Comparison of Non-Commutative 2- and p-Summing Operators from $B(l_2)$ into OH

L. Mezrag

Abstract. In the theory of p-summing operators studied by Pietsch we know that $\pi_2(C(K))$, H) = $\pi_p(C(K), H)$ for any Hilbert space H and any p such that $2 < p < +\infty$. In this paper we prove that this equality is not true in the same notion generalized by Junge and Pisier to operator spaces, i.e. $\pi_{l_2}(B(l_2), OH)$ $(=\pi_2^0(B(l_2), OH)) \neq \pi_{l_p}(B(l_2), OH)$.

Keywords: Operator spaces, completely bounded operators, p−summing operators AMS subject classification: 46B28, 47D15

1. Introduction

In the recent theory of operator spaces (or non-commutative Banach spaces) developed by [1 - 6, 10 - 12], bounded operator is replaced by completely bounded operator, isomorphism by complete isomorphism and Banach space by operator space. Precisely, we view in this new category every Banach space as a subspace of $B(H)$ for some Hilbert space $H(B(H))$ is the Banach space of all bounded linear operators on H) which is non-commutative, instead of viewing them as a subspace of $C(K)$ (the space of all continuous functions on a compact K) which is commutative. The abstract characterization given in [12] signed the beginning of this theory. In [10] Pisier constructed the operator Hilbert space *OH* (i.e. the unique space verifying $\overline{OH*} = OH$ completely isometrically as in the case of Banach spaces because there are Hilbert spaces in this category which are non completely isometrically) and generalized in [11] (also Junge) the notion of p -summing operators to the non-commutative case.

In this paper we show that

$$
\pi_{l_2}(B(l_2), OH) \neq \pi_{l_p}(B(l_2), OH)
$$

for all p in $(2,\infty)$. In the case of completely p-summing operators the problem is raised in [11: Problem 10.2] and is still open (i.e. is every completely operator $u : B(H) \to OH$ necessarily completely 2-summing?). This question, which called

L. Mezrag: Univ. de M'sila, Lab. de Math. Pures et Appl., BP 166 Ichbilia, 28003 M'sila, Algérie; lmezrag@yahoo.fr

the little Grothendieck's theorem in the case of Banach spaces, is the origin and the inspiration of this work. Le Merdy proved in [8: Theorem 4.2] that

$$
cb(B(l_2)*, OH) \neq \pi_2^0(B(l_2)*, OH).
$$

Let H be a Hilbert space and $X \subset B(H)$ be a closed subspace. For all $n \geq 1$ we denote by $M_n(X) = M_n \otimes X$ the space of $n \times n$ matrices $(x_{ij})_{1 \le i,j \le n}$ with entries $x_{ij} \in X$ equipped with the norm induced by the space $M_n(B(\overline{H})) = B(l_2^n(H)) =$ $B(l_2^n \otimes_2 H)$ $(l_2^n \otimes_2 H$ is the Hilbert-space tensor product of l_2^n and H).

Definition 1.1. An *operator space* X is a closed subspace of $B(H)$ for some Hilbert space H.

Let X be a vector space. If for each $n \in \mathbb{N}$ there is a norm $\|\cdot\|_n$ on $M_n(X)$, then the family of norms $\{\|\cdot\|_n\}_{n\geq 1}$ is called an L_{∞} -matricial structure on X if

- (i) $\|axb\|_n \leq \|a\|_{M_n(\mathbb{C})}\|x\|_n\|b\|_{M_n(\mathbb{C})}$
- (ii) $||x \oplus y||_{n+m} =$ $\begin{array}{c} \n\pi \infty, \\
\pi \infty\n\end{array}$ 0 0 \hat{y} $\begin{aligned} \sum_{n=1}^{\infty} \left\|x\right\|_{n+m}^{n+m} = \max\{\|x\|_{n}, \|y\|_{m}\}, \end{aligned}$

for all a, b in $M_n(\mathbb{C}) = B(l_2^n), x \in M_n(X)$ and $y \in M_m(X)$. We say that X is L_{∞} -matricially normed if it is equipped with an L_{∞} -matricial structure (which we suppose complete). Ruan proved in [12: Theorem 3.1] and simplified (with Effros) in [6] an important theorem which is the matricial norm characterization for operator spaces. This theorem sais that for any L_{∞} -matricial structure on a vector space X there is a Hilbert space H and an embedding of X into $B(H)$ such that for all $n \geq 1$ the norm $\|\cdot\|_n$ on $M_n(X)$ coincides with the norm induced by the space $B(l_2^n(H))$. In other words, he has given an abstract characterization of operator spaces.

