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Level Sets of Hölder Functions
and Hausdorff Measures

E. D’Aniello

Abstract. In this paper we investigate some connections between Hausdorff measures,
Hölder functions and analytic sets in terms of images of zero-derivative sets and level sets.
We characterize in terms of Hausdorff measures and descriptive complexity subsets M ⊆ R
which are

(1) the image under some Cn,α function f of the set of points where the derivatives of
first n orders are zero

(2) the set of points where the level sets of some Cn,α function are perfect

(3) the set of points where the level sets of some Cn,α function are uncountable.
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1. Introduction

Several authors have studied level sets of continuous functions and smooth functions
and, critical sets. For example, Bruckner and Garg [3] and Darji and Morayne [7]
have proved results concerning how big is the set of points where the level sets of
a “typical” continuous function (in the category sense) and of a typical Cn (n ≥ 1)
function, respectively, are large. The present author and Darji [5, 6], in terms of
Hausdorff measures and descriptive complexity, have characterized subsets M ⊆ R
which are

1) the image under some Cn function f of the set of points where the derivatives
of first n orders are zero

2) the set of points where the level sets of some Cn function are perfect, and
3) the set of points where the level sets of some Cn function are uncountable.

In this paper we consider the case of Hölder functions. In Section 2 we “parametrize”
the Hausdorff dimension of certain closed subsets of [0, 1] with Hölder functions. In
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Section 3 we characterize the set of points where the level sets of a Cn,α function
(1 ≤ n < ∞, 0 < α ≤ 1) are perfect.

It is a very old result of Mazurkiewicz and Sierpinski [12] that a set M ⊆ [0, 1] is
analytic if and only if it is equal to the set {y : f−1({y}) is uncountable} for some
continuous function f . In Section 4 we characterize such sets M for Cn,α functions.
At last, in Section 5 we characterize the set of points where the level sets of a Lipschitz
function are perfect.

2. Images of zero-derivative sets

In this section we characterize images of zero-derivative sets of Hölder functions. We
first need few definitions and some terminology.

Definition 2.1. Let f be a Cn (1 ≤ n < ∞) function on a closed interval I ⊂ R,
f (0) = f, f (i) (1 ≤ i ≤ n) the i−th derivative of f and

Z(f,n) =
{
x ∈ I : f (i)(x) = 0 for all 1 ≤ i ≤ n

}

the so-called zero-derivative set. We use ‖f‖n to denote the n-norm of f , i.e. ‖f‖n =∑n
i=0 ‖f (i)‖ where ‖ · ‖ denotes the supremum norm.

Definition 2.2. If 0 < α ≤ 1, we denote by C0,α(I) the space of Hölder functions
on a closed interval I ⊂ R, i.e. the space of functions f such that

[f ]0,α = sup
x,y∈I
x 6=y

|f(x)− f(y)|
|x− y|α < ∞.

More generally, we denote by Cn,α(I) the space of Cn(I) functions with Hölder n-th
derivatives and denote [f ]n,α = [f (n)]0,α. Clearly, C0,1(I) is the space of Lipschitz
functions on I. In Cn,α(I) we consider the norm ‖f‖n,α = ‖f‖n +

∑n
k=0[f ]k,α.

Lemma 2.3. Suppose I = [a, b] ⊂ [0, 1], 1 ≤ n < ∞, 0 < α ≤ 1, and f : I → R
is a Cn,α function with f ′(a) = . . . = f (n)(a) = 0. Then

|f(x)− f(a)| ≤ [f ]n,α|x− a|n+α

for every x ∈ [a, b].

Proof. The proof of this easy lemma is left to the reader

Throughout we use λ to denote the Lebesgue measure on R.

Lemma 2.4. Suppose I = [a, b] ∈ R, 1 ≤ n < ∞, 0 < α ≤ 1, and f, g : I → R
are Cn,α functions with f (i)(a) = g(i)(a) (0 ≤ i ≤ n), |f (n)(x) − g(n)(x)| < ε for all
x ∈ I and [f − g]n,α < ε. Then

‖f − g‖n,α < ε

( n∑

k=0

λ(I)k +
n∑

k=0

λ(I)k+α

)
.
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In particular, if I ⊂ [0, 1], then ‖f − g‖n,α < 2ε(n + 1).

Proof. By [6: Lemma 2.2],

‖f − g‖n < ε

n∑

k=0

λ(I)k.

We shall prove that also

n∑

k=0

[f − g]k,α < ε

n∑

k=0

λ(I)k+α.

Indeed, for every x, y ∈ I,
∣∣(f − g)(n−1)(x)− (f − g)(n−1)(y)

∣∣

=
∣∣∣∣
∫ y

x

(f − g)(n)(t) dt

∣∣∣∣

≤
∣∣∣∣
∫ y

x

∣∣(f − g)(n)(t)
∣∣ dt

∣∣∣∣

=
∣∣∣∣
∫ y

x

∣∣(f − g)(n)(t)− (f − g)(n)(a)
∣∣ dt

∣∣∣∣

<

∣∣∣∣
∫ y

x

ε|t− a|αdt

∣∣∣∣

≤ ε|x− y|α+1.

Arguing in this way we obtain that, for every x, y ∈ I and every 0 ≤ k ≤ n,
∣∣(f − g)(n−k)(x)− (f − g)(n−k)(y)

∣∣ < ε|x− y|α+k.

Therefore, [f − g]n−k,α < ελ(I)k+α and the result follows

Our goal in this section is to characterize the following class An,α.

Definition 2.5. We define An,α (1 ≤ n < ∞, 0 < α ≤ 1) to be the collection of
all sets P ⊆ [0, 1] such that P = f(Z(f,n)) for some Cn,α function f : [0, 1] → [0, 1].

We provide a characterization of An,α in terms of Hausdorff measures and a
condition β defined below.

