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Comparison of
Non-Commutative 2- and p-Summing Operators

from B(l2) into OH

L. Mezrag

Abstract. In the theory of p-summing operators studied by Pietsch we know that π2(C(K),
H) = πp(C(K), H) for any Hilbert space H and any p such that 2 < p < +∞. In this paper
we prove that this equality is not true in the same notion generalized by Junge and Pisier
to operator spaces, i.e. πl2(B(l2), OH) (= π0

2(B(l2), OH)) 6= πlp(B(l2), OH).
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1. Introduction

In the recent theory of operator spaces (or non-commutative Banach spaces) devel-
oped by [1 - 6, 10 - 12], bounded operator is replaced by completely bounded operator,
isomorphism by complete isomorphism and Banach space by operator space. Pre-
cisely, we view in this new category every Banach space as a subspace of B(H) for
some Hilbert space H (B(H) is the Banach space of all bounded linear operators
on H) which is non-commutative, instead of viewing them as a subspace of C(K)
(the space of all continuous functions on a compact K) which is commutative. The
abstract characterization given in [12] signed the beginning of this theory. In [10]
Pisier constructed the operator Hilbert space OH (i.e. the unique space verifying
OH? = OH completely isometrically as in the case of Banach spaces because there
are Hilbert spaces in this category which are non completely isometrically) and gener-
alized in [11] (also Junge) the notion of p-summing operators to the non-commutative
case.

In this paper we show that

πl2(B(l2), OH) 6= πlp(B(l2), OH)

for all p in (2,∞). In the case of completely p-summing operators the problem
is raised in [11: Problem 10.2] and is still open (i.e. is every completely operator
u : B(H) → OH necessarily completely 2-summing?). This question, which called
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the little Grothendieck’s theorem in the case of Banach spaces, is the origin and the
inspiration of this work. Le Merdy proved in [8: Theorem 4.2] that

cb(B(l2)?, OH) 6= π0
2(B(l2)?, OH).

Let H be a Hilbert space and X ⊂ B(H) be a closed subspace. For all n ≥ 1 we
denote by Mn(X) = Mn ⊗ X the space of n × n matrices (xij)1≤i,j≤n with entries
xij ∈ X equipped with the norm induced by the space Mn(B(H)) = B(ln2 (H)) =
B(ln2 ⊗2 H) (ln2 ⊗2 H is the Hilbert-space tensor product of ln2 and H).

Definition 1.1. An operator space X is a closed subspace of B(H) for some
Hilbert space H.

Let X be a vector space. If for each n ∈ N there is a norm ‖ · ‖n on Mn(X), then
the family of norms {‖ · ‖n}n≥1 is called an L∞-matricial structure on X if

(i) ‖axb‖n ≤ ‖a‖Mn(C)‖x‖n‖b‖Mn(C)

(ii) ‖x⊕ y‖n+m =
∥∥(

x
0

0
y

)∥∥
n+m

= max{‖x‖n, ‖y‖m}
for all a, b in Mn(C) = B(ln2 ), x ∈ Mn(X) and y ∈ Mm(X). We say that X is
L∞-matricially normed if it is equipped with an L∞-matricial structure (which we
suppose complete). Ruan proved in [12: Theorem 3.1] and simplified (with Effros) in
[6] an important theorem which is the matricial norm characterization for operator
spaces. This theorem sais that for any L∞-matricial structure on a vector space X
there is a Hilbert space H and an embedding of X into B(H) such that for all n ≥ 1
the norm ‖ · ‖n on Mn(X) coincides with the norm induced by the space B(ln2 (H)).
In other words, he has given an abstract characterization of operator spaces.

