Level Sets of Hölder Functions and Hausdorff Measures

E. D'Aniello

Abstract. In this paper we investigate some connections between Hausdorff measures, Hölder functions and analytic sets in terms of images of zero-derivative sets and level sets. We characterize in terms of Hausdorff measures and descriptive complexity subsets $M \subseteq \mathbb{R}$ which are

- (1) the image under some $C^{n,\alpha}$ function f of the set of points where the derivatives of first n orders are zero
- (2) the set of points where the level sets of some $C^{n,\alpha}$ function are perfect
- (3) the set of points where the level sets of some $C^{n,\alpha}$ function are uncountable.

Keywords: Level sets, $C^{n,\alpha}$ functions **AMS subject classification:** 26A30

1. Introduction

Several authors have studied level sets of continuous functions and smooth functions and, critical sets. For example, Bruckner and Garg [3] and Darji and Morayne [7] have proved results concerning how big is the set of points where the level sets of a "typical" continuous function (in the category sense) and of a typical C^n $(n \ge 1)$ function, respectively, are large. The present author and Darji [5, 6], in terms of Hausdorff measures and descriptive complexity, have characterized subsets $M \subseteq \mathbb{R}$ which are

- 1) the image under some C^n function f of the set of points where the derivatives of first n orders are zero
- 2) the set of points where the level sets of some C^n function are perfect, and
- 3) the set of points where the level sets of some C^n function are uncountable.

In this paper we consider the case of Hölder functions. In Section 2 we "parametrize" the Hausdorff dimension of certain closed subsets of [0, 1] with Hölder functions. In

E. D'Aniello: Seconda Univ. degli Studi di Napoli, Dip. di Mat., Via Vivaldi 43, 81100 Caserta, Italia; emma.daniello@unina2.it.

Research partially supported by Ministero dell'Università e della Ricerca Scientifica e Tecnologica (Italy) and by Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni dell'Istituto Nazionale di Alta Matematica "F.Severi".

Section 3 we characterize the set of points where the level sets of a $C^{n,\alpha}$ function $(1 \le n < \infty, 0 < \alpha \le 1)$ are perfect.

It is a very old result of Mazurkiewicz and Sierpinski [12] that a set $M \subseteq [0, 1]$ is analytic if and only if it is equal to the set $\{y : f^{-1}(\{y\}) \text{ is uncountable}\}$ for some continuous function f. In Section 4 we characterize such sets M for $C^{n,\alpha}$ functions. At last, in Section 5 we characterize the set of points where the level sets of a Lipschitz function are perfect.

2. Images of zero-derivative sets

In this section we characterize images of zero-derivative sets of Hölder functions. We first need few definitions and some terminology.

Definition 2.1. Let f be a C^n $(1 \le n < \infty)$ function on a closed interval $I \subset \mathbb{R}$, $f^{(0)} = f, f^{(i)}$ $(1 \le i \le n)$ the *i*-th derivative of f and

$$Z_{(f,n)} = \left\{ x \in I : f^{(i)}(x) = 0 \text{ for all } 1 \le i \le n \right\}$$

the so-called *zero-derivative set*. We use $||f||_n$ to denote the *n*-norm of f, i.e. $||f||_n = \sum_{i=0}^n ||f^{(i)}||$ where $|| \cdot ||$ denotes the supremum norm.

Definition 2.2. If $0 < \alpha \leq 1$, we denote by $C^{0,\alpha}(I)$ the space of Hölder functions on a closed interval $I \subset \mathbb{R}$, i.e. the space of functions f such that

$$[f]_{0,\alpha} = \sup_{\substack{x,y \in I \\ x \neq y}} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < \infty.$$

More generally, we denote by $C^{n,\alpha}(I)$ the space of $C^n(I)$ functions with Hölder *n*-th derivatives and denote $[f]_{n,\alpha} = [f^{(n)}]_{0,\alpha}$. Clearly, $C^{0,1}(I)$ is the space of Lipschitz functions on I. In $C^{n,\alpha}(I)$ we consider the norm $||f||_{n,\alpha} = ||f||_n + \sum_{k=0}^n [f]_{k,\alpha}$.

Lemma 2.3. Suppose $I = [a, b] \subset [0, 1], 1 \leq n < \infty, 0 < \alpha \leq 1$, and $f : I \to \mathbb{R}$ is a $C^{n,\alpha}$ function with $f'(a) = \ldots = f^{(n)}(a) = 0$. Then

$$|f(x) - f(a)| \le [f]_{n,\alpha} |x - a|^{n+\alpha}$$

for every $x \in [a, b]$.

Proof. The proof of this easy lemma is left to the reader \blacksquare

Throughout we use λ to denote the Lebesgue measure on \mathbb{R} .

Lemma 2.4. Suppose $I = [a,b] \in \mathbb{R}, 1 \le n < \infty, 0 < \alpha \le 1$, and $f,g: I \to \mathbb{R}$ are $C^{n,\alpha}$ functions with $f^{(i)}(a) = g^{(i)}(a)$ $(0 \le i \le n), |f^{(n)}(x) - g^{(n)}(x)| < \varepsilon$ for all $x \in I$ and $[f-g]_{n,\alpha} < \varepsilon$. Then

$$\|f - g\|_{n,\alpha} < \varepsilon \bigg(\sum_{k=0}^n \lambda(I)^k + \sum_{k=0}^n \lambda(I)^{k+\alpha}\bigg).$$

In particular, if $I \subset [0,1]$, then $||f - g||_{n,\alpha} < 2\varepsilon(n+1)$.

Proof. By [6: Lemma 2.2],

$$||f-g||_n < \varepsilon \sum_{k=0}^n \lambda(I)^k.$$

We shall prove that also

$$\sum_{k=0}^{n} [f-g]_{k,\alpha} < \varepsilon \sum_{k=0}^{n} \lambda(I)^{k+\alpha}.$$

Indeed, for every $x, y \in I$,

$$\begin{split} (f-g)^{(n-1)}(x) &- (f-g)^{(n-1)}(y) \big| \\ &= \left| \int_x^y (f-g)^{(n)}(t) \, dt \right| \\ &\leq \left| \int_x^y \left| (f-g)^{(n)}(t) \right| \, dt \right| \\ &= \left| \int_x^y \left| (f-g)^{(n)}(t) - (f-g)^{(n)}(a) \right| \, dt \right| \\ &< \left| \int_x^y \varepsilon |t-a|^\alpha dt \right| \\ &\leq \varepsilon |x-y|^{\alpha+1}. \end{split}$$

Arguing in this way we obtain that, for every $x, y \in I$ and every $0 \le k \le n$,

$$|(f-g)^{(n-k)}(x) - (f-g)^{(n-k)}(y)| < \varepsilon |x-y|^{\alpha+k}.$$

Therefore, $[f-g]_{n-k,\alpha} < \varepsilon \lambda(I)^{k+\alpha}$ and the result follows

Our goal in this section is to characterize the following class $\mathcal{A}_{n,\alpha}$.

Definition 2.5. We define $\mathcal{A}_{n,\alpha}$ $(1 \le n < \infty, 0 < \alpha \le 1)$ to be the collection of all sets $P \subseteq [0,1]$ such that $P = f(Z_{(f,n)})$ for some $C^{n,\alpha}$ function $f : [0,1] \to [0,1]$.

We provide a characterization of $\mathcal{A}_{n,\alpha}$ in terms of Hausdorff measures and a condition β defined below.

Definition 2.6. If $M \subset \mathbb{R}$ and s > 0, then $\mathcal{H}^s(M)$ is the *s*-dimensional Hausdorff measure of M.

Definition 2.7. Suppose $I \subset \mathbb{R}$ is a closed interval and $P \subset \mathbb{R}$ is a closed set. Then

$$\beta_{n,\alpha}(P,I) = \sum_{i=1}^{\infty} \lambda(S_i)^{\frac{1}{n+\alpha}}$$

where S_i are components of $I \setminus P$.

We first have the following

Lemma 2.8. Let $P \in \mathcal{A}_{n,\alpha}$. Then: 1. $\beta_{n,\alpha}(P, [0, 1]) < \infty$. 2. P is a closed set with $\mathcal{H}^{\frac{1}{n+\alpha}}(P) = 0$.