Definition 2.6. If M ⊂ R and s > 0, then Hs(M) is the s-dimensional Haus-
dorff measure of M .

Definition 2.7. Suppose I ⊂ R is a closed interval and P ⊂ R is a closed set.
Then

βn,α(P, I) =
∞∑

i=1

λ(Si)
1

n+α

where Si are components of I \ P .

We first have the following
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Lemma 2.8. Let P ∈ An,α. Then:
1. βn,α(P, [0, 1]) < ∞.

2. P is a closed set with H 1
n+α (P ) = 0.

Proof. Let us first show that Condition 1 holds. For this, let S1, S2, . . . be the
components of [0, 1] \ P . Without loss of generality we may assume that {0, 1} ⊂ P .
Fix N ∈ N, let Si = (ci, di) and a′i, b

′
i ∈ Z(f,n) be such that f(a′i) = ci and f(b′i) = di

for 1 ≤ i ≤ N . Applying [6: Lemma 2.6] to the sequence formed by ordering the
set {a′i, b′i : 1 ≤ i ≤ N} from the left to the right, we may choose non-overlapping
intervals Ii = [ai, bi] (i = 1, . . . , N) such that their end-points are in {a′i, b′i : 1 ≤
i ≤ N} ⊆ Z(f,n) and λ(Si) = |di − ci| ≤ |f(bi) − f(ai)|. Then, using the fact that
f (1)(ai) = f (2)(ai) = . . . = f (n)(ai) = 0 and Lemma 2.3 we obtain

λ(Si) ≤ |f(ai)− f(bi)| ≤ [f ]n,α|bi − ai|n+α.

Since {Ii}N
i=1 is a sequence of non-overlapping intervals contained in [0, 1], we get

N∑

i=1

λ(Si)
1

n+α ≤ ([f ]n,α)
1

n+α

N∑

i=1

|bi − ai| ≤ ([f ]n,α)
1

n+α .

Hence Condition 1 follows.
Since Condition 1 holds and since by [8: Theorem 3.4.3] H 1

n (P ) = 0 and hence
λ(P ) = 0, by [1: Lemma 2] Condition 2 follows

For the convenience of the reader, throughout the paper we recall some definitions
and necessary terminology from [6]. Afterwards, the rest of this section is devoted to
proving the converse of the above result.

We now recall the definition of chain and introduce new notions. Throughout,
π1 and π2 denote coordinate projections.

Definition 2.9. A box is a set of the form B = I×J where I, J ⊂ R are compact
intervals. For 1 ≤ n < ∞ and 0 ≤ α ≤ 1, sln,α(B) = λ(J)

λ(I)n+α is its (n, α)-slope.

Definition 2.10 [6: Definition 2.9]. A basic building block function is a C∞

function φ : [0, 1] → [0, 1] with
1. φ(0) = 0 and φ(1) = 1

2. φ(1)(x) > 0 for all 0 < x < 1

3. φ(i)(0) = φ(i)(1) = 0 for all i ≥ 1.
If B = I × J is a box, then φB = ψ1 ◦ φ ◦ ψ2 where ψ1 and ψ2 are the linear
increasing homeomorphisms from [0, 1] onto J and from I onto [0, 1], respectively.
Note that φB is simply a congruent copy of φ in B. Moreover, for i ≥ 1 there exists
a map x 7→ px from π1(B) onto [0, 1] such that φ

(i)
B (x) = φ(i)(px) sli(B). From this,

‖φ(i)
B ‖ = ‖φ(i)‖ sli(B).

For the remainder of this section we shall use φ to denote some fixed basic building
block function.
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Definition 2.11 [6: Defintion 2.11]. Suppose B = I×J ⊆ [0, 1]× [0, 1] is a box.
A collection G = {G1, G2, . . . , Gt} is a chain in B if there are partitions {I1, I2, . . . , It}
of I and {J1, J2, . . . , Jt} of J (both sequences ordered from the left to the right) such
that, for all i, Gi = Ii×Ji. The intervals I and J are the domain and the range of G
and we denote them by dom (G) and ran (G), respectively. To say that G is a chain
means that G is a chain in some box.

Definition 2.12 [6: Definition 2.12]. A function f is φ-like in the chain G if
dom (f) = dom (G), ran (f) = ran (G) and, for each box B = I × J in G, f |I = φB .

Definition 2.13 [6: Definition 2.14]. Suppose G1 and G2 are chains. We say
that G2 refines G1, denoted by G2 ¿ G1, if every element of G2 is contained in some
element of G1, dom (G1) = dom (G2) and ran (G1) = ran (G2).

Definition 2.14. Suppose B1 and B2 are boxes with B2 ⊆ B1, 1 ≤ n < ∞ and
0 ≤ α ≤ 1. We define

∆n,α(B1, B2) =
{

0 if B1 = B2

sln,α(B1) + sln,α(B2) else.

If G1 and G2 are chains with G2 ¿ G1, then we define

∆n,α(G1,G2) = max
{
∆n,α(B1, B2) : Bi ∈ Gi (i = 1, 2) and B2 ⊆ B1

}
.

For sake of symmetry, we let ∆n,α(B2, B1) = ∆n,α(B1, B2) and ∆n,α(G2,G1) =
∆n,α(G1,G2). When α = 0, as in [6: Definition 2.15] we denote ∆n(G2,G1) =
∆n,α(G2,G1). Clearly, if all boxes are contained in [0, 1] × [0, 1], then ∆n(G1,G2) ≤
∆n,α(G1,G2).

From now on we shall consider only chains contained [0, 1]× [0, 1].

Proposition 2.15. Suppose 1 ≤ n < ∞ and 0 < α ≤ 1. Then there is a constant
Kn,α such that, whenever G2 ¿ G1 and fi is φ-like in Gi, then

‖f1 − f2‖n,α ≤ Kn,α ∆n,α(G1,G2).