Definition 1.2. Let H and K be Hilbert spaces, and let X ⊂ B(H) and Y ⊂
B(K) be two operator spaces. A linear map u : X → Y is completely bounded if the
maps

un : Mn(X) → Mn(Y ), (xij)1≤i,j≤n → (u(xij))1≤i,j≤n

are uniformly bounded for n ∈ N, i.e. supn≥1 ‖un‖ < +∞. In this case we put
‖u‖cb = supn≥1 ‖un‖ and we denote by cb(X, Y ) the Banach space of all com-
pletely bounded maps from X into Y which is also an operator space because
Mn(cb(X, Y )) = cb(X,Mn(Y )) (see [3, 5]). We denote also by X⊗minY the subspace
of B(H ⊗2 K) with induced norm.

Let H be a Hilbert space. We denote by Sp(H) (1 ≤ p < ∞) the Banach space
of all compact operators u : H → H such that Tr (|u|p) < ∞, equipped with the
norm

‖u‖Sp(H) =
(
Tr (|u|p))

1
p .

If H = l2 or H = ln2 , we denote simply Sp(l2) by Sp or Sp(ln2 ) by Sn
p , respectively. We

denote also by S∞(H) and S∞ the Banach spaces of all compact operators equipped
with the norm induced by B(H) and B(l2), respectively, and by Sn

∞ the space B(ln2 ).
Recall that if 1

p = 1
q + 1

r for 1 ≤ p, q, r < +∞, then u ∈ BSp(H) if and only if there
are u1 ∈ BSq(H) and u2 ∈ BSr(H) such that u = u1u2, where BSp(H) is the closed
unit ball of Sp(H).
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Before continuing our notation we will briefly mention some properties concerning
completely bounded operators. We recall that OH is homogeneous, in other words,
every bounded linear operator u : H → OH is completely bounded and

‖u‖ = ‖u‖cb. (1.1)

Note also that S2 is completely isometric to OH × OH. We denote by OHn the
n-dimensional version of the Hilbert operator space OH. If now SN

2 (N ∈ N)
is equipped with the operator-space structure OHN2 , then for any linear map T :
SN

2 → OHn we have by homogeneity of OH

‖T‖ = ‖T‖cb. (1.2)

Finally, let us recall the last property. Let Y be an operator space such that Y ⊂
A ⊂ B(H), A a commutative C∗-algebra, and let X be an arbitrary operator space.
Then, for all bounded linear operators u : X → Y ,

‖u‖ = ‖u‖cb. (1.3)

Let now X be an operator space. As usual we denote by lp(X) and lnp (X)
the spaces of infinite sequences {x1, ..., xn, ...} and finite sequences {x1, ..., xn} in
X equipped with the norm (

∑∞
n=1 ‖xn‖p)

1
p and (

∑n
i=1 ‖xi‖p)

1
p , respectively, which

become operator spaces. Let now Sp[X] (for more details see [11: p. 10 and Theorem
1.5]) and Sn

p [X] be subspaces of M∞(X) and Mn(X) with norms

‖u‖Sp[X] = inf
u=avb

‖a‖S2p‖v‖M∞(X)‖b‖S2p

‖u‖Sn
p [X] = inf

u=avb
‖a‖Sn

2p
‖v‖Mn(X)‖b‖Sn

2p

respectively, where

M∞(X) =
{

u = (uij)1≤i,j≤+∞ : ‖(uij)1≤i,j≤n‖Mn(X) ≤ K (n ≥ 1)
}

and ‖(uij)1≤i,j≤∞‖M∞(X) = inf K, which is a subspace of B(l2 ⊗2 H).

2. Non-commutative p-summing operators

We first give the following definition which was introduced in [11: p. 31].

Definition 2.1. Let 1 ≤ p < ∞, let X and Y be operator spaces, and let
u : X → Y be a linear operator. We will say that u is completely p-summing if
there is a constant C > 0 such that, for all n ≥ 1 and all (xij)1≤i,j≤n ∈ Mn(X),
‖u(xij)‖Sn

p [X] ≤ C‖(xij)‖Sn
p⊗minX .

