. As everywhere above, for each zero x = ξe + h the
equality QΦ(x) = 0 implies estimates (42). Set ε = 1

3 min{ϕ+,−ϕ+} and fix a ξ0 such
that ∣∣p(F (ξe + h))−Ψ(ξ)

∣∣ < ε (50)

for all ξ ≥ ξ0 and ‖h‖C1 ≤ c Θ(ξ) where c > 0 comes from (42); the existence of such ξ0

follows from (4). By definition of ϕ+ and ϕ+, there exist numbers ξ∗ > ξ0 and ξ∗ > ξ∗
such that

Ψ(ξ∗) < −2ε and Ψ(ξ∗) > 2ε. (51)

Consider the set

Ω =
{

x ∈ L2 : ‖Qx‖L2 ≤ R1Θ(ξ∗) + 1, p(x) ∈ [ξ∗, ξ∗]
}

where R1 is defined in (42). The boundary ∂Ω of Ω consists of the three parts

G∗ =
{‖Qx‖L2 ≤ R1Θ(ξ∗) + 1, p(x) = ξ∗

}

G∗ =
{‖Qx‖L2 ≤ R1Θ(ξ∗) + 1, p(x) = ξ∗

}

G =
{‖Qx‖L2 = R1Θ(ξ∗) + 1, p(x) ∈ [ξ∗, ξ∗]

}
.

The vector field Φ is non-zero on G due to the estimates ‖h‖L2 ≤ R1Θ(ξ) ≤ R1Θ(ξ∗)
which are valid for all the solutions x = ξe+h of QΦ(x) = 0 in Ω. Relations (50) - (51)
imply

µp(Φ(x)) = −p(F (x)) + Ψ(p(x))−Ψ(p(x)) > −ε + 2ε = ε > 0 (x ∈ G∗)

µp(Φ(x)) = −p(F (x)) + Ψ(p(x))−Ψ(p(x)) < ε− 2ε = −ε < 0 (x ∈ G∗)

and ‖h‖C1 ≤ c Θ(ξ), hence Φ(x) 6= 0 on G∗ ∪G∗. Thus Φ 6= 0 on ∂Ω. We also see that
µp(Φ(x)) > 0 if QΦ(x) = 0, p(x) = ξ∗ and µp(Φ(x)) < 0 if QΦ(x) = 0, p(x) = ξ∗.

Now we can calculate the rotation γ(Φ, ∂Ω) of the field Φ on ∂Ω using an appropriate
deformation and [10: Theorem 3]. Let us reformulate this theorem for our problem.

Let X be a Banach space, let some completely continuous operator A = {A1, A2}
be defined on Ω = Ω1 ×Ω2 where Ω1 is the ball ‖x‖X ≤ r and Ω2 = [ξ∗, ξ∗], let for any
ξ ∈ Ω2 the vector field x − A1(x, ξ) be non-degenerate on ∂Ω1 = {‖x‖X = r} and let
the rotation γ1 = γ

(
I − A1(·, ξ), ∂Ω1

)
be non-zero. Then γ1 is the same for all ξ ∈ Ω2.

Denote by K(ξ) the non-empty set of solutions x of the equation x = A1(x, ξ) for each
ξ ∈ Ω2.
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Statement 1. If ξ∗ − A2(x, ξ∗) < 0 for all x ∈ K(ξ∗) and ξ∗ − A2(x, ξ∗) > 0 for
all x ∈ K(ξ∗), then γ(A, ∂Ω) = γ1.

In our case, this statement implies that either γ(Φ, ∂Ω) = 1 or γ(Φ, ∂Ω) = −1.
Therefore there exists at least one zero x∗ ⊂ Ω of the vector field Φ; relation x∗ ∈ Ω
implies (g, x∗)L2 ≥ ξ∗. Since the numbers ξ∗ and ξ∗ satisfying (51) may be chosen
arbitrarily large, there is a sequence {xn} of zeroes of the vector field Φ with unbounded
norms: ‖xn‖L2 →∞. Theorem 7 is proved.