Proof. Let us first show that Condition 1 holds. For this, let S_1, S_2, \ldots be the components of $[0,1] \setminus P$. Without loss of generality we may assume that $\{0,1\} \subset P$. Fix $N \in \mathbb{N}$, let $S_i = (c_i, d_i)$ and $a'_i, b'_i \in Z_{(f,n)}$ be such that $f(a'_i) = c_i$ and $f(b'_i) = d_i$ for $1 \leq i \leq N$. Applying [6: Lemma 2.6] to the sequence formed by ordering the set $\{a'_i, b'_i : 1 \leq i \leq N\}$ from the left to the right, we may choose non-overlapping intervals $I_i = [a_i, b_i]$ $(i = 1, \ldots, N)$ such that their end-points are in $\{a'_i, b'_i : 1 \leq i \leq N\} \subseteq Z_{(f,n)}$ and $\lambda(S_i) = |d_i - c_i| \leq |f(b_i) - f(a_i)|$. Then, using the fact that $f^{(1)}(a_i) = f^{(2)}(a_i) = \ldots = f^{(n)}(a_i) = 0$ and Lemma 2.3 we obtain

$$\lambda(S_i) \le |f(a_i) - f(b_i)| \le [f]_{n,\alpha} |b_i - a_i|^{n+\alpha}.$$

Since $\{I_i\}_{i=1}^N$ is a sequence of non-overlapping intervals contained in [0, 1], we get

$$\sum_{i=1}^{N} \lambda(S_i)^{\frac{1}{n+\alpha}} \le ([f]_{n,\alpha})^{\frac{1}{n+\alpha}} \sum_{i=1}^{N} |b_i - a_i| \le ([f]_{n,\alpha})^{\frac{1}{n+\alpha}}.$$

Hence Condition 1 follows.

Since Condition 1 holds and since by [8: Theorem 3.4.3] $\mathcal{H}^{\frac{1}{n}}(P) = 0$ and hence $\lambda(P) = 0$, by [1: Lemma 2] Condition 2 follows

For the convenience of the reader, throughout the paper we recall some definitions and necessary terminology from [6]. Afterwards, the rest of this section is devoted to proving the converse of the above result.

We now recall the definition of chain and introduce new notions. Throughout, π_1 and π_2 denote coordinate projections.

Definition 2.9. A box is a set of the form $B = I \times J$ where $I, J \subset \mathbb{R}$ are compact intervals. For $1 \leq n < \infty$ and $0 \leq \alpha \leq 1$, $sl_{n,\alpha}(B) = \frac{\lambda(J)}{\lambda(I)^{n+\alpha}}$ is its (n, α) -slope.

Definition 2.10 [6: Definition 2.9]. A basic building block function is a C^{∞} function $\phi : [0, 1] \rightarrow [0, 1]$ with

- **1.** $\phi(0) = 0$ and $\phi(1) = 1$
- **2.** $\phi^{(1)}(x) > 0$ for all 0 < x < 1
- **3.** $\phi^{(i)}(0) = \phi^{(i)}(1) = 0$ for all $i \ge 1$.

If $B = I \times J$ is a box, then $\phi_B = \psi_1 \circ \phi \circ \psi_2$ where ψ_1 and ψ_2 are the linear increasing homeomorphisms from [0,1] onto J and from I onto [0,1], respectively. Note that ϕ_B is simply a congruent copy of ϕ in B. Moreover, for $i \ge 1$ there exists a map $x \mapsto p_x$ from $\pi_1(B)$ onto [0,1] such that $\phi_B^{(i)}(x) = \phi^{(i)}(p_x) sl_i(B)$. From this, $\|\phi_B^{(i)}\| = \|\phi^{(i)}\| sl_i(B)$.

For the remainder of this section we shall use ϕ to denote some fixed basic building block function.

Definition 2.11 [6: Definition 2.11]. Suppose $B = I \times J \subseteq [0, 1] \times [0, 1]$ is a box. A collection $\mathcal{G} = \{G_1, G_2, \ldots, G_t\}$ is a *chain* in B if there are partitions $\{I_1, I_2, \ldots, I_t\}$ of I and $\{J_1, J_2, \ldots, J_t\}$ of J (both sequences ordered from the left to the right) such that, for all $i, G_i = I_i \times J_i$. The intervals I and J are the *domain* and the *range* of \mathcal{G} and we denote them by dom (\mathcal{G}) and ran (\mathcal{G}), respectively. To say that \mathcal{G} is a chain means that \mathcal{G} is a chain in some box.

Definition 2.12 [6: Definition 2.12]. A function f is ϕ -like in the chain \mathcal{G} if dom $(f) = \text{dom}(\mathcal{G})$, ran $(f) = \text{ran}(\mathcal{G})$ and, for each box $B = I \times J$ in \mathcal{G} , $f|I = \phi_B$.

Definition 2.13 [6: Definition 2.14]. Suppose \mathcal{G}_1 and \mathcal{G}_2 are chains. We say that \mathcal{G}_2 refines \mathcal{G}_1 , denoted by $\mathcal{G}_2 \ll \mathcal{G}_1$, if every element of \mathcal{G}_2 is contained in some element of \mathcal{G}_1 , dom $(\mathcal{G}_1) = \text{dom}(\mathcal{G}_2)$ and ran $(\mathcal{G}_1) = \text{ran}(\mathcal{G}_2)$.

Definition 2.14. Suppose B_1 and B_2 are boxes with $B_2 \subseteq B_1$, $1 \le n < \infty$ and $0 \le \alpha \le 1$. We define

$$\Delta_{n,\alpha}(B_1, B_2) = \begin{cases} 0 & \text{if } B_1 = B_2\\ sl_{n,\alpha}(B_1) + sl_{n,\alpha}(B_2) & \text{else.} \end{cases}$$

If \mathcal{G}_1 and \mathcal{G}_2 are chains with $\mathcal{G}_2 \ll \mathcal{G}_1$, then we define

$$\Delta_{n,\alpha}(\mathcal{G}_1,\mathcal{G}_2) = \max\Big\{\Delta_{n,\alpha}(B_1,B_2): B_i \in \mathcal{G}_i \ (i=1,2) \text{ and } B_2 \subseteq B_1\Big\}.$$

For sake of symmetry, we let $\Delta_{n,\alpha}(B_2, B_1) = \Delta_{n,\alpha}(B_1, B_2)$ and $\Delta_{n,\alpha}(\mathcal{G}_2, \mathcal{G}_1) = \Delta_{n,\alpha}(\mathcal{G}_1, \mathcal{G}_2)$. When $\alpha = 0$, as in [6: Definition 2.15] we denote $\Delta_n(\mathcal{G}_2, \mathcal{G}_1) = \Delta_{n,\alpha}(\mathcal{G}_2, \mathcal{G}_1)$. Clearly, if all boxes are contained in $[0, 1] \times [0, 1]$, then $\Delta_n(\mathcal{G}_1, \mathcal{G}_2) \leq \Delta_{n,\alpha}(\mathcal{G}_1, \mathcal{G}_2)$.

From now on we shall consider only chains contained $[0,1] \times [0,1]$.