We will denote by π0
p(u) the smallest constant with this property and by π0

p(X, Y )
the space of all completely p-summing operators equipped with the norm π0

p(·) for
which it becomes a Banach space.
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The classical definition in the sens of Pietsch [9] is the following: If X and Y
are Banach spaces, an operator u : X → Y is absolutely p-summing if there exists a
constant C > 0 such that, for all n ≥ 1 and for all {xi}1≤i≤n ⊂ X, ‖u(xi)‖lnp (X) ≤
C‖(xi)‖lnp ⊗̌X where lnp ⊗̌X is the injective tensor product.

After this outline and to facilitate the comprehension we will use a definition due
to Junge intermediate between absolutely p-summing operators in the case of Banach
spaces and completely p-summing in the case of operator spaces. All these definitions
are rejoining on certain operator spaces, particularly those which interest us.

The next definition is due to Junge [7].

Definition 2.2. Let H be a Hilbert space, let X ⊂ B(H) be an operator space,
and let u : X → Y be a linear operator from X into a Banach space Y . We will say
that u is lp-summing (1 ≤ p < +∞) if there is a constant C > 0 such that for all
finite sequences {xi}1≤i≤n in X

( n∑

i=1

‖u(xi)‖p

) 1
p

≤ C sup
a,b∈B+

S2p

( n∑

i=1

‖axib‖p
Sp(H)

) 1
p

.

We denote by πlp(u) the smallest constant C for which this holds and by πlp(X, Y )
the space of all lp-summing operators with the norm πlp(·) which becomes a Banach
space. We can show that

sup
a,b∈BS2p(H)

( ∞∑
n=1

‖axib‖p
Sp(H)

) 1
p

= ‖{xi}‖lnp⊗minX =
n∑

i=1

‖ei ⊗ xi‖cb(lnq ,X) (2.1)

where q is the conjugate of p and {ei}1≤i≤n is the canonical basis of lnq . By (2.1)
Definition 2.2 is equivalent to the following: For all n ∈ N, {xi}1≤i≤n ∈ X and
T ∈ cb(lnq , X) such that T (ei) = xi,

( n∑

i=1

‖uT (ei)‖p

) 1
p

≤ C‖T‖cb. (2.2)

The following remark will be needed to prove Lemma 2.3.

Remark 1. Let C > 0 be a constant. Then u is lp-summing and πlp(u) ≤ C if
and only if ∥∥I ⊗ u : lnp ⊗min X → lnp (Y )

∥∥ ≤ C (2.3)

for all n ≥ 1.

Remark 2.
1) Let E and X be operator spaces and let Y and F be Banach spaces. Let

E
v→ X

u→ Y
w→ F such that v is completely bounded, u is lp-summing and w is a

bounded operator. Then πlp(wuv) ≤ ‖w‖πlp(u)‖v‖cb.

2) Let X and Y be operator spaces and consider u in π0
p(X, Y ). Then u ∈

πlp(X, Y ) and πlp(u) ≤ π0
p(u).
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3) Let X be an operator space, Y a Banach space, and consider u in πp(X, Y ).
Then u ∈ πlp(X, Y ) and πlp(u) ≤ πp(u).

4) Let X ⊂ A ⊂ B(H) with A a commutative C∗-algebra and Y be operator
spaces. Then by (1.3) and (2.2) πlp(X, Y ) = πp(X, Y ).

5) If X = OH, then by (1.1) and (2.2) πl2(OH, Y ) = π0
2(OH, Y ).

The following theorem is the extension of the Pietsch factorization for lp-summing
operators. The proof is exactly the same than that used in [11: Theorem 3.1].

Theorem 2.3. Let X ⊂ B(H) be an operator space, Y a Banach space and
u : X → Y a linear operator. Let 1 ≤ p < +∞. The following properties of a
constant C > 0 are equivalent:

(i) u is lp-summing and πlp(u) ≤ C.

(ii) There are a set I, families aα and bα in B+
S2p

and an ultrafilter U on I such
that ‖u(x)‖ ≤ C limU ‖aαxbα‖Sp(H) for all x ∈ X.