Definition 1.2. Let H and K be Hilbert spaces, and let $X \subset B(H)$ and Y \subset $B(K)$ be two operator spaces. A linear map $u: X \to Y$ is completely bounded if the maps

$$
u_n: M_n(X) \to M_n(Y), \quad (x_{ij})_{1 \le i,j \le n} \to (u(x_{ij}))_{1 \le i,j \le n}
$$

are uniformly bounded for $n \in \mathbb{N}$, i.e. $\sup_{n\geq 1} ||u_n|| < +\infty$. In this case we put $||u||_{cb} = \sup_{n\geq 1} ||u_n||$ and we denote by $cb(X, Y)$ the Banach space of all completely bounded maps from X into Y which is also an operator space because $M_n(cb(X, Y)) = cb(X, M_n(Y))$ (see [3, 5]). We denote also by $X \otimes_{min} Y$ the subspace of $B(H \otimes_2 K)$ with induced norm.

Let H be a Hilbert space. We denote by $S_p(H)$ $(1 \leq p < \infty)$ the Banach space of all compact operators $u : H \to H$ such that $\text{Tr}(|u|^p) < \infty$, equipped with the norm

$$
\|u\|_{S_p(H)}=\left(\text{Tr}\left(|u|^p\right)\right)^{\frac{1}{p}}.
$$

If $H = l_2$ or $H = l_2^n$, we denote simply $S_p(l_2)$ by S_p or $S_p(l_2^n)$ by S_p^n , respectively. We denote also by $S_{\infty}(H)$ and S_{∞} the Banach spaces of all compact operators equipped with the norm induced by $B(H)$ and $B(l_2)$, respectively, and by S^n_{∞} the space $B(l_2^n)$. Recall that if $\frac{1}{p} = \frac{1}{q}$ $\frac{1}{q}+\frac{1}{r}$ $\frac{1}{r}$ for $1 \leq p, q, r < +\infty$, then $u \in B_{S_p(H)}$ if and only if there are $u_1 \in B_{S_q(H)}$ and $u_2 \in B_{S_r(H)}$ such that $u = u_1u_2$, where $B_{S_p(H)}$ is the closed unit ball of $S_p(H)$.

Before continuing our notation we will briefly mention some properties concerning completely bounded operators. We recall that OH is homogeneous, in other words, every bounded linear operator $u : H \to OH$ is completely bounded and

$$
||u|| = ||u||_{cb}.
$$
\n(1.1)

Note also that S_2 is completely isometric to $OH \times OH$. We denote by OH_n the *n*-dimensional version of the Hilbert operator space OH . If now S_2^N ($N \in \mathbb{N}$) is equipped with the operator-space structure OH_{N^2} , then for any linear map T : $S_2^N \to OH_n$ we have by homogeneity of OH

$$
||T|| = ||T||_{cb}.
$$
\n(1.2)

Finally, let us recall the last property. Let Y be an operator space such that $Y \subset$ $A \subset B(H)$, A a commutative C^{*}-algebra, and let X be an arbitrary operator space. Then, for all bounded linear operators $u: X \to Y$,

$$
||u|| = ||u||_{cb}.
$$
\n(1.3)