12. Proof of Theorem 9

12.1 The choice of unknowns. First, let us rescale the time in (22). For any
w ∈ Ω = [w1, w2] every 2π-periodic solution x(t) of the equation

L
(
w

d

dt

)
x = f(x) (52)

determines the 2π
w -periodic solution x(wt) of equation (22). We consider (52) instead

of (22) and prove that for some w ∈ Ω equation (52) has at least one non-trivial 2π-
periodic solution x(t) = r sin t + h(t) where r > 0, h is 2π-periodic and Ph = 0, with P
defined by

(Px)(t) = 1
π

∫ 2π

0

cos(t− τ)x(τ) dτ.

Let us stress that any non-stationary periodic solution x of autonomous equation (52)
generates the continuum of periodic solutions x(t + α). We delete the non-uniqueness
by fixing the solution that has zero projection onto cos t and a positive projection onto
sin t. At the same time, the frequency w is considered as an additional unknown.

12.2 Linear subspaces and operators. The first linear operator is the projector
P . Set Q = I −P and define the subspaces Π = PL2 and Π∗ = QL2 in L2 = L2(0, 2π).
These subspaces are orthogonal, Π is two-dimensional and Π∗ has co-dimension 2.

Denote by A(w) (w ∈ Ω) the linear operator that maps any function u ∈ Π∗ to a
unique solution x ∈ Π∗ of the linear equation

L
(
w

d

dt

)
x = u(t). (53)

Consider the operators A(w)Q. Their norms in L2 are uniformly bounded:

‖A(w)Q‖L2→L2 = q∗(w) ≤ c∗ := sup
w∈Ω

q∗(w) < ∞, q∗(w) = sup
±1 6=n∈Z

|L(nwi)|−1.

Each operator A(w)Q is completely continuous from L2 to C and continuous from C
to C1. Moreover, A(·)Q : Ω × L2 → L2 is completely continuous with respect to both
arguments w ∈ Ω and u ∈ L2.

We use the notation Pn for the following orthogonal projectors in L2. By P0 we
denote the orthogonal projector onto the one-dimensional subspace Π0 of constant func-
tions; Pn with n ≥ 2 is the projector onto the two-dimensional linear span Πn of the
functions sin nt and cos nt. Each subspace Πn is invariant for the operator A(w)Q. The
one-dimensional subspace Π0 corresponds to the eigenvalue (L(0))−1; each plane Πn

corresponds to the pair (L(±nwi))−1.
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Lemma 3. Let w ∈ Ω. The functions x = r sin+h (h ∈ Π∗) and u ∈ L2 satisfy
equation (53) if and only if h = A(w)Qu and

πrRe L(wi) =
∫ 2π

0

sin tu(t) dt

πrIm L(wi) =
∫ 2π

0

cos tu(t) dt.

Relations h = A(w)Qu (u ∈ C) imply

(Pnh′, Pnu)L2 = nIm L(nwi)‖Pnh‖2L2 (n ≥ 2).

The proof is by simple computations and we omit it.

12.3 Main deformation. By Lemma 3, the problem on 2π-periodic solutions of
equation (52) is equivalent to the system

πReL(wi) = 1
r

∫ 2π

0

sin tf(r sin t + h(t)) dt

πImL(wi) = 1
r

∫ 2π

0

cos tf(r sin t + h(t)) dt

h = A(w)Qf(r sin t + h(t))





. (54)

Consider in the space E = R× R×Π∗ the deformation

Φλ(r, w, h) =





λπRe L(wi)− 1
r

∫ 2π

0
sin tf(r sin t + λh(t)) dt

πImL(wi)− λ
r

∫ 2π

0
cos tf(r sin t + h(t)) dt

h− λA(w)Qf(r sin t + h(t))

(55)

of the vector field Φ1 to the field

Φ0(r, w, h) =




− 1

r

∫ 2π

0
sin tf(r sin t) dt

πImL(wi)
h.

Here λ ∈ [0, 1] is the parameter of deformation. For λ = 1 any zero of the vector field Φ1

is a solution of system (54); we should prove the existence of such zeroes. For λ = 0 the
vector field Φ0 has a simple form and it is easy to compute its topological characteristics
on proper sets.