(iii) u factors of the form u = ũ(M/E∞)i and ‖ũ‖ ≤ C as

where
- i(x) = {xα}α∈I with xα = x for all α ∈ I

- E∞ = i(X) which is a closed subspace of B̂(H) and ‖i‖cb = 1
- B̂(H) = (Bα(H))/U with Bα(H) = B(H) for all α ∈ I

- M is the operator associated to {Mα}α∈I , Mα : B(H) → Sp(H),Mα(x) = aαxbα

and πlp(M) ≤ 1
- Ŝp(H) = (Sα(H))/U with Sα(H) = Sp(H) for all α ∈ I

- Ep = M(E∞) which is a closed subspace of Ŝp(H)
- —B̂(H) and Ŝp(H) are operator spaces.

Remark 3.

1) Let u : X → Y be a linear operator between operator spaces. Then the
property u to be lp-summing not implies that ũ is completely bounded. On the
other hand, if p = 2 and Y = OH, then by (1.1) u is completely bounded and
πl2(X, OH) = π0

2(X,OH).

2) Let Y ⊂ A ⊂ B(H) with A a commutative C∗-algebra and X be operator
spaces. Then by (1.3) and (2.2) πlp(X, Y )) = π0

p(X,Y ).

3) If X = Y = OH, then clearly πl2(OH, OH) = π0
2(OH, OH) = HS(OH, OH).

Lemma 2.4. Let X ⊂ B(H) be an operator space. Consider a, b ∈ B+
S2p

and

1 ≤ p ≤ q < +∞. Then ‖axb‖Sp(H) ≤ ‖a p
q xb

p
q ‖Sq(H) for all x ∈ X.
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Proof. Let x ∈ X and consider a, b ∈ B+
S2p

. We have

‖axb‖Sp(H) =
∥∥a1− p

q a
p
q xb

p
q b1− p

q

∥∥
Sp(H)

≤
∥∥a1− p

q

∥∥
S 2pq

q−p

∥∥a
p
q xb

p
q b1− p

q

∥∥
S 2pq

q−p

≤
∥∥a1− p

q

∥∥
S 2pq

q−p

∥∥a
p
q xb

p
q

∥∥
Sq(H)

∥∥b1− p
q

∥∥1− p
q

S 2pq
q−p

≤
∥∥a

p
q xb

p
q

∥∥
Sq(H)

because ‖a1− p
q ‖S 2pq

q−p

= ‖a‖
q−p

q

S2p
≤ 1 and this illustrates that the diagram

is commutative

Proposition 2.5. Let 1 ≤ p ≤ q < +∞. Let X ⊂ B(H) be an operator space,
Y a Banach space and u : X → Y an lp-summing operator. Then u is lq-summing
and πlq(u) ≤ πlp(u).

Proof. We have

‖u(x)‖ ≤ πlp(u) lim
U
‖aαxbα‖Sp(H) ≤ πlp(u) lim

U
‖a

p
q
αxb

p
q
α‖Sq(H)

by Lemma 2.4 where a
p
q
α and b

p
q
α are in B+

S2q
and the comparison is obtained

3. The finite-dimensional case

Let us now give the following finite-dimensional version of Theorem 2.3.

Proposition 3.1. Consider N ∈ N and 1 ≤ p < +∞. Let X ⊂ MN be a
finite-dimensional operator space, Y a Banach space and u : X → Y an lp-summing
operator. Then there are a, b ∈ B+

SN
2p

such that ‖u(x)‖ ≤ πlp(u)‖axb‖SN
p

.

Proof. Let
S =

{
s = (a, b) ∈ SN

2p : a, b ≥ 0
}
.

From the proof of [11: Theorem 3.1] there are a set I, an ultrafilter U on I and a
family {λα}α∈I of probabilities on S such that

‖u(x)‖p ≤ πp
lp(u) lim

U

∫

S

‖aαxbα‖p
SN

p
dλα(s).
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As S is compact, there is a probability λ on S such that λα → λ in the weak topology
of measures on S and

lim
U

∫

S

‖aαxbα‖p
SN

p
dλα(s) =

∫

S

‖axb‖p
SN

p
dλ(s).