Let now X be an operator space. As usual we denote by $l_p(X)$ and $l_p^n(X)$ the spaces of infinite sequences $\{x_1, ..., x_n, ...\}$ and finite sequences $\{x_1, ..., x_n\}$ in
X equipped with the norm $\left(\sum_{n=1}^{\infty} ||x_n||^p\right)^{\frac{1}{p}}$ and $\left(\sum_{i=1}^n ||x_i||^p\right)^{\frac{1}{p}}$, respectively, which become operator spaces. Let now $S_p[X]$ (for more details see [11: p. 10 and Theorem 1.5]) and $S_p^n[X]$ be subspaces of $M_\infty(X)$ and $M_n(X)$ with norms

$$
||u||_{S_p[X]} = \inf_{u=avb} ||a||_{S_{2p}} ||v||_{M_{\infty}(X)} ||b||_{S_{2p}}
$$

$$
||u||_{S_p^n[X]} = \inf_{u=avb} ||a||_{S_{2p}^n} ||v||_{M_n(X)} ||b||_{S_{2p}^n}
$$

respectively, where

$$
M_{\infty}(X) = \left\{ u = (u_{ij})_{1 \le i,j \le +\infty} : \|(u_{ij})_{1 \le i,j \le n}\|_{M_n(X)} \le K \ (n \ge 1) \right\}
$$

and $\|(u_{ij})_{1\leq i,j\leq\infty}\|_{M_{\infty}(X)} = \inf K$, which is a subspace of $B(l_2 \otimes_2 H)$.

2. Non-commutative p-summing operators

We first give the following definition which was introduced in [11: p. 31].

Definition 2.1. Let $1 \leq p < \infty$, let X and Y be operator spaces, and let $u: X \to Y$ be a linear operator. We will say that u is completely p-summing if there is a constant $C > 0$ such that, for all $n \ge 1$ and all $(x_{ij})_{1 \le i,j \le n} \in M_n(X)$, $||u(x_{ij})||_{S_p^n[X]} \leq C ||(x_{ij})||_{S_p^n \otimes_{\min} X}.$

We will denote by $\pi_p^0(u)$ the smallest constant with this property and by $\pi_p^0(X, Y)$ the space of all completely *p*-summing operators equipped with the norm $\pi_p^0(\cdot)$ for which it becomes a Banach space.

712 L. Mezrag

The classical definition in the sens of Pietsch $[9]$ is the following: If X and Y are Banach spaces, an operator $u : X \to Y$ is absolutely p-summing if there exists a constant $C > 0$ such that, for all $n \geq 1$ and for all $\{x_i\}_{1 \leq i \leq n} \subset X$, $||u(x_i)||_{l_p^n(X)} \leq$ $C\|(x_i)\|_{l_p^{\bar{m}}\tilde{\otimes}X}$ where $l_p^{\bar{m}}\tilde{\otimes}X$ is the injective tensor product.

After this outline and to facilitate the comprehension we will use a definition due to Junge intermediate between absolutely p-summing operators in the case of Banach spaces and completely p-summing in the case of operator spaces. All these definitions are rejoining on certain operator spaces, particularly those which interest us.

The next definition is due to Junge [7].

Definition 2.2. Let H be a Hilbert space, let $X \subset B(H)$ be an operator space, and let $u : X \to Y$ be a linear operator from X into a Banach space Y. We will say that u is $l_p\text{-}summing (1 \leq p < +\infty)$ if there is a constant $C > 0$ such that for all finite sequences $\{x_i\}_{1\leq i\leq n}$ in X

$$
\bigg(\sum_{i=1}^n \|u(x_i)\|^p\bigg)^{\frac{1}{p}} \le C \sup_{a,b\in B_{S_{2p}}^+} \bigg(\sum_{i=1}^n \|ax_i b\|_{S_p(H)}^p\bigg)^{\frac{1}{p}}.
$$

We denote by $\pi_{l_p}(u)$ the smallest constant C for which this holds and by $\pi_{l_p}(X, Y)$ the space of all l_p -summing operators with the norm $\pi_{l_p}(\cdot)$ which becomes a Banach space. We can show that

$$
\sup_{a,b \in B_{S_{2p}(H)}} \left(\sum_{n=1}^{\infty} \|ax_i b\|_{S_p(H)}^p \right)^{\frac{1}{p}} = \left\| \{x_i\} \right\|_{l_p^n \otimes_{\min} X} = \sum_{i=1}^n \|e_i \otimes x_i\|_{cb(l_q^n, X)} \tag{2.1}
$$

where q is the conjugate of p and $\{e_i\}_{1\leq i\leq n}$ is the canonical basis of l_q^n . By (2.1) Definition 2.2 is equivalent to the following: For all $n \in \mathbb{N}$, $\{x_i\}_{1 \leq i \leq n} \in X$ and $T \in cb(l_q^n, X)$ such that $T(e_i) = x_i$,

$$
\left(\sum_{i=1}^{n} \|uT(e_i)\|^p\right)^{\frac{1}{p}} \le C\|T\|_{cb}.
$$
\n(2.2)

The following remark will be needed to prove Lemma 2.3.