Proposition 2.15. Suppose $1 \le n < \infty$ and $0 < \alpha \le 1$. Then there is a constant $K_{n,\alpha}$ such that, whenever $\mathcal{G}_2 \ll \mathcal{G}_1$ and f_i is ϕ -like in \mathcal{G}_i , then

$$\|f_1 - f_2\|_{n,\alpha} \le K_{n,\alpha} \,\Delta_{n,\alpha}(\mathcal{G}_1, \mathcal{G}_2).$$

Proof. By [6: Proposition 2.16] there exists a constant K_n such that

$$||f_1 - f_2||_n \le K_n \Delta_n(\mathcal{G}_1, \mathcal{G}_2) \le K_n \Delta_{n,\alpha}(\mathcal{G}_1, \mathcal{G}_2).$$

We shall prove that there exists a constant $T_{n,\alpha}$ such that

$$\sum_{k=0}^{n} [f_1 - f_2]_{k,\alpha} \le T_{n,\alpha} \,\Delta_{n,\alpha}(\mathcal{G}_1, \mathcal{G}_2).$$

Let $B_i \in \mathcal{G}_i$ (i = 1, 2) with $B_2 \subseteq B_1$, let $I = \pi_1(B_2)$ and $x, y \in I$. If $B_1 = B_2$, then $f_1|I = f_2|I$ and

$$\frac{\left|(f_1 - f_2)^{(n)}(x) - (f_1 - f_2)^{(n)}(y)\right|}{|x - y|^{\alpha}} = 0 = \Delta_{n,\alpha}(B_1, B_2).$$

Let us now consider the case $B_1 \neq B_2$. Then

$$\left| (f_1 - f_2)^{(n)}(x) - (f_1 - f_2)^{(n)}(y) \right| = \left| \left(\phi_{B_1}^{(n)}(x) - \phi_{B_2}^{(n)}(x) \right) - \left(\phi_{B_1}^{(n)}(y) - \phi_{B_2}^{(n)}(y) \right) \right|$$

because $f_i = \phi_{B_i}$ on $\pi_1(B_i)$ (i = 1, 2). So

$$\frac{\left|(f_{1}-f_{2})^{(n)}(x)-(f_{1}-f_{2})^{(n)}(y)\right|}{|x-y|^{\alpha}} \leq \frac{\left|\phi_{B_{1}}^{(n)}(x)-\phi_{B_{1}}^{(n)}(y)\right|}{|x-y|^{\alpha}} + \frac{\left|\phi_{B_{2}}^{(n)}(x)-\phi_{B_{2}}^{(n)}(y)\right|}{|x-y|^{\alpha}} \leq [\phi]_{n,\alpha}\left(sl_{n,\alpha}(B_{1})+sl_{n,\alpha}(B_{2})\right) \leq [\phi]_{n,\alpha}\Delta_{n,\alpha}(\mathcal{G}_{1},\mathcal{G}_{2}).$$

What we have just shown is that, whenever x and y belong to the first projection of the same box in \mathcal{G}_2 , then the inequality

$$\frac{\left|(f_1 - f_2)^{(n)}(x) - (f_1 - f_2)^{(n)}(y)\right|}{|x - y|^{\alpha}} \le [\phi]_{n,\alpha} \,\Delta_{n,\alpha}(\mathcal{G}_1, \mathcal{G}_2)$$

holds. Now let us consider the case when $x \in \pi_1(B_2^x)$ and $y \in \pi_1(B_2^y)$ with B_2^x and B_2^y in \mathcal{G}_2 and $B_2^x \neq B_2^y$. Let B_1^x and B_1^y be two boxes in \mathcal{G}_1 such that $B_2^x \subseteq B_1^x$ and $B_2^y \subseteq B_1^y$. Then two cases are to consider.

Case 1: $B_1^x = B_1^y$. In this case, setting $B = B_1^x = B_1^y$, we have

$$\frac{\left|(f_{1}-f_{2})^{(n)}(x)-(f_{1}-f_{2})^{(n)}(y)\right|}{|x-y|^{\alpha}}$$

$$=\frac{\left|\left(\phi_{B_{1}}^{(n)}(x)-\phi_{B_{2}}^{(n)}(x)\right)-\left(\phi_{B_{1}}^{(n)}(y)-\phi_{B_{2}}^{(n)}(y)\right)\right|}{|x-y|^{\alpha}}$$

$$=\frac{\left|\left(\phi_{B_{1}}^{(n)}(x)-\phi_{B_{1}}^{(n)}(y)\right)-\left(\phi_{B_{2}}^{(n)}(x)-\phi_{B_{2}}^{(n)}(y)\right)\right|}{|x-y|^{\alpha}}$$

$$\leq\frac{\left|\phi_{B_{1}}^{(n)}(x)-\phi_{B_{1}}^{(n)}(y)\right|}{|x-y|^{\alpha}}+\frac{\left|\phi_{B_{2}}^{(n)}(x)\right|}{|x-y|^{\alpha}}+\frac{\left|\phi_{B_{2}}^{(n)}(y)\right|}{|x-y|^{\alpha}}$$

$$\leq\left[\phi\right]_{n,\alpha}sl_{n,\alpha}(B_{1})+\frac{\left|\phi_{B_{2}}^{(n)}(x)\right|}{|x-y|^{\alpha}}+\frac{\left|\phi_{B_{2}}^{(n)}(y)\right|}{|x-y|^{\alpha}}.$$

Without loss of generality we can assume x < y. Then, let be

 p_2^x the right end-point of $\pi_1(B_2^x)$ p_2^y the left end-point of $\pi_1(B_2^y)$.

Since, by construction,

$$\phi_{B_2^x}^{(n)}(p_2^x) = \phi_{B_2^y}^{(n)}(p_2^y) = 0$$

and

$$\max\left\{|x - p_2^x|, |y - p_2^y|\right\} \le |x - y|$$

we get

$$\begin{aligned} \frac{|\phi_{B_2^x}^{(n)}(x)|}{|x-y|^{\alpha}} + \frac{|\phi_{B_2^y}^{(n)}(y)|}{|x-y|^{\alpha}} \\ &= \frac{|\phi_{B_2^x}^{(n)}(x) - \phi_{B_2^x}^{(n)}(p_2^x)|}{|x-y|^{\alpha}} + \frac{|\phi_{B_2^y}^{(n)}(y) - \phi_{B_2^y}^{(n)}(p_2^y)|}{|x-y|^{\alpha}} \\ &\leq \frac{|\phi_{B_2^x}^{(n)}(x) - \phi_{B_2^x}^{(n)}(p_2^x)|}{|x-p_2^x|^{\alpha}} + \frac{|\phi_{B_2^y}^{(n)}(y) - \phi_{B_2^y}^{(n)}(p_2^y)|}{|y-p_2^y|^{\alpha}} \\ &\leq [\phi]_{n,\alpha} \left(sl_{n,\alpha}(B_2^x) + sl_{n,\alpha}(B_2^y)\right). \end{aligned}$$

Hence,

$$\frac{|(f_1 - f_2)^{(n)}(x) - (f_1 - f_2)^{(n)}(y)|}{|x - y|^{\alpha}} \leq [\phi]_{n,\alpha} \, sl_{n,\alpha}(B_1) + [\phi]_{n,\alpha} \left(sl_{n,\alpha}(B_2^x) + sl_{n,\alpha}(B_2^y)\right) \\ \leq [\phi]_{n,\alpha} \left(sl_{n,\alpha}(B_1) + sl_{n,\alpha}(B_2^x)\right) + [\phi]_{n,\alpha} \left(sl_{n,\alpha}(B_1) + sl_{n,\alpha}(B_2^y)\right) \\ \leq 2[\phi]_{n,\alpha} \, \Delta_{n,\alpha}(\mathcal{G}_1, \mathcal{G}_2).$$

Case 2: $B_1^x \neq B_1^y$. Then

$$\frac{\left|(f_1 - f_2)^{(n)}(x) - (f_1 - f_2)^{(n)}(y)\right|}{|x - y|^{\alpha}} = \frac{\left|\left(\phi_{B_1^x}^{(n)}(x) - \phi_{B_2^x}^{(n)}(x)\right) - \left(\phi_{B_1^y}^{(n)}(y) - \phi_{B_2^y}^{(n)}(y)\right)\right|}{|x - y|^{\alpha}} \le \frac{\left|\phi_{B_1^x}^{(n)}(x)\right|}{|x - y|^{\alpha}} + \frac{\left|\phi_{B_2^x}^{(n)}(x)\right|}{|x - y|^{\alpha}} + \frac{\left|\phi_{B_1^y}^{(n)}(y)\right|}{|x - y|^{\alpha}} + \frac{\left|\phi_{B_2^y}^{(n)}(y)\right|}{|x - y|^{\alpha}}.$$

Without loss of generality we can assume x < y. Then let be

 p_2^x the right end-point of $\pi_1(B_2^x)$ p_1^x the right end-point of $\pi_1(B_1^x)$ p_2^y the left end-point of $\pi_1(B_2^y)$ p_1^y the left end-point of $\pi_1(B_1^y)$.