12.4 Rotation of the vector field Φ0. Consider the set

G = G(ρ,R,w1, w2, c1) :=
{

r ∈ [ρ,R], w ∈ [w1, w2], ‖h‖L2 ≤ c1Θ(R)
}
⊂ E.

The positive constants ρ, R, c1 are determined by the values w1, w2, q, the polynomial
L and the function f . The number ρ is sufficiently small, the numbers R and c1 are
sufficiently large. If we choose the parameters ρ,R, and c1 such that deformation (55)
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is non-degenerate on the boundary ∂G of the domain G and if the rotation γ(Φ0, ∂G)
of the vector field Φ0 on ∂G is non-zero, then Theorem 9 will be proved.

By the rotation product formula, γ(Φ0, ∂G) is the product of three rotations. The
first is the rotation γr of the scalar vector field

− 1
r

∫ 2π

0

sin tf(r sin t) dt = −Ψ(r)
r

(56)

on the boundary of the interval [ρ,R]; the second is the rotation γw of the scalar field
πIm L(wi) on the boundary of the interval Ω; the third is the rotation γh of the vector
field h on the sphere

{
h ∈ Π∗ : ‖h‖L2 = c1Θ(R)

}
.

The rotation γr is either 1 or −1. This follows from condition (25): for small r = ρ
component (56) of Φ0 has the same sign as −f ′(0); for large r = R this component has
the opposite sign coinciding with the sign of −Ψ(R). Of course, ρ should be sufficiently
small and R should be sufficiently large.

The rotation γw is also either 1 or −1. The component πIm L(wi) has opposite
signs for w = w1 and w = w2, since the polynomial Im L(wi) has a unique root w0

inside [w1, w2] and this root is of odd multiplicity.
The rotation γh equals 1. We see that γ(Φ0, ∂G) 6= 0.

12.5 Auxiliary estimates. Below we use the notation ‖ · ‖ = ‖ · ‖L2 .

Lemma 4. Let w ∈ Ω, q1(w) := |ImL(wi)| and q2(w) := infn∈N0\{1} |L(nwi)|. If
the second and the third components of deformation (55) are zero, then q1(w) ≤ q and

‖h‖ ≤ r

√
π

q2 − q2
1(w)

q2
2(w)− q2

.

Proof. We have the implications

h = λA(w)Qf(r sin t + h) =⇒ |L(nwi)| ‖Pnh‖ = λ‖Pnf(x)‖

πrIm L(wi) = λ

∫ 2π

0

cos tf(x(t)) dt =⇒ √
π r|Im L(wi)|λ‖Pf(x)‖

for n ∈ N0 \ {1}. Therefore

πr2|ImL(wi)|2 +
∑

n∈N0\{1}
|L(nwi)|2‖Pnh‖2 ≤ λ2‖f(x)‖2

and from λ ≤ 1 it follows that

πr2|Im L(wi)|2 +
∑

n∈N0\{1}
|L(nwi)|2‖Pnh‖2

≤ q2‖x‖2

= q2

(
πr2 +

∑

n∈N0\{1}
‖Pnh‖2

)
,

(57)

consequently
πr2q2

1(w) + q2
2(w)‖h‖2 ≤ q2(πr2 + ‖h‖2)

where q < q2(w) by assumption. Hence the conclusion of Lemma 4 is true
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Lemma 5. There exist numbers c, c2 > 0 such that ‖h‖L2 , ‖h‖C1 ≤ cr and ‖h‖L2 , ‖h‖C1 ≤
c2Θ(r) for any zero {r, w, h} of deformation (55).

This lemma follows from Lemma 4 and from the properties of the operators A(w)Q.