Proof. By [6: Proposition 2.16] there exists a constant Kn such that

‖f1 − f2‖n ≤ Kn∆n(G1,G2) ≤ Kn ∆n,α(G1,G2).

We shall prove that there exists a constant Tn,α such that

n∑

k=0

[f1 − f2]k,α ≤ Tn,α ∆n,α(G1,G2).

Let Bi ∈ Gi (i = 1, 2) with B2 ⊆ B1, let I = π1(B2) and x, y ∈ I. If B1 = B2, then
f1|I = f2|I and

∣∣(f1 − f2)(n)(x)− (f1 − f2)(n)(y)
∣∣

|x− y|α = 0 = ∆n,α(B1, B2).
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Let us now consider the case B1 6= B2. Then

∣∣(f1 − f2)(n)(x)− (f1 − f2)(n)(y)
∣∣ =

∣∣(φ(n)
B1

(x)− φ
(n)
B2

(x)
)− (

φ
(n)
B1

(y)− φ
(n)
B2

(y)
)∣∣

because fi = φBi
on π1(Bi) (i = 1, 2). So

∣∣(f1 − f2)(n)(x)− (f1 − f2)(n)(y)
∣∣

|x− y|α

≤
∣∣φ(n)

B1
(x)− φ

(n)
B1

(y)
∣∣

|x− y|α +

∣∣φ(n)
B2

(x)− φ
(n)
B2

(y)
∣∣

|x− y|α
≤ [φ]n,α

(
sln,α(B1) + sln,α(B2)

)

≤ [φ]n,α ∆n,α(G1,G2).

What we have just shown is that, whenever x and y belong to the first projection of
the same box in G2, then the inequality

∣∣(f1 − f2)(n)(x)− (f1 − f2)(n)(y)
∣∣

|x− y|α ≤ [φ]n,α ∆n,α(G1,G2)

holds. Now let us consider the case when x ∈ π1(Bx
2 ) and y ∈ π1(B

y
2 ) with Bx

2 and
By

2 in G2 and Bx
2 6= By

2 . Let Bx
1 and By

1 be two boxes in G1 such that Bx
2 ⊆ Bx

1 and
By

2 ⊆ By
1 . Then two cases are to consider.

Case 1: Bx
1 = By

1 . In this case, setting B = Bx
1 = By

1 , we have

∣∣(f1 − f2)(n)(x)− (f1 − f2)(n)(y)
∣∣

|x− y|α

=

∣∣(φ(n)
B1

(x)− φ
(n)
Bx

2
(x)

)− (
φ

(n)
B1

(y)− φ
(n)

By
2
(y)

)∣∣
|x− y|α

=

∣∣(φ(n)
B1

(x)− φ
(n)
B1

(y)
)− (

φ
(n)
Bx

2
(x)− φ

(n)

By
2
(y)

)∣∣
|x− y|α

≤
∣∣φ(n)

B1
(x)− φ

(n)
B1

(y)
∣∣

|x− y|α +
|φ(n)

Bx
2
(x)|

|x− y|α +
|φ(n)

By
2
(y)|

|x− y|α

≤ [φ]n,α sln,α(B1) +
|φ(n)

Bx
2
(x)|

|x− y|α +
|φ(n)

By
2
(y)|

|x− y|α .

Without loss of generality we can assume x < y. Then, let be
px
2 the right end-point of π1(Bx

2 )
py
2 the left end-point of π1(B

y
2 ).

Since, by construction,
φ

(n)
Bx

2
(px

2) = φ
(n)

By
2
(py

2) = 0
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and
max

{|x− px
2 |, |y − py

2|
} ≤ |x− y|

we get
|φ(n)

Bx
2
(x)|

|x− y|α +
|φ(n)

By
2
(y)|

|x− y|α

=

∣∣φ(n)
Bx

2
(x)− φ

(n)
Bx

2
(px

2)
∣∣

|x− y|α +

∣∣φ(n)

By
2
(y)− φ

(n)

By
2
(py

2)
∣∣

|x− y|α

≤
∣∣φ(n)

Bx
2
(x)− φ

(n)
Bx

2
(px

2)
∣∣

|x− px
2 |α

+

∣∣φ(n)

By
2
(y)− φ

(n)

By
2
(py

2)
∣∣

|y − py
2|α

≤ [φ]n,α

(
sln,α(Bx

2 ) + sln,α(By
2 )

)
.

Hence,
∣∣(f1 − f2)(n)(x)− (f1 − f2)(n)(y)

∣∣
|x− y|α

≤ [φ]n,α sln,α(B1) + [φ]n,α

(
sln,α(Bx

2 ) + sln,α(By
2 )

)

≤ [φ]n,α

(
sln,α(B1) + sln,α(Bx

2 )
)

+ [φ]n,α

(
sln,α(B1) + sln,α(By

2 )
)

≤ 2[φ]n,α ∆n,α(G1,G2).

Case 2: Bx
1 6= By

1 . Then

∣∣(f1 − f2)(n)(x)− (f1 − f2)(n)(y)
∣∣

|x− y|α

=

∣∣(φ(n)
Bx

1
(x)− φ

(n)
Bx

2
(x)

)− (
φ

(n)

By
1
(y)− φ

(n)

By
2
(y)

)∣∣
|x− y|α

≤
|φ(n)

Bx
1
(x)|

|x− y|α +
|φ(n)

Bx
2
(x)|

|x− y|α +
|φ(n)

By
1
(y)|

|x− y|α +
|φ(n)

By
2
(y)|

|x− y|α .

Without loss of generality we can assume x < y. Then let be
px
2 the right end-point of π1(Bx

2 )
px
1 the right end-point of π1(Bx

1 )
py
2 the left end-point of π1(B

y
2 )

py
1 the left end-point of π1(B

y
1 ).