Since, by construction,

$$\phi_{B_2^x}^{(n)}(p_2^x) = \phi_{B_1^x}^{(n)}(p_1^x) = \phi_{B_2^y}^{(n)}(p_2^y) = \phi_{B_1^y}^{(n)}(p_1^y) = 0$$

and

$$\max\left\{|x - p_2^x|, |x - p_1^x|, |y - p_2^y|, |y - p_1^y|\right\} \le |x - y|$$

we get

$$\begin{split} \frac{|\phi_{B_{1}^{x}}^{(n)}(x)|}{|x-y|^{\alpha}} &+ \frac{|\phi_{B_{2}^{y}}^{(n)}(y)|}{|x-y|^{\alpha}} + \frac{|\phi_{B_{2}^{y}}^{(n)}(y)|}{|x-y|^{\alpha}} \\ &= \frac{|\phi_{B_{1}^{x}}^{(n)}(x) - \phi_{B_{1}^{x}}^{(n)}(p_{1}^{x})|}{|x-y|^{\alpha}} + \frac{|\phi_{B_{2}^{y}}^{(n)}(x) - \phi_{B_{2}^{y}}^{(n)}(p_{2}^{x})|}{|x-y|^{\alpha}} \\ &+ \frac{|\phi_{B_{1}^{y}}^{(n)}(y) - \phi_{B_{1}^{y}}^{(n)}(p_{1}^{y})|}{|x-y|^{\alpha}} + \frac{|\phi_{B_{2}^{y}}^{(n)}(y) - \phi_{B_{2}^{y}}^{(n)}(p_{2}^{y})|}{|x-y|^{\alpha}} \\ &\leq \frac{|\phi_{B_{1}^{x}}^{(n)}(x) - \phi_{B_{1}^{x}}^{(n)}(p_{1}^{x})|}{|x-p_{1}^{x}|^{\alpha}} + \frac{|\phi_{B_{2}^{y}}^{(n)}(x) - \phi_{B_{2}^{y}}^{(n)}(p_{2}^{y})|}{|x-p_{2}^{x}|^{\alpha}} \\ &+ \frac{|\phi_{B_{1}^{y}}^{(n)}(y) - \phi_{B_{1}^{y}}^{(n)}(p_{1}^{y})|}{|y-p_{1}^{y}|^{\alpha}} + \frac{|\phi_{B_{2}^{y}}^{(n)}(y) - \phi_{B_{2}^{y}}^{(n)}(p_{2}^{y})|}{|y-p_{2}^{y}|^{\alpha}} \\ &\leq [\phi]_{n,\alpha} \left(sl_{n,\alpha}(B_{1}^{x}) + sl_{n,\alpha}(B_{2}^{x})\right) + [\phi]_{n,\alpha} \left(sl_{n,\alpha}(B_{1}^{y}) + sl_{n,\alpha}(B_{2}^{y})\right) \\ &\leq 2[\phi]_{n,\alpha} \Delta_{n,\alpha}(\mathcal{G}_{1}, \mathcal{G}_{2}). \end{split}$$

Hence we can conclude that, for each $x, y \in \text{dom}(\mathcal{G}_1)$,

$$\frac{\left|(f_1 - f_2)^{(n)}(x) - (f_1 - f_2)^{(n)}(y)\right|}{|x - y|^{\alpha}} \le 2[\phi]_{n,\alpha} \,\Delta_{n,\alpha}(\mathcal{G}_1, \mathcal{G}_2)$$

and so

$$[f_1 - f_2]_{n,\alpha} \le 2[\phi]_{n,\alpha} \,\Delta_{n,\alpha}(\mathcal{G}_1, \mathcal{G}_2).$$

Since $f_1^{(k)}(a) = f_2^{(k)}(a) = 0$ for all $1 \le k \le n$ and $f_1(a) = f_2(a)$ where $a = \inf \operatorname{dom}(\mathcal{G}_1)$, by Lemma 2.4 it follows that

$$\sum_{k=0}^{n} [f_1 - f_2]_{k,\alpha} \le 2^2 (n+1) [\phi]_{n,\alpha} \Delta_{n,\alpha}(\mathcal{G}_1, \mathcal{G}_2) = T_{n,\alpha} \Delta_{n,\alpha}(\mathcal{G}_1, \mathcal{G}_2)$$

where $T_{n,\alpha} = 2^2(n+1)[\phi]_{n,\alpha}$. Hence,

$$||f_1 - f_2||_{n,\alpha} \le K_{n,\alpha} \,\Delta_{n,\alpha}(\mathcal{G}_1, \mathcal{G}_2)$$

where $K_{n,\alpha} = K_n + T_{n,\alpha} \blacksquare$

Definition 2.16. Suppose $1 \le n < \infty, 0 < \alpha \le 1$ and $\{\mathcal{G}_k\}$ a sequence of chains with $\mathcal{G}_{k+1} \ll \mathcal{G}_k$ for all k. We say that $\{\mathcal{G}_k\}$ is a (n, α) -Cauchy sequence if for all $\varepsilon > 0$ there is a $M \in \mathbb{N}$ such that if $M < m_1, m_2 \in \mathbb{N}$, then $\Delta_{n,\alpha}(\mathcal{G}_{m_1}, \mathcal{G}_{m_2}) < \varepsilon$. A sequence $\{f_k\}$ of $C^{n,\alpha}$ functions to be a (n, α) -Cauchy sequence means that it is a Cauchy sequence in the norm $\|\cdot\|_{n,\alpha}$.

Definition 2.17. Suppose $1 \le n < \infty$ and $0 < \alpha \le 1$. For sake of notational convenience, the triple $(\{\mathcal{G}_k\}, \{f_k\}, \phi)$ is called (n, α) -proper if ϕ is a basic building block function, $\{\mathcal{G}_k\}$ is a (n, α) -Cauchy sequence and f_k is ϕ -like in \mathcal{G}_k for all k.

Proposition 2.18. Suppose $1 \le n < \infty, 0 < \alpha \le 1$ and $(\{\mathcal{G}_k\}, \{f_k\}, \phi)$ is (n, α) -proper. Then $\{f_k\}$ is a (n, α) -Cauchy sequence and hence converges to some $C^{n,\alpha}$ function f.

Proof. This follows from the definition of a (n, α) -Cauchy sequence and Proposition 2.15

Definition 2.19 [6: Definition 2.20]. Let \mathcal{G} be a chain and $I \times J$ some box in \mathcal{G} . Then $\mathcal{E}_Y(\mathcal{G})$ is the set of all endpoints y of J and $\mathcal{E}_X(\mathcal{G})$ is the set of all endpoints x of I.

Definition 2.20 [6: Definition 2.21]. Let $\{\mathcal{G}_k\}$ be a sequence of chains with $\mathcal{G}_{k+1} \ll \mathcal{G}_k$ for all k. Then $\mathcal{C}_Y(\{\mathcal{G}_k\})$ and $\mathcal{C}_X(\{\mathcal{G}_k\})$ are the sets of all y and x, respectively, such that there are an increasing sequence of integers $\{k_i\}$ and two sequences of boxes $\{B_i\}$ and $\{B'_i\}$ such that, for all i,

1. $y \in \pi_2(B_i) \cap \pi_2(B'_i)$ and $x \in \pi_1(B_i) \cap \pi_1(B'_i)$, respectively

- **2.** $B_i \in \mathcal{G}_{k_i}$ and $B'_i \in \mathcal{G}_{k_i+1}$
- **3.** B'_i is a proper subset of B_i
- 4. $B_{i+1} \subseteq B'_i \subseteq B_i$.

Definition 2.21 [6: Definition 2.22]. Let $\{\mathcal{G}_k\}$ be a sequence of chains with $\mathcal{G}_{k+1} \ll \mathcal{G}_k$ for all k. Then

$$\mathcal{F}_{Y}(\{\mathcal{G}_{k}\}) = \mathcal{C}_{Y}(\{\mathcal{G}_{k}\}) \cup \left(\cup_{i=1}^{\infty} \mathcal{E}_{Y}(\mathcal{G}_{i})\right)$$
$$\mathcal{F}_{X}(\{\mathcal{G}_{k}\}) = \mathcal{C}_{X}(\{\mathcal{G}_{k}\}) \cup \left(\cup_{i=1}^{\infty} \mathcal{E}_{X}(\mathcal{G}_{i})\right).$$

Proposition 2.22. Let $(\{\mathcal{G}_k\}, \{f_k\}, \phi)$ be (n, α) -proper, $1 \leq n < \infty$ and $0 < \alpha \leq 1$. Then $\mathcal{F}_Y(\{\mathcal{G}_k\}) = f(Z_{(f,n)})$ and $\mathcal{F}_X(\{\mathcal{G}_k\}) = Z_{(f,n)}$ where f is the limit of $\{f_k\}$.