Remark 1. Let $C > 0$ be a constant. Then u is l_p -summing and $\pi_{l_p}(u) \leq C$ if and only if ° °

$$
||I \otimes u : l_p^n \otimes_{\min} X \to l_p^n(Y)|| \le C \tag{2.3}
$$

for all $n \geq 1$.

Remark 2.

1) Let E and X be operator spaces and let Y and F be Banach spaces. Let $E \stackrel{v}{\rightarrow} X \stackrel{u}{\rightarrow} Y \stackrel{w}{\rightarrow} F$ such that v is completely bounded, u is l_p -summing and w is a bounded operator. Then $\pi_{l_p}(wuv) \leq ||w|| \pi_{l_p}(u) ||v||_{cb}$.

2) Let X and Y be operator spaces and consider u in $\pi_p^0(X, Y)$. Then $u \in$ $\pi_{l_p}(X,Y)$ and $\pi_{l_p}(u) \leq \pi_p^0(u)$.

3) Let X be an operator space, Y a Banach space, and consider u in $\pi_p(X, Y)$. Then $u \in \pi_{l_p}(X, Y)$ and $\pi_{l_p}(u) \leq \pi_p(u)$.

4) Let $X \subset A \subset B(H)$ with A a commutative C^{*}-algebra and Y be operator spaces. Then by (1.3) and (2.2) $\pi_{l_p}(X, Y) = \pi_p(X, Y)$.

5) If $X = OH$, then by (1.1) and (2.2) $\pi_{l_2}(OH, Y) = \pi_2^0(OH, Y)$.

The following theorem is the extension of the Pietsch factorization for l_p -summing operators. The proof is exactly the same than that used in [11: Theorem 3.1].

Theorem 2.3. Let $X \subset B(H)$ be an operator space, Y a Banach space and $u: X \to Y$ a linear operator. Let $1 \leq p \lt +\infty$. The following properties of a constant $C > 0$ are equivalent:

- (i) u is $l_p\text{-}summing$ and $\pi_{l_p}(u) \leq C$.
- (ii) There are a set I, families a_{α} and b_{α} in B_{S}^{+} . $\sigma_{S_{2p}}^+$ and an ultrafilter ${\cal U}$ on I such that $||u(x)|| \leq C \lim_{\mathcal{U}} ||a_{\alpha}x b_{\alpha}||_{S_p(H)}$ for all $x \in X$.
- (iii) u factors of the form $u = \tilde{u}(M/E_{\infty})i$ and $\|\tilde{u}\| \leq C$ as

where

- $i(x) = \{x_\alpha\}_{\alpha \in I}$ with $x_\alpha = x$ for all $\alpha \in I$
- $E_{\infty} = i(X)$ which is a closed subspace of $\hat{B}(H)$ and $||i||_{cb} = 1$
- $\hat{B}(H) = (B_{\alpha}(H))/\mathcal{U}$ with $B_{\alpha}(H) = B(H)$ for all $\alpha \in I$
- M is the operator associated to ${M_\alpha}_{\alpha\in I}$, M_α : $B(H) \to S_p(H)$, $M_\alpha(x) = a_\alpha x b_\alpha$ and $\pi_{l_p}(M) \leq 1$
- $\hat{S}_p(H) = (S_\alpha(H))/\mathcal{U}$ with $S_\alpha(H) = S_p(H)$ for all $\alpha \in I$
- $E_p = M(E_{\infty})$ which is a closed subspace of $\hat{S}_p(H)$
- $-\hat{B}(H)$ and $\hat{S}_p(H)$ are operator spaces.