Since, by construction,

φ
(n)
Bx

2
(px

2) = φ
(n)
Bx

1
(px

1) = φ
(n)

By
2
(py

2) = φ
(n)

By
1
(py

1) = 0

and
max

{|x− px
2 |, |x− px

1 |, |y − py
2|, |y − py

1|
} ≤ |x− y|
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we get

|φ(n)
Bx

1
(x)|

|x− y|α +
|φ(n)

Bx
2
(x)|

|x− y|α +
|φ(n)

By
1
(y)|

|x− y|α +
|φ(n)

By
2
(y)|

|x− y|α

=

∣∣φ(n)
Bx

1
(x)− φ

(n)
Bx

1
(px

1)
∣∣

|x− y|α +

∣∣φ(n)
Bx

2
(x)− φ

(n)
Bx

2
(px

2)
∣∣

|x− y|α

+

∣∣φ(n)

By
1
(y)− φ

(n)

By
1
(py

1)
∣∣

|x− y|α +

∣∣φ(n)

By
2
(y)− φ

(n)

By
2
(py

2)
∣∣

|x− y|α

≤
∣∣φ(n)

Bx
1
(x)− φ

(n)
Bx

1
(px

1)
∣∣

|x− px
1 |α

+

∣∣φ(n)
Bx

2
(x)− φ

(n)
Bx

2
(px

2)
∣∣

|x− px
2 |α

+

∣∣φ(n)

By
1
(y)− φ

(n)

By
1
(py

1)
∣∣

|y − py
1|α

+
|φ(n)

By
2
(y)− φ

(n)

By
2
(py

2)
∣∣

|y − py
2|α

≤ [φ]n,α

(
sln,α(Bx

1 ) + sln,α(Bx
2 )

)
+ [φ]n,α

(
sln,α(By

1 ) + sln,α(By
2 )

)

≤ 2[φ]n,α ∆n,α(G1,G2).

Hence we can conclude that, for each x, y ∈ dom (G1),
∣∣(f1 − f2)(n)(x)− (f1 − f2)(n)(y)

∣∣
|x− y|α ≤ 2[φ]n,α ∆n,α(G1,G2)

and so
[f1 − f2]n,α ≤ 2[φ]n,α ∆n,α(G1,G2).

Since f
(k)
1 (a) = f

(k)
2 (a) = 0 for all 1 ≤ k ≤ n and f1(a) = f2(a) where a =

inf dom (G1), by Lemma 2.4 it follows that

n∑

k=0

[f1 − f2]k,α ≤ 22(n + 1)[φ]n,α ∆n,α(G1,G2) = Tn,α ∆n,α(G1,G2)

where Tn,α = 22(n + 1)[φ]n,α. Hence,

‖f1 − f2‖n,α ≤ Kn,α ∆n,α(G1,G2)

where Kn,α = Kn + Tn,α

Definition 2.16. Suppose 1 ≤ n < ∞, 0 < α ≤ 1 and {Gk} a sequence of chains
with Gk+1 ¿ Gk for all k. We say that {Gk} is a (n, α)-Cauchy sequence if for all
ε > 0 there is a M ∈ N such that if M < m1,m2 ∈ N, then ∆n,α(Gm1 ,Gm2) < ε. A
sequence {fk} of Cn,α functions to be a (n, α)-Cauchy sequence means that it is a
Cauchy sequence in the norm ‖ · ‖n,α.

Definition 2.17. Suppose 1 ≤ n < ∞ and 0 < α ≤ 1. For sake of notational
convenience, the triple ({Gk}, {fk}, φ) is called (n, α)-proper if φ is a basic building
block function, {Gk} is a (n, α)-Cauchy sequence and fk is φ-like in Gk for all k.
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Proposition 2.18. Suppose 1 ≤ n < ∞, 0 < α ≤ 1 and ({Gk}, {fk}, φ) is (n, α)-
proper. Then {fk} is a (n, α)-Cauchy sequence and hence converges to some Cn,α

function f .

Proof. This follows from the definition of a (n, α)-Cauchy sequence and Propo-
sition 2.15

Definition 2.19 [6: Definition 2.20]. Let G be a chain and I×J some box in G.
Then EY (G) is the set of all endpoints y of J and EX(G)) is the set of all endpoints
x of I.

Definition 2.20 [6: Definition 2.21]. Let {Gk} be a sequence of chains with
Gk+1 ¿ Gk for all k. Then CY ({Gk}) and CX({Gk})) are the sets of all y and x,
respectively, such that there are an increasing sequence of integers {ki} and two
sequences of boxes {Bi} and {B′

i} such that, for all i,
1. y ∈ π2(Bi) ∩ π2(B′

i) and x ∈ π1(Bi) ∩ π1(B′
i), respectively

2. Bi ∈ Gki and B′
i ∈ Gki+1

3. B′
i is a proper subset of Bi

4. Bi+1 ⊆ B′
i ⊆ Bi.

Definition 2.21 [6: Definition 2.22]. Let {Gk} be a sequence of chains with
Gk+1 ¿ Gk for all k. Then

FY ({Gk}) = CY ({Gk}) ∪
(
∪∞i=1 EY (Gi)

)

FX({Gk}) = CX({Gk}) ∪
(
∪∞i=1 EX(Gi)

)
.

Proposition 2.22. Let ({Gk}, {fk}, φ) be (n, α)-proper, 1 ≤ n < ∞ and 0 <
α ≤ 1. Then FY ({Gk}) = f(Z(f,n)) and FX({Gk}) = Z(f,n) where f is the limit of
{fk}.

Proof. This follows from the fact that the convergence in Cn,α is stronger than
that in Cn and from [6: Propositions 2.23 and 2.24]

Lemma 2.23. Let J ⊂ R be a closed interval and P ⊂ R a closed set such that
βn,α(P, J) < ∞. Then for every ε > 0 there exists h > 0 such that if J1, . . . , Jt is a
finite collection of non-overlapping intervals contained in J and covering P ∩ J with
Jk ∩ P 6= ∅ and λ(Jk) < h for all 1 ≤ k ≤ t, then

∑t
k=1 βn,α(P, Jk) < ε.