Proof. This follows from the fact that the convergence in $C^{n,\alpha}$ is stronger than that in C^n and from [6: Propositions 2.23 and 2.24]

Lemma 2.23. Let $J \subset \mathbb{R}$ be a closed interval and $P \subset \mathbb{R}$ a closed set such that $\beta_{n,\alpha}(P,J) < \infty$. Then for every $\varepsilon > 0$ there exists h > 0 such that if J_1, \ldots, J_t is a finite collection of non-overlapping intervals contained in J and covering $P \cap J$ with $J_k \cap P \neq \emptyset$ and $\lambda(J_k) < h$ for all $1 \leq k \leq t$, then $\sum_{k=1}^t \beta_{n,\alpha}(P,J_k) < \varepsilon$.

Proof. The proof of this lemma is analogous to that of [6: Lemma 2.25]

Lemma 2.24. Suppose $B = I \times J$ is a box, $P \subset \mathbb{R}$ a closed set with $\mathcal{H}^{\frac{1}{n+\alpha}}(P) = 0$, and the end-points of J are in P. Moreover, suppose M > L > 0 are such that $L^{\frac{1}{n+\alpha}}\beta_{n,\alpha}(P,J) < \lambda(I)$. Then there exists a chain \mathcal{G} in B such that:

- **1.** $\mathcal{E}_Y(\mathcal{G}) \subseteq P$.
- **2.** $sl_{n+\alpha}(B') \leq \frac{1}{L}$ for all $B' \in \mathcal{G}$.

3. If $B' \in \mathcal{G}'$, then $\lambda(\pi_2(B')) < \frac{1}{M}$, $M^{\frac{1}{n+\alpha}}\beta_{n,\alpha}(P,\pi_2(B')) < \lambda(\pi_1(B'))$ and $\sum_{B'\in\mathcal{G}'}\lambda(\pi_1(B')) < \frac{1}{M}$, where \mathcal{G}' is the set of all boxes B' in \mathcal{G} such that the interior of $\pi_2(B')$ contains a point of P.

Proof. The proof of this lemma is a simple modification of the proof of [6: Lemma 2.26] and can be carried out by applying Lemma 2.23 \blacksquare

Lemma 2.25. Let $1 \leq n < \infty$ and $0 < \alpha \leq 1$, and suppose $P \subseteq [0,1]$ is a closed set with $\mathcal{H}^{\frac{1}{n+\alpha}}(P) = 0$ and $\beta_{n,\alpha}(P,[0,1]) < \infty$. Then there exists a sequence of chains $\{\mathcal{G}_k\}$ so that

- (i) $\{\mathcal{G}_k\}$ is a (n, α) -Cauchy sequence
- (ii) $P = \mathcal{F}_Y(\{\mathcal{G}_k\})$
- (iii) $\lambda(\mathcal{F}_X(\{\mathcal{G}_k\})) = 0.$

Proof. We construct the sequence $\{\mathcal{G}_k\}$ using induction and Lemma 2.24. Without loss of generality we can assume $\{0,1\} \subseteq P$. We first construct \mathcal{G}_0 . Let L > 0 be such that $L^{\frac{1}{n+\alpha}}\beta_{n,\alpha}(P,[0,1]) < 1$ and $M \ge 2$. Applying Lemma 2.24 to $[0,1] \times [0,1]$, L and M, we obtain a chain \mathcal{G}_0 which satisfies the conclusions of Lemma 2.24. Now suppose $k \ge 1$ and $\mathcal{G}_1, \ldots, \mathcal{G}_k$ have been already constructed so that, for $1 \le l \le k$ denoting

$$\mathcal{T}_l = \Big\{ B \in \mathcal{G}_l : \text{ the interior of } \pi_2(B) \text{ contains a point of } P \Big\},$$

the following conditions are satisfied:

1. $\mathcal{G}_k \ll \mathcal{G}_{k-1}$. 2. $\mathcal{E}_Y(\mathcal{G}_k) \subseteq P$. 3. If $B \in \mathcal{G}_k$ and $B \subseteq B' \in \mathcal{G}_{k-1} \setminus \mathcal{T}_{k-1}$, then B = B'. 4. If $B \in \mathcal{G}_k$ and $B \subseteq B' \in \mathcal{G}_{k-1} \cap \mathcal{T}_{k-1}$, then $sl_{n,\alpha}(B) < \frac{1}{2^k}$. 5. If $B \in \mathcal{T}_k$, then $(2^{k+1})^{\frac{1}{n+\alpha}} \beta_{n,\alpha}(P, \pi_2(B)) < \lambda(\pi_1(B))$ and $\lambda(\pi_2(B)) < \frac{1}{2^k}$. 6. $\sum_{B \in \mathcal{T}_k} \lambda(\pi_1(B)) < \frac{1}{2^k}$.

Let us now construct \mathcal{G}_{k+1} . Let $B \in \mathcal{G}_k$. If $B \notin \mathcal{T}_k$, then we let $\mathcal{G}_{k+1}^B = \{B\}$. If $B \in \mathcal{T}_k$, then we apply Lemma 2.24 to B, $L = 2^{k+1}$ and $M = \max\{2^{k+2}, \frac{2^{k+2}}{\lambda(\pi_1(B))}\}$. Let \mathcal{G}_{k+1}^B be the resulting chain and $\mathcal{G}_{k+1} = \bigcup_{B \in \mathcal{G}_k} \mathcal{G}_{k+1}^B$. By construction, \mathcal{G}_{k+1} satisfies the induction hypotheses.

Let us now show that $\{\mathcal{G}_k\}$ is a (n, α) -Cauchy sequence. For this let $B' \in \mathcal{G}_{k-1}$ and $B \in \mathcal{G}_k$ with $B \subseteq B'$. If $B' \notin \mathcal{T}_{k-1}$, then by induction hypothesis 3 B = B' and hence $\Delta_{n,\alpha}(B,B') = 0$. If $B' \in \mathcal{T}_{k-1}$, then by induction hypothesis $4 sl_{n,\alpha}(B) < \frac{1}{2^k}$. Let $B'' \in \mathcal{G}_{k-2}$ be such that $B' \subseteq B''$. Since $B' \in \mathcal{T}_{k-1}$, $B'' \in \mathcal{T}_{k-2}$ and by hypothesis 4 at stage k-1 we have $sl_{n,\alpha}(B') < \frac{1}{2^{k-1}}$. Therefore we have just shown that $\Delta_{n,\alpha}(B,B') < \frac{1}{2^k} + \frac{1}{2^{k-1}}$. Hence, $\Delta_{n,\alpha}(\mathcal{G}_{k-1},\mathcal{G}_k) < \frac{1}{2^k} + \frac{1}{2^{k-1}}$. Therefore, \mathcal{G}_k is a (n, α) -Cauchy sequence. The rest of the proof is the same as in the proof of [6: Lemma 2.27]

Theorem 2.26. Let $P \subseteq [0,1]$, $1 \le n < \infty$ and $0 < \alpha \le 1$. Then the following assertions are equivalent:

- **1.** $P \in \mathcal{A}_{n,\alpha}$.
- **2.** P is a closed set with $\mathcal{H}^{\frac{1}{n+\alpha}}(P) = 0$ and $\beta_{n,\alpha}(P,[0,1]) < \infty$.

Moreover, if $P \subseteq [0,1]$ satisfies Condition 2, then there is a $C^{n,\alpha}$ homeomorphism f from [0,1] onto [0,1] such that $P = f(Z_{(f,n)})$ and $\lambda(Z_{(f,n)}) = 0$.

Proof. Assertion $(1) \Rightarrow (2)$ is simply Lemma 2.8.