Remark 3.

1) Let $u: X \to Y$ be a linear operator between operator spaces. Then the property u to be l_p -summing not implies that \tilde{u} is completely bounded. On the other hand, if $p = 2$ and $Y = OH$, then by (1.1) u is completely bounded and $\pi_{l_2}(X, OH) = \pi_2^0(X, OH).$

2) Let $Y \subset A \subset B(H)$ with A a commutative C^{*}-algebra and X be operator spaces. Then by (1.3) and (2.2) $\pi_{l_p}(X,Y) = \pi_p^0(X,Y)$.

3) If $X = Y = OH$, then clearly $\pi_{l_2}(OH, OH) = \pi_2^0(OH, OH) = HS(OH, OH)$.

Lemma 2.4. Let $X \subset B(H)$ be an operator space. Consider $a, b \in B_{S_n}^+$ S_{2p} and $1 \leq p \leq q < +\infty$. Then $||axb||_{S_p(H)} \leq ||a^{\frac{p}{q}}xb^{\frac{p}{q}}||_{S_q(H)}$ for all $x \in X$.

Proof. Let $x \in X$ and consider $a, b \in B_{S_n}^+$ s_{2p}^+ . We have

$$
||axb||_{S_p(H)} = ||a^{1-\frac{p}{q}} a^{\frac{p}{q}} x b^{\frac{p}{q}} b^{1-\frac{p}{q}}||_{S_p(H)}
$$

\n
$$
\leq ||a^{1-\frac{p}{q}}||_{S_{\frac{2pq}{q-p}}} ||a^{\frac{p}{q}} x b^{\frac{p}{q}} b^{1-\frac{p}{q}}||_{S_{\frac{2pq}{q-p}}}
$$

\n
$$
\leq ||a^{1-\frac{p}{q}}||_{S_{\frac{2pq}{q-p}}} ||a^{\frac{p}{q}} x b^{\frac{p}{q}}||_{S_q(H)} ||b^{1-\frac{p}{q}}||_{S_{\frac{2pq}{q-p}}}
$$

\n
$$
\leq ||a^{\frac{p}{q}} x b^{\frac{p}{q}}||_{S_q(H)}
$$

because $\|a^{1-\frac{p}{q}}\|_{S_{\frac{2pq}{q-p}}}$ $=\|a\|_{S_{2p}}^{\frac{q-p}{q}} \leq 1$ and this illustrates that the diagram

is commutative

Proposition 2.5. Let $1 \leq p \leq q < +\infty$. Let $X \subset B(H)$ be an operator space, Y a Banach space and $u: X \to Y$ an l_p -summing operator. Then u is l_q -summing and $\pi_{lq}(u) \leq \pi_{lp}(u)$.

Proof. We have

$$
||u(x)|| \leq \pi_{lp}(u) \lim_{\mathcal{U}} ||a_{\alpha} x b_{\alpha}||_{S_p(H)} \leq \pi_{lp}(u) \lim_{\mathcal{U}} ||a_{\alpha}^{\frac{p}{q}} x b_{\alpha}^{\frac{p}{q}}||_{S_q(H)}
$$

by Lemma 2.4 where $a_{\alpha}^{\frac{p}{q}}$ and $b_{\alpha}^{\frac{p}{q}}$ are in B_{S}^{+} S_{2q} and the comparison is obtained

3. The finite-dimensional case

Let us now give the following finite-dimensional version of Theorem 2.3.

Proposition 3.1. Consider $N \in \mathbb{N}$ and $1 \leq p \leq +\infty$. Let $X \subset M_N$ be a finite-dimensional operator space, Y a Banach space and $u: X \to Y$ an l_p -summing operator. Then there are $a, b \in B_{\alpha}^+$ $\sum_{S_{2p}}^{+}$ such that $||u(x)|| \leq \pi_{lp}(u) ||axb||_{S_p^N}$.