Proof. The proof of this lemma is analogous to that of [6: Lemma 2.25]

Lemma 2.24. Suppose B = I×J is a box, P ⊂ R a closed set with H 1
n+α (P ) =

0, and the end-points of J are in P . Moreover, suppose M > L > 0 are such that
L

1
n+α βn,α(P, J) < λ(I). Then there exists a chain G in B such that:

1. EY (G) ⊆ P .
2. sln+α(B′) ≤ 1

L for all B′ ∈ G.

3. If B′ ∈ G′, then λ(π2(B′)) < 1
M , M

1
n+α βn,α(P, π2(B′)) < λ(π1(B′)) and∑

B′∈G′ λ(π1(B′)) < 1
M , where G′ is the set of all boxes B′ in G such that the interior

of π2(B′) contains a point of P .
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Proof. The proof of this lemma is a simple modification of the proof of [6:
Lemma 2.26] and can be carried out by applying Lemma 2.23

Lemma 2.25. Let 1 ≤ n < ∞ and 0 < α ≤ 1, and suppose P ⊆ [0, 1] is a
closed set with H 1

n+α (P ) = 0 and βn,α(P, [0, 1]) < ∞. Then there exists a sequence
of chains {Gk} so that

(i) {Gk} is a (n, α)-Cauchy sequence
(ii) P = FY ({Gk})
(iii) λ(FX({Gk})) = 0.

Proof. We construct the sequence {Gk} using induction and Lemma 2.24. With-
out loss of generality we can assume {0, 1} ⊆ P . We first construct G0. Let L > 0 be
such that L

1
n+α βn,α(P, [0, 1]) < 1 and M ≥ 2. Applying Lemma 2.24 to [0, 1]× [0, 1],

L and M , we obtain a chain G0 which satisfies the conclusions of Lemma 2.24. Now
suppose k ≥ 1 and G1, . . . ,Gk have been already constructed so that, for 1 ≤ l ≤ k
denoting

Tl =
{

B ∈ Gl : the interior of π2(B) contains a point of P
}

,

the following conditions are satisfied:

1. Gk ¿ Gk−1.
2. EY (Gk) ⊆ P .
3. If B ∈ Gk and B ⊆ B′ ∈ Gk−1 \ Tk−1, then B = B′.
4. If B ∈ Gk and B ⊆ B′ ∈ Gk−1 ∩ Tk−1, then sln,α(B) < 1

2k .

5. If B ∈ Tk, then (2k+1)
1

n+α βn,α(P, π2(B)) < λ(π1(B)) and λ(π2(B)) < 1
2k .

6.
∑

B∈Tk
λ(π1(B)) < 1

2k .

Let us now construct Gk+1. Let B ∈ Gk. If B /∈ Tk, then we let GB
k+1 = {B}. If

B ∈ Tk, then we apply Lemma 2.24 to B, L = 2k+1 and M = max{2k+2, 2k+2

λ(π1(B))}.
Let GB

k+1 be the resulting chain and Gk+1 = ∪B∈Gk
GB

k+1. By construction, Gk+1

satisfies the induction hypotheses.
Let us now show that {Gk} is a (n, α)-Cauchy sequence. For this let B′ ∈ Gk−1

and B ∈ Gk with B ⊆ B′. If B′ /∈ Tk−1, then by induction hypothesis 3 B = B′ and
hence ∆n,α(B, B′) = 0. If B′ ∈ Tk−1, then by induction hypothesis 4 sln,α(B) < 1

2k .
Let B′′ ∈ Gk−2 be such that B′ ⊆ B′′. Since B′ ∈ Tk−1, B′′ ∈ Tk−2 and by
hypothesis 4 at stage k − 1 we have sln,α(B′) < 1

2k−1 . Therefore we have just shown
that ∆n,α(B,B′) < 1

2k + 1
2k−1 . Hence, ∆n,α(Gk−1,Gk) < 1

2k + 1
2k−1 . Therefore, Gk

is a (n, α)-Cauchy sequence. The rest of the proof is the same as in the proof of [6:
Lemma 2.27]

Theorem 2.26. Let P ⊆ [0, 1], 1 ≤ n < ∞ and 0 < α ≤ 1. Then the following
assertions are equivalent:

1. P ∈ An,α.

2. P is a closed set with H 1
n+α (P ) = 0 and βn,α(P, [0, 1]) < ∞.
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Moreover, if P ⊆ [0, 1] satisfies Condition 2, then there is a Cn,α homeomorphism f
from [0, 1] onto [0, 1] such that P = f(Z(f,n)) and λ(Z(f,n)) = 0.

Proof. Assertion (1) ⇒ (2) is simply Lemma 2.8.
Assertion (2) ⇒ (1): By Lemma 2.25 we may choose a sequence of chains {Gk}

such that {Gk} is a (n, α)-Cauchy sequence, P = FY ({Gk}) and λ(FX({Gk})) = 0.
By [6: Proposition 2.13] there is a unique function fk which is φ-like in Gk. Then
({Gk}, {fk}, φ) is (n, α)-proper. Let f be the limit of {fk}. Then f ∈ Cn,α and, by
Proposition 2.22, FY ({Gk}) = f(Z(f,n)). Hence P = f(Z(f,n)). By Proposition 2.22,
λ(Z(f,n)) = λ(FX({Gk})) = 0. Since f is a non-decreasing function and λ(Z(f,n)) = 0,
f is a homeomorphism

Theorem 2.27. Let 1 ≤ n < ∞. The collection An,α forms an ideal of compact
sets.