Assertion $(2) \Rightarrow (1)$: By Lemma 2.25 we may choose a sequence of chains $\{\mathcal{G}_k\}$ such that $\{\mathcal{G}_k\}$ is a (n, α) -Cauchy sequence, $P = \mathcal{F}_Y(\{\mathcal{G}_k\})$ and $\lambda(\mathcal{F}_X(\{\mathcal{G}_k\})) = 0$. By [6: Proposition 2.13] there is a unique function f_k which is ϕ -like in \mathcal{G}_k . Then $(\{\mathcal{G}_k\}, \{f_k\}, \phi)$ is (n, α) -proper. Let f be the limit of $\{f_k\}$. Then $f \in C^{n,\alpha}$ and, by Proposition 2.22, $\mathcal{F}_Y(\{\mathcal{G}_k\}) = f(Z_{(f,n)})$. Hence $P = f(Z_{(f,n)})$. By Proposition 2.22, $\lambda(Z_{(f,n)}) = \lambda(\mathcal{F}_X(\{\mathcal{G}_k\})) = 0$. Since f is a non-decreasing function and $\lambda(Z_{(f,n)}) = 0$, f is a homeomorphism

Theorem 2.27. Let $1 \le n < \infty$. The collection $\mathcal{A}_{n,\alpha}$ forms an ideal of compact sets.

Proof. The proof is a simple modification of the proof of [6: Theorem 2.30] ■

Example 2.28. Denote by $\dim_{\mathcal{H}}$ the Hausdorff dimension and let C_{γ} be the "Cantor sets" obtained by removing the middle γ -th percentage every time. Then $\dim_{\mathcal{H}}(C_{\gamma}) = -\frac{\log 2}{\log \frac{1-\gamma}{2}}$. Clearly, if $\gamma > 1 - \frac{1}{2^{n+\alpha-1}}$, then $\mathcal{H}^{\frac{1}{n+\alpha}}(C_{\gamma}) = 0$. Moreover, for such γ , $\beta_{n,\alpha}(C_{\gamma}, [0, 1]) < \infty$. Hence $C_{\gamma} \in \mathcal{A}_{n,\alpha}$ for $\gamma > 1 - \frac{1}{2^{n+\alpha-1}}$.

Remark 2.29. In [6], by \mathcal{A}_n $(1 \leq n < \infty)$ there is denoted the collection of all sets $P \subseteq [0, 1]$ such that $P = f(Z_{(f,n)})$ for some C^n function $f : [0, 1] \to [0, 1]$, and by \mathcal{A}_{∞} there is denoted the collection of all sets $P \subseteq [0, 1]$ such that $P = f(Z_{(f,\infty)})$ for some C^{∞} function $f : [0, 1] \to [0, 1]$ where $Z_{(f,\infty)} = \{x \in \mathbb{R} : f^{(i)}(x) = 0 \text{ for all } 1 \leq i\}$. From [6: Theorems 2.28 and 2.33] it follows that $\cap_n \mathcal{A}_n = \mathcal{A}_{\infty}$. On the other hand, it is also clear that $\cap_n \mathcal{A}_{n,\alpha} = \mathcal{A}_{\infty}$.

Theorem 2.30. Let $P \subseteq [0,1]$ and $1 \leq n < \infty$. Then $\mathcal{A}_{n,1} = \mathcal{A}_{n+1}$ and the following assertions are equivalent:

- **1.** There is a $C^{n,1}$ function $f: [0,1] \to [0,1]$ such that $P = f(Z_{(f,n)})$.
- **2.** *P* is a closed set with $\mathcal{H}^{\frac{1}{n+1}}(P) = 0$ and $\beta_{n,1}(P, [0, 1]) < \infty$.
- **3.** There is a C^{n+1} function $f: [0,1] \to [0,1]$ such that $P = f(Z_{(f,n+1)})$.

Proof. Assertion (1) \Leftrightarrow (2) is a consequence of Theorem 2.26. Assertion (2) \Leftrightarrow (3) follows from the fact that, by definition, $\beta_{n,1}(P, [0, 1]) = \beta_{n+1}(P, [0, 1])$ and from [6: Theorem 2.28]

3. Perfect level sets

In this section we characterize the set of points where level sets of a given $C^{n,\alpha}$ function are perfect. We first recall some basic definitions and results.

Definition 3.1 [6: Definition 3.1]. Let $f: I \to \mathbb{R}$ be a continuous function and G the union of all open (relative to I) intervals S such that f is monotone on S. We call $p \in I \setminus G$ a *turning point* of f and denote by T_f the union of the set of all turning points of f and all end-points of I.

Definition 3.2. Let $f: I \to \mathbb{R}$ be a continuous function. For $\gamma \ge 1$ we define the γ -variation of f by

$$V_{\gamma}(f) = \sup\left\{\sum_{i=1}^{k} |f(x_{i+1}) - f(x_i)|^{\frac{1}{\gamma}}\right\}$$

where the supremum is taken over points $x_i \in T_f$ such that $x_1 < x_2 < \ldots < x_{k+1}$.

Theorem 3.3 [10, 11]. Suppose $1 \le n < \infty$ and $0 < \alpha \le 1$, and let $f : [0, 1] \rightarrow \mathbb{R}$ be a continuous function of bounded variation with $V_{n+\alpha}(f) < \infty$. Then there is a homeomorphism $h : [0, 1] \rightarrow [0, 1]$ such that $f \circ h$ is a $C^{n,\alpha}$ function.

Definition 3.4 [6: Definition 3.13]. Suppose P and Q are closed sets. We say that P is *strongly contained* in Q, denoted by $P \leq Q$, if $P \subseteq Q, Q \setminus P$ is countable and every point of P is a bilateral limit point of Q.

Lemma 3.5. Suppose $1 \le n < \infty$ and $P \in \mathcal{A}_{n,\alpha}$. Then there is $Q \in \mathcal{A}_{n,\alpha}$ such that $P \preceq Q$.

Proof. The proof is the same as that of [6: Lemma 3.14] ■

We now proceed towards the goal of this section.

Theorem 3.6. Let $M \to [0,1]$, $1 \le n < \infty$ and $0 < \alpha \le 1$. Then the following assertions are equivalent:

1. *M* is the union of a G_{δ} set and a countable set and there is $P \in \mathcal{A}_{n,\alpha}$ such that $M \subset P$.

2. There is a $C^{n,\alpha}$ function $f : [0,1] \to [0,1]$ such that $f^{-1}(\{y\})$ is perfect for every $y \in M$ and finite otherwise.

Proof. Assertion (2) \Rightarrow (1): By [6: Lemma 3.7], M is the union of a G_{δ} set and a countable set. From the fact that $f^{-1}(\{y\})$ is perfect for all $y \in M$ it follows that $M \subseteq f(Z_{(f,n)}) \in \mathcal{A}_{n,\alpha}$.

Assertion $(1) \Rightarrow (2)$: Let M and P be as described in Assertion 1. By Lemma 3.5 there exists a set $P' \in A_{n,\alpha}$ such that $P \preceq P'$. By Theorem 2.26, there is a $C^{n,\alpha}$ increasing homeomorphism h such that $h(Z_{(h,n)}) = P'$ and $\lambda(Z_{(h,n)}) = 0$. Let $Q' = h^{-1}(P')$, $Q = h^{-1}(P)$ and $N = h^{-1}(M)$. The sets Q', Q and N clearly satisfy the hypotheses of [6: Proposition 3.16]. Now applying this proposition we can obtain a continuous function of bounded variation g such that $g^{-1}(\{y\})$ is perfect for all $y \in N$, finite otherwise and $g(T_g) \subseteq Q'$. Now we consider the function $h \circ g$. First, $(h \circ g)^{-1}(\{y\})$ clearly is perfect for all $y \in M$ and finite otherwise. Next we want to observe that $h \circ g$ satisfies the hypotheses of Theorem 3.3. As h is Lipschitz and g is a continuous function of bounded variation, $h \circ g$ is also a continuous function. Now we want to show that $V_{n+\alpha}(h \circ g) < \infty$. Let $x_1 < x_2 < \ldots < x_k < x_{k+1}$ be elements of $T_{h \circ g}$. Since h is a homeomorphism, $x_i \in T_g$ for all i as well. Let $1 \leq i \leq k$. As $g(x_i) \in Q' = Z_{(h,n)}$,

$$h^{(1)}(g(x_i)) = h^{(2)}(g(x_i)) = \ldots = h^{(n)}(g(x_i)) = 0.$$

Then, by Lemma 2.3,

$$\left| (h \circ g)(x_{i+1}) - (h \circ g)(x_i) \right| \le [h \circ g]_{n,\alpha} \left| g(x_{i+1}) - g(x_i) \right|^{n+\alpha}.$$