Proof. Let

$$
S = \big\{ s = (a, b) \in S_{2p}^N : a, b \ge 0 \big\}.
$$

From the proof of [11: Theorem 3.1] there are a set I, an ultrafilter U on I and a family $\{\lambda_{\alpha}\}_{{\alpha \in I}}$ of probabilities on S such that

$$
||u(x)||^p \le \pi_{lp}^p(u) \lim_{\mathcal{U}} \int_S ||a_{\alpha} x b_{\alpha}||_{S_p^N}^p d\lambda_{\alpha}(s).
$$

As S is compact, there is a probability λ on S such that $\lambda_{\alpha} \to \lambda$ in the weak topology of measures on S and

$$
\lim_{\mathcal{U}} \int_{S} \|a_{\alpha}xb_{\alpha}\|_{S_p^N}^p d\lambda_{\alpha}(s) = \int_{S} \|axb\|_{S_p^N}^p d\lambda(s).
$$

Since the application

$$
C(S) \to S_p^N \to \mathbb{R}, \quad s = (a, b) \to axb \to \|axb\|
$$

as composition of two continuous applications is continuous, then for all $\varepsilon > 0$ there are $n_{\varepsilon} \in \mathbb{N}, \{s_i\}_{1 \le i \le n_{\varepsilon}} \subset S$ and $\{\lambda_i\}_{1 \le i \le n_{\varepsilon}}$ with $\lambda_i \ge 0$ and $\sum \lambda_i = 1$ such that

$$
\int_{S} \|axb\|_{S_p^N}^p d\lambda(s) \le (1+\varepsilon) \left(\sum \lambda_i \|a_i x b_i\|^p\right)^{\frac{1}{p}}.
$$

Using [11: Lemma 1.4] we have

$$
\int_S \|axb\|_{S_p^N}^p d\lambda(s) \le (1+\varepsilon) \Big\| \Big(\sum \lambda_i a_i^{2p} \Big)^{\frac{1}{2p}} x \Big(\sum \lambda_i b_i^{2p} \Big)^{\frac{1}{2p}} \Big\|_{S_p^N}
$$

for all $\varepsilon > 0$. Hence there are $a, b \in S_{2p}^N$ such that $||u(x)|| \leq \pi_{lp}(u) ||axb||_{S_p^N}$ and this gives the announced result

The next lemma will be crucial to prove our main result in Section 4.

Lemma 3.2. Consider $N \in \mathbb{N}$ and $2 < p < +\infty$. Let Y be a Banach space and $u: M_N \to Y$ be a linear operator. Then $\pi_{lp}(u) \leq \pi_{l_2}^{\frac{2}{p}}(u) ||u||^{1-\frac{2}{p}}$.

Proof. Let $u : M_N \to Y$ be a linear operator. As u is of finite rank, it is automatically l_2 -summing and by (2.3) we have for all $n \geq 1$

$$
||I \otimes u : l_2^n \otimes_{\min} M_N \to l_2^n(Y)|| \leq \pi_{l_2}(u). \tag{3.1}
$$

Apart from that we have abviously

$$
||I \otimes u : l_{\infty}^{n} \otimes_{\min} M_{N} \to l_{\infty}^{n}(Y)|| \leq ||u||.
$$
 (3.2)

We will now interpolate these two estimates. Precisely, by putting $\theta = \frac{2}{n}$ $\frac{2}{p}$, we have

$$
[l^n_{\infty}, l^n_2]_{\theta} = l^n_p \qquad \text{and} \qquad [l^n_{\infty}(Y), l^n_2(Y)]_{\theta} = l^n_p(Y).
$$

We have also

$$
l_2^n \otimes_{\min} M_N = M_N(l_2^n), \quad l_\infty^n \otimes_{\min} M_N = M_N(l_\infty^n), \quad l_p^n \otimes_{\min} M_N = M_N(l_p^n).
$$

Hence, by definition of operator space structures on l_2^n, l_∞^n and l_p^n ,

$$
\left[l_{\infty}^n \otimes_{\min} M_N, l_2^n \otimes_{\min} M_N \right]_{\theta} = l_p^n \otimes_{\min} M_N.
$$

Therefore by interpolation of (3.1) and (3.2) we obtain

 $||I \otimes u : l_p^n \otimes_{\min} M_N \to l_p^n(Y)$ $\|\leq \pi_{l_2}^{\theta}(u)\|u\|^{1-\theta}.$

As this is true for all $n \geq 1$ whence the desired result \blacksquare

4. Main result

We now prove that the converse of Proportion 2.5 is not true in the non-commutative case for certain spaces. This is the main result of this paper.