Proof. The proof is a simple modification of the proof of [6: Theorem 2.30]

Example 2.28. Denote by dimH the Hausdorff dimension and let Cγ be the
“Cantor sets” obtained by removing the middle γ-th percentage every time. Then
dimH(Cγ) = − log 2

log 1−γ
2

. Clearly, if γ > 1 − 1
2n+α−1 , then H 1

n+α (Cγ) = 0. Moreover,

for such γ, βn,α(Cγ , [0, 1]) < ∞. Hence Cγ ∈ An,α for γ > 1− 1
2n+α−1 .

Remark 2.29. In [6], by An (1 ≤ n < ∞) there is denoted the collection of all
sets P ⊆ [0, 1] such that P = f(Z(f,n)) for some Cn function f : [0, 1] → [0, 1], and by
A∞ there is denoted the collection of all sets P ⊆ [0, 1] such that P = f(Z(f,∞)) for
some C∞ function f : [0, 1] → [0, 1] where Z(f,∞) = {x ∈ R : f (i)(x) = 0 for all 1 ≤
i}. From [6: Theorems 2.28 and 2.33] it follows that ∩nAn = A∞. On the other
hand, it is also clear that ∩nAn,α = A∞.

Theorem 2.30. Let P ⊆ [0, 1] and 1 ≤ n < ∞. Then An,1 = An+1 and the
following assertions are equivalent:

1. There is a Cn,1 function f : [0, 1] → [0, 1] such that P = f(Z(f,n)).

2. P is a closed set with H 1
n+1 (P ) = 0 and βn,1(P, [0, 1]) < ∞.

3. There is a Cn+1 function f : [0, 1] → [0, 1] such that P = f(Z(f,n+1)).

Proof. Assertion (1) ⇔ (2) is a consequence of Theorem 2.26. Assertion (2) ⇔
(3) follows from the fact that, by definition, βn,1(P, [0, 1]) = βn+1(P, [0, 1]) and from
[6: Theorem 2.28]

3. Perfect level sets

In this section we characterize the set of points where level sets of a given Cn,α

function are perfect. We first recall some basic definitions and results.

Definition 3.1 [6: Definition 3.1]. Let f : I → R be a continuous function and
G the union of all open (relative to I) intervals S such that f is monotone on S. We
call p ∈ I \G a turning point of f and denote by Tf the union of the set of all turning
points of f and all end-points of I.
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Definition 3.2. Let f : I → R be a continuous function. For γ ≥ 1 we define
the γ-variation of f by

Vγ(f) = sup

{
k∑

i=1

|f(xi+1)− f(xi)|
1
γ

}

where the supremum is taken over points xi ∈ Tf such that x1 < x2 < . . . < xk+1.

Theorem 3.3 [10, 11]. Suppose 1 ≤ n < ∞ and 0 < α ≤ 1, and let f : [0, 1] →
R be a continuous function of bounded variation with Vn+α(f) < ∞. Then there is a
homeomorphism h : [0, 1] → [0, 1] such that f ◦ h is a Cn,α function.

Definition 3.4 [6: Definition 3.13]. Suppose P and Q are closed sets. We say
that P is strongly contained in Q, denoted by P ¹ Q, if P ⊆ Q, Q \ P is countable
and every point of P is a bilateral limit point of Q.

Lemma 3.5. Suppose 1 ≤ n < ∞ and P ∈ An,α. Then there is Q ∈ An,α such
that P ¹ Q.

Proof. The proof is the same as that of [6: Lemma 3.14]

We now proceed towards the goal of this section.

Theorem 3.6. Let M → [0, 1], 1 ≤ n < ∞ and 0 < α ≤ 1. Then the following
assertions are equivalent:

1. M is the union of a Gδ set and a countable set and there is P ∈ An,α such
that M ⊂ P .

2. There is a Cn,α function f : [0, 1] → [0, 1] such that f−1({y}) is perfect for
every y ∈ M and finite otherwise.

Proof. Assertion (2) ⇒ (1): By [6: Lemma 3.7], M is the union of a Gδ set and
a countable set. From the fact that f−1({y}) is perfect for all y ∈ M it follows that
M ⊆ f(Z(f,n)) ∈ An,α.

Assertion (1) ⇒ (2): Let M and P be as described in Assertion 1. By Lemma
3.5 there exists a set P ′ ∈ An,α such that P ¹ P ′. By Theorem 2.26, there is
a Cn,α increasing homeomorphism h such that h(Z(h,n)) = P ′ and λ(Z(h,n)) = 0.
Let Q′ = h−1(P ′), Q = h−1(P ) and N = h−1(M). The sets Q′, Q and N clearly
satisfy the hypotheses of [6: Proposition 3.16]. Now applying this proposition we can
obtain a continuous function of bounded variation g such that g−1({y}) is perfect
for all y ∈ N , finite otherwise and g(Tg) ⊆ Q′. Now we consider the function
h ◦ g. First, (h ◦ g)−1({y}) clearly is perfect for all y ∈ M and finite otherwise.
Next we want to observe that h ◦ g satisfies the hypotheses of Theorem 3.3. As h is
Lipschitz and g is a continous function of bounded variation, h◦g is also a continuous
function of bounded variation. Now we want to show that Vn+α(h ◦ g) < ∞. Let
x1 < x2 < . . . < xk < xk+1 be elements of Th◦g. Since h is a homeomorphism,
xi ∈ Tg for all i as well. Let 1 ≤ i ≤ k. As g(xi) ∈ Q′ = Z(h,n),

h(1)(g(xi)) = h(2)(g(xi)) = . . . = h(n)(g(xi)) = 0.
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Then, by Lemma 2.3,
∣∣(h ◦ g)(xi+1)− (h ◦ g)(xi)

∣∣ ≤ [h ◦ g]n,α |g(xi+1)− g(xi)|n+α.