12.6 Non-degeneracy of Φλ. To complete the proof of Theorem 9, it remains to
show that deformation (55) is non-zero on the boundary ∂G of the domain G for some
sufficiently small ρ and sufficiently large R and c1. The boundary ∂G is the join of the
sets

Gρ =
{
r = ρ, w ∈ [w1, w2], ‖h‖ ≤ c1Θ(R)

}

GR =
{
r = R, w ∈ [w1, w2], ‖h‖ ≤ c1Θ(R)

}

Gw =
{
r ∈ [ρ, R], w = wj (j = 1, 2), ‖h‖ ≤ c1Θ(R)

}

Gh =
{
r ∈ [ρ, R], w ∈ [w1, w2], ‖h‖ = c1Θ(R)

}
.

Let Φλ(r, w, h) = 0 for some {r, w, h} ∈ G and λ ∈ [0, 1]. Then

λ2 ReL(wi)
ImL(wi)

∫ 2π

0

cos tf(r sin t + h(t)) dt =
∫ 2π

0

sin tf(r sin t + λh(t)) dt. (58)

First consider this equality for small r. By assumption, w0 is a root of the same
multiplicity K for the polynomials L(iw) and Im L(iw). This means that the multiplicity
of this root for the polynomial Re L(iw) is greater or equal than K, therefore the function
Re L(wi)
Im L(wi) is continuous on Ω. Since f(x) = f ′(0)x+ o(x) (x → 0), the term of order r in
the left-hand side of (58) equals zero. In the right-hand side, the term of order r equals

∫ 2π

0

sin tf ′(0)(r sin t + λh(t)) dt = πf ′(0)r,

i.e. this term is non-zero. The other terms have smaller order with respect to r due
to Lemma 5. Therefore equality (58) cannot be valid for sufficiently small r, hence
{r, w, h} 6∈ Gρ if ρ is sufficiently small.

The relation {r, w, h} 6∈ GR for sufficiently large R follows from (58) due to Theo-
rems 1 and 2. These theorems imply

∫ 2π

0

cos tf(r sin t + h(t)) dt → 0
∫ 2π

0

sin tf(r sin t + λh(t)) dt−
∫ 2π

0

sin tf(r sin t) dt → 0
(r →∞)

and from (25) it follows that

∣∣∣∣
∫ 2π

0

sin tf(r sin t + λh(t)) dt

∣∣∣∣ ≥
c0

2|f ′(0)| > 0

for all r ≥ r0 > 0. Therefore relation (58) cannot be valid for large r.
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The proof of relation {r, w, h} 6∈ Gw is the most cumbersome. Since

∫ 2π

0

f(r sin t + h(t))(r cos t + h′(t)) dt = 0

and the second component of (55) is zero, we have

πIm L(wi)r2 + λ

∫ 2π

0

h′(t) f(r sin t + h(t)) dt = 0.

Equivalently,

πImL(wi)r2 + λ
∑

n≥2

∫ 2π

0

Pnh′(t) Pnf(r sin t + h(t)) dt = 0.

But h(t) = λA(w)Qf(r sin t + h(t)) and, by Lemma 3,

λ

∫ 2π

0

Pnh′(t)Pnf(r sin t + h(t)) dt = nIm L(wni)‖Pnh‖2 (n ≥ 2),

therefore
πIm L(wi)r2 +

∑

n≥2

nIm L(wni)‖Pnh‖2 = 0,

i.e.
π|Im L(wi)|r2 + sgn (ImL(wi))

∑

n≥2

nImL(wni)‖Pnh‖2 = 0. (59)

From relation (57) rewritten as

∑

n∈N0\{1}

(|L(wni)|2 − q2
)‖Pnh‖2 ≤ πr2

(
q2 − |Im L(wi)|2)

the estimate

∑

n∈N0\{1}

(
|ImL(wi)|(|L(nwi)|2 − q2

)

+ n
(
q2 − |Im L(wi)|2) sgn(Im L(wi))ImL(nwi)

)
‖Pnh‖2 ≤ 0

follows. Due to (23), this estimate is impossible for w = wj (j = 1, 2) if h 6= 0. If
h = 0, then the second component of (55) equals πImL(wi) and differs from zero for
w = wj (j = 1, 2). Therefore in both cases {r, w, h} 6∈ Gw.

Finally, Lemma 5 implies {r, w, h} 6∈ Gh if we choose c1 > c2. Theorem 9 is
completely proved.
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