Theorem 4.1. Let $2 < p < +\infty$. Then $\pi_{l_2}(B(l_2), OH) \neq \pi_{l_p}(B(l_2), OH)$.

Proof. We proceed by contradiction. Assume that $\pi_2^0(B(l_2), OH)$ (= $\pi_{l_2}(B(l_2),$ (OH)) = $\pi_{l_p}(B(l_2), OH)$. Then there is a constant $C > 0$ such that, for all $u \in$ $\pi_{l_p}(B(l_2),OH), \pi_2^0(u) \leq C\pi_{l_p}(u)$. Let $N \in \mathbb{N}$ and consider $u \in \pi_{l_p}(M_N,OH)$. Using Lemma 3.2 we obtain $\pi_{l_2}(u) = \pi_2^0(u) \leq C \pi_{l_2}^{\frac{2}{p}}(u) ||u||^{1-\frac{2}{p}}$. Hence $\pi_2^0(u) \leq C ||u||$. Since by [11: Corollary 3.5] $||u||_{cb} \leq \pi_2^0(u)$, $||u||_{cb} \leq C||u||$ for all $u : M_N \to OH$ which is a contradiction by [10: Theorem 2.10]

Corollary 4.2. Let $B(B(l_2), OH)$ be the space of all bounded operators from $B(l_2)$ into OH. Then $\pi_{l_2}(B(l_2),OH) \neq B(B(l_2),OH)$.

Remark. Corollary 4.2 implies that the little (the variant of) Grothendieck's theorem is not true.

We end this paper by mentioning the interesting question raised in [11: Problem] 10.2] whether, considering $u \in cb(B(l_2), OH)$, $u \in \pi_{2,OH}(B(l_2), OH)$ is true.

Aknowledgement. I am very grateful to Christian Le Merdy (Université de Franche-Comté) for simplifying the proof of Lemma 3.2 and for helpful suggestions. I also thank the referee for several valuable suggestions which improved the paper.

References

- [1] Blecher, D.: Tensor products of operator spaces II. Canadian J. Math. 44 (1992), 75 90.
- [2] Blecher, D.: The standard dual of an operator space. Pacific J. Math. 153 (1992), 15 – 30.
- [3] Blecher, D. and V. Paulsen: Tensor products of operator spaces. J. Funct. Anal. 99 $(1991), 262 - 292.$
- [4] Effros, E. and Z. J. Ruan: *On matricially normed spaces*. Pacific J. Math. 132 (1988), $243 - 264.$
- [5] Effros, E and Z. J. Ruan: A new approch to operator spaces. Canadian Math. Bull. 34 (1991), 329 – 337.
- [6] Effros, E and Z. J. Ruan: On the abstract characterization of operator spaces. Proc. Amer. Math. Soc. 119 (1993), 579 – 584.
- [7] Junge, M.: Factorization theory for spaces of operators. Habilitationsschrift. Kiel (Germany): University 1996.
- [8] Le Merdy, C.: On the duality of operator spaces. Canad. Math. Bull. 38 (1995), 334 – 346.
- [9] Pietsch, A.: Absolut p-summierende Abbildungen in normierten Räumen. Studia Math. 28 (1967), 333 – 353.
- [10] Pisier, G.: The operator Hilbert space OH, complex interpolation and tensor norms. Memoirs Amer. Math. Soc. 122 (1996), 1 – 103.
- [11] Pisier, G.: Non-commutative vector valued L_p -spaces and completely p-summing maps. Astérisque (Soc. Math. France) 247 (1998), 1 – 131.
- [12] Ruan, Z. J.: Subspaces of C^* -Algebras. J. Func. Analysis 76 (1988), 217 230.
- [13] Séminaire L. Schwartz 1969 70. Paris: Ecole Polytechnique.

Received 02.01.2002; in revised form 31.05.2002