Hence,
k∑

i=1

∣∣(h ◦ g)(xi+1)− (h ◦ g)(xi)
∣∣ 1

n+α

≤
k∑

i=1

(
[h ◦ g]n,α

∣∣g(xi+1)− g(xi)
∣∣n+α) 1

n+α

= ([h ◦ g]n,α)
1

n+α

k∑

i=1

∣∣g(xi+1)− g(xi)
∣∣

≤ ([h ◦ g]n,α)
1

n+α V (g).

As g is a function of bounded variation, Vn+α(h ◦ g) < ∞. Now, applying Theorem
3.3 to h ◦ g, we obtain a homeomorphism h1 of [0, 1] such that h ◦ g ◦ h1 is a Cn,α

function and f = h ◦ g ◦ h1 is the desired function

Theorem 3.7. Let M ⊂ [0, 1] and 1 ≤ n < ∞. Then the following assertions
are equivalent:

1. There is a Cn,1 function f : [0, 1] → [0, 1] such that f−1({y}) is perfect for
every y ∈ M and finite otherwise.

2. M is the union of a Gδ set and a countable set and there is P ∈ An,1 such
that M ⊂ P .

3. There is a Cn+1 function f : [0, 1] → [0, 1] such that f−1({y}) is perfect for
every y ∈ M and finite otherwise.

Proof. Assertion (1) ⇔ (2) is a consequence of Theorem 3.6 and Assertion
(2) ⇔ (3) follows from the fact that An,1 = An+1 and from [6: Theorem 3.17]

4. Uncountable level sets

In this section we characterize the set of points where level sets of a given Cn,α

function are uncountable.

Theorem 4.1. Let M ⊂ [0, 1], 1 ≤ n < ∞ and 0 < α ≤ 1. Then the following
assertions are equivalent:

(1) M is an analytic set and there is P ∈ An,α such that M ⊂ P .
(2) There is a Cn,α function f : [0, 1] → [0, 1] such that f−1({y}) is uncountable

for every y ∈ M and countable otherwise.

Proof. Assertion (2) ⇒ (1): By [9: p. 498/Theorem 2], M is analytic. Since
f−1({y}) contains a perfect set for each y ∈ M , y ∈ f(Z(f,n)). Hence M ⊂ f(Z(f,n)).
The proof of assertion (1) ⇒ (2) is analogous to that Theorem 3.6 and can be carried
out by applying [6: Proposition 4.2]
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Theorem 4.2. Let M ⊂ [0, 1] and 1 ≤ n < ∞. Then the following assertions
are equivalent:

1. There is a Cn,1 function f : [0, 1] → [0, 1] such that f−1({y}) is uncountable
for every y ∈ M and countable otherwise.

2. M is an analytic set and there is P ∈ An,1 such that M ⊂ P .
3. There is a Cn+1 function f : [0, 1] → [0, 1] such that f−1({y}) is uncountable

for every y ∈ M and countable otherwise.

Proof. Assertion (1) ⇔ (2) is a consequence of Theorem 4.1 and Assertion
(2) ⇔ (3) follows from the fact that An,1 = An+1 and from [6: Theorem 4.3]

5. The Lipschitz case

In this section we characterize the set of points where level sets of a given Lipschitz
function are perfect. We first have the following definitions and propositions.

Definition 5.1. For a Lipschitz function f on a closed interval I ⊂ R we set

Pf =
{
y ∈ R : f−1({y}) is perfect

}

Df =
{
x ∈ R : f is differentiable at x

}

Z̃(f,1) =
{
x ∈ Df : f (1)(x) = 0

}
.

Clearly, if f ∈ C1(I), then Z̃(f,1) = Z(f,1).

Theorem 5.2 [4: Lemma 1]. If f is a continuous function of bounded variation
on [0, 1], there exists a homeomorphism h of [0, 1] onto itself such that f ◦ h is a
Lipschitz function.

Definition 5.3. Let B = I × J be a box. We use IL, IM , IR to denote the
left third, middle third and right third intervals of I, respectively, and define BL =
IL×J,BM = IM×J,BR = IR×J – the so-called vertical splitting of B. A continuous
function f is
- diagonal to B if the restriction of f to B is a linear function which passes through

the diagonal corners of B

- jagged inside B if it is diagonal to each of BL, BM , BR.

Definition 5.4. Let f : [0, 1] → [0, 1] be a continuous function and J a closed
interval in [0, 1]. Then we define αf (J) to be the extended positive integer equal to
the number of components of f−1(J).

Proposition 5.5. Suppose G is a Gδ set with λ(G) = 0. Then there is a con-
tinuous function of bounded variation f : [0, 1] → [0, 1] such that

1. f−1({y}) is perfect for all y ∈ G

2. f−1({y}) is finite for all y /∈ G.

Proof. Since G is a Gδ set with λ(G) = 0, there exists a decreasing sequence of
open sets {Ak} with λ(Ak) < 1

32k and G = ∩∞k=1Ak. We will construct our desired
function f as the uniform limit of an appropriately chosen sequence {fk}.
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Let f0 : [0, 1] → [0, 1] be the identity map. Considering A1 we may obtain
a countable collection {Jt}∞t=1 of non-overlapping, closed intervals contained in A1

such that G ⊆ ∪∞t=1Jt. Let f1 be the modification of f0 which is linearly jagged inside
f−1
0 (Jt)× Jt for all t, and let G1 = {f−1

0 (Jt)× Jt : t ≥ 1}. Then, at the end of stage
1, the following properties are satisfied:

(i) f1 is a continuous function linearly jagged inside each B ∈ G1 with f1(0) = 0
and f1(1) = 1.