Since the application

C(S) → SN
p → R, s = (a, b) → axb → ‖axb‖

as composition of two continuous applications is continuous, then for all ε > 0 there
are nε ∈ N, {si}1≤i≤nε ⊂ S and {λi}1≤i≤nε with λi ≥ 0 and

∑
λi = 1 such that

∫

S

‖axb‖p
SN

p
dλ(s) ≤ (1 + ε)

( ∑
λi‖aixbi‖p

) 1
p

.

Using [11: Lemma 1.4] we have
∫

S

‖axb‖p
SN

p
dλ(s) ≤ (1 + ε)

∥∥∥
( ∑

λia
2p
i

) 1
2p

x
(∑

λib
2p
i

) 1
2p

∥∥∥
SN

p

for all ε > 0. Hence there are a, b ∈ SN
2p such that ‖u(x)‖ ≤ πlp(u)‖axb‖SN

p
and this

gives the announced result

The next lemma will be crucial to prove our main result in Section 4.

Lemma 3.2. Consider N ∈ N and 2 < p < +∞. Let Y be a Banach space and

u : MN → Y be a linear operator. Then πlp(u) ≤ π
2
p

l2
(u)‖u‖1− 2

p .

Proof. Let u : MN → Y be a linear operator. As u is of finite rank, it is
automatically l2-summing and by (2.3) we have for all n ≥ 1

∥∥I ⊗ u : ln2 ⊗min MN → ln2 (Y )
∥∥ ≤ πl2(u). (3.1)

Apart from that we have abviously
∥∥I ⊗ u : ln∞ ⊗min MN → ln∞(Y )

∥∥ ≤ ‖u‖. (3.2)

We will now interpolate these two estimates. Precisely, by putting θ = 2
p , we have

[ln∞, ln2 ]θ = lnp and [ln∞(Y ), ln2 (Y )]θ = lnp (Y ).

We have also

ln2 ⊗min MN = MN (ln2 ), ln∞ ⊗min MN = MN (ln∞), lnp ⊗min MN = MN (lnp ).

Hence, by definition of operator space structures on ln2 , ln∞ and lnp ,
[
ln∞ ⊗min MN , ln2 ⊗min MN

]
θ

= lnp ⊗min MN .

Therefore by interpolation of (3.1) and (3.2) we obtain
∥∥I ⊗ u : lnp ⊗min MN → lnp (Y )

∥∥ ≤ πθ
l2(u)‖u‖1−θ.

As this is true for all n ≥ 1 whence the desired result
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4. Main result

We now prove that the converse of Proportion 2.5 is not true in the non-commutative
case for certain spaces. This is the main result of this paper.

Theorem 4.1. Let 2 < p < +∞. Then πl2(B(l2), OH) 6= πlp(B(l2), OH).

Proof. We proceed by contradiction. Assume that π0
2(B(l2), OH) (= πl2(B(l2),

OH)) = πlp(B(l2), OH). Then there is a constant C > 0 such that, for all u ∈
πlp(B(l2), OH), π0

2(u) ≤ Cπlp(u). Let N ∈ N and consider u ∈ πlp(MN , OH). Using

Lemma 3.2 we obtain πl2(u) = π0
2(u) ≤ Cπ

2
p

l2
(u)‖u‖1− 2

p . Hence π0
2(u) ≤ C‖u‖. Since

by [11: Corollary 3.5] ‖u‖cb ≤ π0
2(u), ‖u‖cb ≤ C‖u‖ for all u : MN → OH which is a

contradiction by [10: Theorem 2.10]

Corollary 4.2. Let B(B(l2), OH) be the space of all bounded operators from
B(l2) into OH. Then πl2(B(l2), OH) 6= B(B(l2), OH).

Remark. Corollary 4.2 implies that the little (the variant of) Grothendieck’s
theorem is not true.

We end this paper by mentioning the interesting question raised in [11: Problem
10.2] whether, considering u ∈ cb(B(l2), OH), u ∈ π2,OH(B(l2), OH) is true.
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