Hence,

$$\sum_{i=1}^{k} \left| (h \circ g)(x_{i+1}) - (h \circ g)(x_i) \right|^{\frac{1}{n+\alpha}}$$

$$\leq \sum_{i=1}^{k} \left([h \circ g]_{n,\alpha} |g(x_{i+1}) - g(x_i)|^{n+\alpha} \right)^{\frac{1}{n+\alpha}}$$

$$= \left([h \circ g]_{n,\alpha} \right)^{\frac{1}{n+\alpha}} \sum_{i=1}^{k} |g(x_{i+1}) - g(x_i)|$$

$$\leq \left([h \circ g]_{n,\alpha} \right)^{\frac{1}{n+\alpha}} V(g).$$

As g is a function of bounded variation, $V_{n+\alpha}(h \circ g) < \infty$. Now, applying Theorem 3.3 to $h \circ g$, we obtain a homeomorphism h_1 of [0,1] such that $h \circ g \circ h_1$ is a $C^{n,\alpha}$ function and $f = h \circ g \circ h_1$ is the desired function

Theorem 3.7. Let $M \subset [0,1]$ and $1 \leq n < \infty$. Then the following assertions are equivalent:

1. There is a $C^{n,1}$ function $f : [0,1] \to [0,1]$ such that $f^{-1}(\{y\})$ is perfect for every $y \in M$ and finite otherwise.

2. *M* is the union of a G_{δ} set and a countable set and there is $P \in \mathcal{A}_{n,1}$ such that $M \subset P$.

3. There is a C^{n+1} function $f : [0,1] \to [0,1]$ such that $f^{-1}(\{y\})$ is perfect for every $y \in M$ and finite otherwise.

Proof. Assertion (1) \Leftrightarrow (2) is a consequence of Theorem 3.6 and Assertion (2) \Leftrightarrow (3) follows from the fact that $\mathcal{A}_{n,1} = \mathcal{A}_{n+1}$ and from [6: Theorem 3.17]

4. Uncountable level sets

In this section we characterize the set of points where level sets of a given $C^{n,\alpha}$ function are uncountable.

Theorem 4.1. Let $M \subset [0,1], 1 \leq n < \infty$ and $0 < \alpha \leq 1$. Then the following assertions are equivalent:

(1) *M* is an analytic set and there is $P \in A_{n,\alpha}$ such that $M \subset P$.

(2) There is a $C^{n,\alpha}$ function $f : [0,1] \to [0,1]$ such that $f^{-1}(\{y\})$ is uncountable for every $y \in M$ and countable otherwise.

Proof. Assertion $(2) \Rightarrow (1)$: By [9: p. 498/Theorem 2], M is analytic. Since $f^{-1}(\{y\})$ contains a perfect set for each $y \in M$, $y \in f(Z_{(f,n)})$. Hence $M \subset f(Z_{(f,n)})$. The proof of assertion $(1) \Rightarrow (2)$ is analogous to that Theorem 3.6 and can be carried out by applying [6: Proposition 4.2]

Theorem 4.2. Let $M \subset [0,1]$ and $1 \leq n < \infty$. Then the following assertions are equivalent:

1. There is a $C^{n,1}$ function $f : [0,1] \to [0,1]$ such that $f^{-1}(\{y\})$ is uncountable for every $y \in M$ and countable otherwise.

2. *M* is an analytic set and there is $P \in \mathcal{A}_{n,1}$ such that $M \subset P$.

3. There is a C^{n+1} function $f : [0,1] \to [0,1]$ such that $f^{-1}(\{y\})$ is uncountable for every $y \in M$ and countable otherwise.

Proof. Assertion (1) \Leftrightarrow (2) is a consequence of Theorem 4.1 and Assertion (2) \Leftrightarrow (3) follows from the fact that $\mathcal{A}_{n,1} = \mathcal{A}_{n+1}$ and from [6: Theorem 4.3]

5. The Lipschitz case

In this section we characterize the set of points where level sets of a given Lipschitz function are perfect. We first have the following definitions and propositions.

Definition 5.1. For a Lipschitz function f on a closed interval $I \subset \mathbb{R}$ we set

$$P_f = \left\{ y \in \mathbb{R} : f^{-1}(\{y\}) \text{ is perfect } \right\}$$
$$D_f = \left\{ x \in \mathbb{R} : f \text{ is differentiable at } x \right\}$$
$$\tilde{Z}_{(f,1)} = \left\{ x \in D_f : f^{(1)}(x) = 0 \right\}.$$

Clearly, if $f \in C^1(I)$, then $\tilde{Z}_{(f,1)} = Z_{(f,1)}$.

Theorem 5.2 [4: Lemma 1]. If f is a continuous function of bounded variation on [0,1], there exists a homeomorphism h of [0,1] onto itself such that $f \circ h$ is a Lipschitz function.

Definition 5.3. Let $B = I \times J$ be a box. We use I_L, I_M, I_R to denote the left third, middle third and right third intervals of I, respectively, and define $B_L = I_L \times J, B_M = I_M \times J, B_R = I_R \times J$ – the so-called *vertical splitting* of B. A continuous function f is

- diagonal to B if the restriction of f to B is a linear function which passes through the diagonal corners of B
- *jagged inside* B if it is diagonal to each of B_L, B_M, B_R .

Definition 5.4. Let $f : [0,1] \to [0,1]$ be a continuous function and J a closed interval in [0,1]. Then we define $\alpha_f(J)$ to be the extended positive integer equal to the number of components of $f^{-1}(J)$.

Proposition 5.5. Suppose G is a G_{δ} set with $\lambda(G) = 0$. Then there is a continuous function of bounded variation $f : [0, 1] \rightarrow [0, 1]$ such that

- **1.** $f^{-1}(\{y\})$ is perfect for all $y \in G$
- **2.** $f^{-1}(\{y\})$ is finite for all $y \notin G$.

Proof. Since G is a G_{δ} set with $\lambda(G) = 0$, there exists a decreasing sequence of open sets $\{A_k\}$ with $\lambda(A_k) < \frac{1}{3^{2k}}$ and $G = \bigcap_{k=1}^{\infty} A_k$. We will construct our desired function f as the uniform limit of an appropriately chosen sequence $\{f_k\}$.

Let $f_0 : [0,1] \to [0,1]$ be the identity map. Considering A_1 we may obtain a countable collection $\{J_t\}_{t=1}^{\infty}$ of non-overlapping, closed intervals contained in A_1 such that $G \subseteq \bigcup_{t=1}^{\infty} J_t$. Let f_1 be the modification of f_0 which is linearly jagged inside $f_0^{-1}(J_t) \times J_t$ for all t, and let $\mathcal{G}_1 = \{f_0^{-1}(J_t) \times J_t : t \ge 1\}$. Then, at the end of stage 1, the following properties are satisfied:

- (i) f_1 is a continuous function linearly jagged inside each $B \in \mathcal{G}_1$ with $f_1(0) = 0$ and $f_1(1) = 1$.
- (ii) The graph of f_1 coincides with the graph of f_0 outside $\cup \mathcal{G}_1$.
- (iii) $|f_1^{-1}(\{y\})| \le 3^1$ for all $y \in [0, 1]$.
- (iv) f_1 is a continuous function of bounded variation and $V(f_1) \leq V(f_0) + 3\sum_{n=1}^{\infty} \alpha_{f_0}(J_n)\lambda(J_n) = V(f_0) + 3\sum_{n=1}^{\infty} \lambda(J_n) \leq V(f_0) + 3\lambda(A_1).$
- (v) $\pi_2(\cup \mathcal{G}_1) \subseteq A_1$.
- (vi) $\lambda(\pi_1(B)) \leq \lambda(\pi_2(B)) \leq \lambda(A_1)$ for every $B \in \mathcal{G}_1$.
- (vii) $||f_1 f_0||_0 \le \lambda(A_1).$

Now let us assume that we are at stage k > 1, f_k and \mathcal{G}_k have been constructed already so that the following properties are satisfied:

- (i) f_k is a continuous function linearly jagged inside each $B \in \mathcal{G}_k$ with $f_k(0) = 0$ and $f_k(1) = 1$.
- (ii) The graph of f_k coincides with the graph of f_{k-1} outside $\cup \mathcal{G}_k$.
- (iii) $|f_k^{-1}(\{y\})| \le 3^k$ for every $y \in [0, 1]$.
- (iv) f_k is a continuous function of bounded variation and $V(f_k) \leq V(f_{k-1}) + 3^k \lambda(A_k)$.
- (v) $\pi_2(\cup \mathcal{G}_k) \subseteq A_k$.
- (vi) $\lambda(\pi_1(B)) \leq \lambda(\pi_2(B)) \leq \lambda(A_k)$ for every $B \in \mathcal{G}_k$.
- (vii) $||f_k f_{k-1}||_0 \le \lambda(A_k)$.
- (viii) If $y \in G$ and $B \in \mathcal{G}_{k-1}$ are such that $y \in \pi_2(B)$, then there exist disjoint boxes B_1 and B_2 in \mathcal{G}_k contained in B such that $y \in \pi_2(B_1) \cap \pi_2(B_2)$.
 - (ix) If $(x, f_k(x))$ is such that $f_k(x) \in G$, then $(x, f_k(x)) \in \bigcup \mathcal{G}_k$.

Let us now construct f_{k+1} . For this let $B' \in \mathcal{G}_k$ and fix B to be one of B'_L, B'_M or B'_R . Note that f_k is diagonal to B. Let us define f_{k+1} inside B first and construct a collection \mathcal{G}^B_{k+1} of boxes inside B. As before, we obtain a countable collection of nonoverlapping closed intervals $\{J_t\}$ contained in $\pi_2(B) \cap A_{k+1}$ such that $\pi_2(B) \cap G \subseteq \bigcup_{t=1}^{\infty} J_t$. Let $f_{k+1}|_{\pi_1(B)}$ be the modification of $f_k|_{\pi_1(B)}$ which is linearly jagged inside each of $(f_k|_{\pi_1(B)})^{-1}(J_t) \times J_t$ and set

$$\mathcal{G}_{k+1}^B = \{ (f_k|_{\pi_1(B)})^{-1} (J_t) \times J_t : t \ge 1 \}.$$

We do the above process for each such B and let f_{k+1} be the resulting function. We also set $\mathcal{G}_{k+1} = \bigcup \mathcal{G}_{k+1}^B$. In order to prove assertion (iv) we notice that

$$V(f_{k+1}) \le V(f_k) + 3\sum_{n=1}^{\infty} \alpha_{f_k}(J_n)\lambda(J_n) \le V(f_k) + 3^{k+1}\lambda(A_{k+1}).$$

It is easy to verify that f_{k+1} satisfies all other induction hypotheses of stage k+1. By assertion (vii), the sequence $\{f_k\}$ converges uniformly to some continuous function f. By assertion (iv),

$$V(f_k) \le V(f_0) + \sum_{j=1}^k 3^j \lambda(A_j) \le V(f_0) + \sum_{j=1}^k 3^j \frac{1}{3^{2j}} < V(f_0) + \frac{1}{2}.$$

Hence f is of bounded variation. By assertion (viii), $f^{-1}(\{y\})$ is perfect for all $y \in G$. By assertions (v), (ii) and (iii), $f^{-1}(\{y\})$ is finite for all $y \notin G \blacksquare$

Proposition 5.6. Let $M \subseteq [0,1]$ be the union of a G_{δ} set and a countable set with $\lambda(M) = 0$. Then there exists a Lipschitz function $f : [0,1] \to [0,1]$ such that $f^{-1}(\{y\})$ is perfect for every $y \in M$ and finite otherwise.

Proof. Let $M = G \cup N$, where G is a G_{δ} set and N is countable, with $G \cap N = \emptyset$. By Proposition 5.6 there exists a continuous function of bounded variation $h : [0,1] \to [0,1]$ such that $h^{-1}(\{y\})$ is perfect for all $y \in G$ and finite otherwise. Since $G \cap N = \emptyset$, $N_1 = h^{-1}(N)$ is countable. By [6: Proposition 3.8], there is a continuous non-decreasing function $g : [0,1] \to [0,1]$ such that $g^{-1}(\{y\})$ is a closed non-degenerate interval for all $y \in N_1$ and $g^{-1}(\{y\})$ is a singleton for all $y \notin N_1$. Clearly, $(h \circ g)^{-1}(\{y\})$ is perfect for every $y \in M$ and finite otherwise and $h \circ g$ is a continuous function of bounded variation. Now, applying Theorem 5.2 we obtain a homeomorphism h_1 such that $h \circ g \circ h_1$ is a Lipschitz function and $f = h \circ g \circ h_1$ is the desired function

Proposition 5.7. Suppose I is a closed interval contained in [0,1] and f is a Lipschitz function defined on I. Then the set of points where level sets are perfect is the union of a G_{δ} set and a countable set, and it has Lebesgue measure zero.

Proof. By [7: Lemma 3.7], P_f is the union of a G_{δ} and a countable set. Without loss of generality, since countable sets obviously have Lebesgue measure zero, we may assume that P_f is a G_{δ} set. Let

$$P_f^1 = \left\{ y \in P_f : f(x_y) = y \text{ for some } x_y \in D_f \right\}.$$

Since f is Lipschitz it follows that $\lambda(P_f \setminus P_f^{-1}) = 0$. It is clear that $x_y \in \tilde{Z}_{(f,1)}$ for every $y \in P_f^{-1}$. By a standard result (e.g. [2: Lemma 7.10]) the set $f(\tilde{Z}_{(f,1)})$ has Lebesgue measure zero. So, since P_f^{-1} is a subset of $f(\tilde{Z}_{(f,1)})$, it also has Lebesgue measure zero. Therefore $\lambda(P_f) = 0$

The following theorem is the goal of this section.

Theorem 5.8. Let $M \subseteq [0,1]$. Then the following assertions are equivalent:

1. There is a Lipschitz function $f : [0,1] \to [0,1]$ such that $f^{-1}(\{y\})$ is perfect for every $y \in M$ and finite otherwise.

2. *M* is the union of a G_{δ} set and a countable set and $\lambda(M) = 0$.

Proof. Assertion (1) \Rightarrow (2) is Proposition 5.7 while Assertion (2) \Rightarrow (1) is Proposition 5.6

References

- [1] Besicovitch, A. S. and S. J. Taylor: On the complementary intervals of a linear closed set of zero Lebesgue measure. J. London Math. Soc. 29 (1954), 449 459.
- [2] Bruckner, A. M., Bruckner, J. B. and B. S. Thomson: *Real Analysis*. New Jersey: Prentice-Hall 1997.
- [3] Bruckner, A. M. and K. M. Garg: The level structure of a residual set of continuous functions. Trans. Amer. Math. Soc. 232 (1977), 307 – 321.
- Bruckner, A. M. and C. Goffman: Differentiability through change of variables. Proc. Amer. Math. Soc. 61 (1976), 235 - 241.
- [5] D'Aniello, E. and U. B. Darji: On the existence of C¹ functions with perfect level sets.
 Z.Anal. Anw. 19 (2000), 847 853.
- [6] D'Aniello, E. and U. B. Darji: Cⁿ functions, Hausdorff measures and analytic sets. Adv. Math. 164 (2001), 117 – 143.
- [7] Darji, U. B. and M. Morayne: Level sets of a typical Cⁿ function. Proc. Amer. Math. Soc. 127 (1999), 2917 – 2922.
- [8] Federer, H.: Geometric Measure Theory. New York: Springer-Verlag 1969.
- [9] Kuratowski, K.: Topology, Vol. I. New York: Acad. Press 1966.
- [10] Laczkovich, M. and D. Preiss: α -variation and transformation into C^n functions. Indiana Univ. Math. J. 34 (1985), 405 – 424.
- [11] Lebedev, V. V.: Homeomorphisms of a segment and smoothness of a function (in Russian). Mat. Zametki 40 (1986), 364 – 373.
- [12] Mazurkiewicz, M. and W. Sierpinski: Sur un problème concernant les fonctions continues. Fund. Math. 6 (1924), 161 – 169.

Received 22.01.2002; in revised form 11.04.2002