(ii) The graph of f1 coincides with the graph of f0 outside ∪G1.
(iii) |f−1

1 ({y})| ≤ 31 for all y ∈ [0, 1].
(iv) f1 is a continuous function of bounded variation and V (f1) ≤ V (f0) +

3
∑∞

n=1 αf0(Jn)λ(Jn) = V (f0) + 3
∑∞

n=1 λ(Jn) ≤ V (f0) + 3λ(A1).
(v) π2(∪G1) ⊆ A1.
(vi) λ(π1(B)) ≤ λ(π2(B)) ≤ λ(A1) for every B ∈ G1.
(vii) ‖f1 − f0‖0 ≤ λ(A1).

Now let us assume that we are at stage k > 1, fk and Gk have been constructed
already so that the following properties are satisfied:

(i) fk is a continuous function linearly jagged inside each B ∈ Gk with fk(0) = 0
and fk(1) = 1.

(ii) The graph of fk coincides with the graph of fk−1 outside ∪Gk.
(iii) |f−1

k ({y})| ≤ 3k for every y ∈ [0, 1].
(iv) fk is a continuous function of bounded variation and V (fk) ≤ V (fk−1) +

3kλ(Ak).
(v) π2(∪Gk) ⊆ Ak.
(vi) λ(π1(B)) ≤ λ(π2(B)) ≤ λ(Ak) for every B ∈ Gk.
(vii) ‖fk − fk−1‖0 ≤ λ(Ak).
(viii) If y ∈ G and B ∈ Gk−1 are such that y ∈ π2(B), then there exist disjoint

boxes B1 and B2 in Gk contained in B such that y ∈ π2(B1) ∩ π2(B2).
(ix) If (x, fk(x)) is such that fk(x) ∈ G, then (x, fk(x)) ∈ ∪Gk.

Let us now construct fk+1. For this let B′ ∈ Gk and fix B to be one of B′
L, B′

M or
B′

R. Note that fk is diagonal to B. Let us define fk+1 inside B first and construct a
collection GB

k+1 of boxes inside B. As before, we obtain a countable collection of non-
overlapping closed intervals {Jt} contained in π2(B) ∩ Ak+1 such that π2(B) ∩G ⊆
∪∞t=1Jt. Let fk+1|π1(B) be the modification of fk|π1(B) which is linearly jagged inside
each of (fk|π1(B))−1(Jt)× Jt and set

GB
k+1 = {(fk|π1(B))−1(Jt)× Jt : t ≥ 1}.

We do the above process for each such B and let fk+1 be the resulting function. We
also set Gk+1 = ∪GB

k+1. In order to prove assertion (iv) we notice that

V (fk+1) ≤ V (fk) + 3
∞∑

n=1

αfk
(Jn)λ(Jn) ≤ V (fk) + 3k+1λ(Ak+1).
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It is easy to verify that fk+1 satisfies all other induction hypotheses of stage k+1. By
assertion (vii), the sequence {fk} converges uniformly to some continuous function
f . By assertion (iv),

V (fk) ≤ V (f0) +
k∑

j=1

3jλ(Aj) ≤ V (f0) +
k∑

j=1

3j 1
32j

< V (f0) +
1
2
.

Hence f is of bounded variation. By assertion (viii), f−1({y}) is perfect for all y ∈ G.
By assertions (v), (ii) and (iii), f−1({y}) is finite for all y /∈ G

Proposition 5.6. Let M ⊆ [0, 1] be the union of a Gδ set and a countable set
with λ(M) = 0. Then there exists a Lipschitz function f : [0, 1] → [0, 1] such that
f−1({y}) is perfect for every y ∈ M and finite otherwise.

Proof. Let M = G ∪ N , where G is a Gδ set and N is countable, with G ∩
N = ∅. By Proposition 5.6 there exists a continuous function of bounded variation
h : [0, 1] → [0, 1] such that h−1({y}) is perfect for all y ∈ G and finite otherwise.
Since G ∩ N = ∅, N1 = h−1(N) is countable. By [6: Proposition 3.8], there is a
continuous non-decreasing function g : [0, 1] → [0, 1] such that g−1({y}) is a closed
non-degenerate interval for all y ∈ N1 and g−1({y}) is a singleton for all y /∈ N1.
Clearly, (h ◦ g)−1({y}) is perfect for every y ∈ M and finite otherwise and h ◦ g is a
continuous function of bounded variation. Now, applying Theorem 5.2 we obtain a
homeomorphism h1 such that h ◦ g ◦ h1 is a Lipschitz function and f = h ◦ g ◦ h1 is
the desired function

Proposition 5.7. Suppose I is a closed interval contained in [0, 1] and f is a
Lipschitz function defined on I. Then the set of points where level sets are perfect is
the union of a Gδ set and a countable set, and it has Lebesgue measure zero.

Proof. By [7: Lemma 3.7], Pf is the union of a Gδ and a countable set. Without
loss of generality, since countable sets obviously have Lebesgue measure zero, we may
assume that Pf is a Gδ set. Let

P 1
f =

{
y ∈ Pf : f(xy) = y for some xy ∈ Df

}
.

Since f is Lipschitz it follows that λ(Pf \ Pf
1) = 0. It is clear that xy ∈ Z̃(f,1) for

every y ∈ Pf
1. By a standard result (e.g. [2: Lemma 7.10]) the set f(Z̃(f,1)) has

Lebesgue measure zero. So, since Pf
1 is a subset of f(Z̃(f,1)), it also has Lebesgue

measure zero. Therefore λ(Pf ) = 0

The following theorem is the goal of this section.

Theorem 5.8. Let M ⊆ [0, 1]. Then the following assertions are equivalent:

1. There is a Lipschitz function f : [0, 1] → [0, 1] such that f−1({y}) is perfect
for every y ∈ M and finite otherwise.

2. M is the union of a Gδ set and a countable set and λ(M) = 0.

Proof. Assertion (1) ⇒ (2) is Proposition 5.7 while Assertion (2) ⇒ (1) is
Proposition 5.6
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