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Comparison of

Non-Commutative 2- and p-Summing Operators
from B(l,) into OH

L. Mezrag

Abstract. In the theory of p-summing operators studied by Pietsch we know that 2 (C(K),
H) = 7m,(C(K), H) for any Hilbert space H and any p such that 2 < p < +oc0. In this paper
we prove that this equality is not true in the same notion generalized by Junge and Pisier

to operator spaces, i.e. m,(B(l2),OH) (= n9(B(l2),O0H)) # m, (B(l2), OH).
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1. Introduction

In the recent theory of operator spaces (or non-commutative Banach spaces) devel-
oped by [1 - 6, 10 - 12], bounded operator is replaced by completely bounded operator,
isomorphism by complete isomorphism and Banach space by operator space. Pre-
cisely, we view in this new category every Banach space as a subspace of B(H) for
some Hilbert space H (B(H) is the Banach space of all bounded linear operators
on H) which is non-commutative, instead of viewing them as a subspace of C(K)
(the space of all continuous functions on a compact K) which is commutative. The
abstract characterization given in [12] signed the beginning of this theory. In [10]
Pisier constructed the operator Hilbert space OH (i.e. the unique space verifying
OH* = OH completely isometrically as in the case of Banach spaces because there
are Hilbert spaces in this category which are non completely isometrically) and gener-
alized in [11] (also Junge) the notion of p-summing operators to the non-commutative
case.

In this paper we show that
7, (B(lz), OH) # m, (B(l2), OH)

for all p in (2,00). In the case of completely p-summing operators the problem
is raised in [11: Problem 10.2] and is still open (i.e. is every completely operator
u: B(H) — OH necessarily completely 2-summing?). This question, which called
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the little Grothendieck’s theorem in the case of Banach spaces, is the origin and the
inspiration of this work. Le Merdy proved in [8: Theorem 4.2] that

cb(B(l2)*, OH) # m3(B(l2)*, OH).

Let H be a Hilbert space and X C B(H) be a closed subspace. For all n > 1 we
denote by M, (X) = M, ® X the space of n x n matrices (x;;)1<; j<n With entries
x;; € X equipped with the norm induced by the space M, (B(H)) = B(l3(H)) =
B(l5 @9 H) (1§ ®2 H is the Hilbert-space tensor product of I3 and H).

Definition 1.1. An operator space X is a closed subspace of B(H) for some
Hilbert space H.

Let X be a vector space. If for each n € N there is a norm || - ||, on M,,(X), then
the family of norms {|| - ||, }n>1 is called an L..-matricial structure on X if

(1) llazblln < [lallaz, ]l 10]az, ()

(i) Iz @ Yllnsm = [[(§ )0 = max{llln, [[yllm}

for all a,b in M, (C) = B(l%),z € M,(X) and y € M,,(X). We say that X is
Loo-matricially normed if it is equipped with an L..-matricial structure (which we
suppose complete). Ruan proved in [12: Theorem 3.1] and simplified (with Effros) in
[6] an important theorem which is the matricial norm characterization for operator
spaces. This theorem sais that for any L..-matricial structure on a vector space X
there is a Hilbert space H and an embedding of X into B(H) such that for all n > 1
the norm || - ||,, on M, (X) coincides with the norm induced by the space B(I%(H)).
In other words, he has given an abstract characterization of operator spaces.

Definition 1.2. Let H and K be Hilbert spaces, and let X C B(H) and Y C
B(K) be two operator spaces. A linear map u : X — Y is completely bounded if the
maps

U : Mp(X) = Mp(Y),  (#45)1<i5<n = (w(zij))1<ij<n

are uniformly bounded for n € N, i.e. sup,s; ||un|| < +o00. In this case we put
lullep = sup,>; ||un|| and we denote by ¢b(X,Y) the Banach space of all com-
pletely bounded maps from X into Y which is also an operator space because
M, (cb(X,Y)) = cb(X, M, (Y)) (see [3, 5]). We denote also by X ®p,in Y the subspace
of B(H ®2 K) with induced norm.

Let H be a Hilbert space. We denote by S,(H) (1 <p < oo) the Banach space

of all compact operators u : H — H such that Tr (Ju|P) < oo, equipped with the
norm

lulls, ey = (T (Jul?)) ™.

If H =1y or H =13, we denote simply S, (l2) by S), or Sp(I3) by Sy, respectively. We
denote also by S (H) and S, the Banach spaces of all compact operators equipped
with the norm induced by B(H) and B(l3), respectively, and by S7. the space B(l%).
Recall that if le = % + % for 1 < p,q,r < +o0, then u € Bg, () if and only if there
are uy € Bg, (m) and ug € Bg, (g such that u = ujug, where Bg () is the closed
unit ball of S,(H).
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Before continuing our notation we will briefly mention some properties concerning
completely bounded operators. We recall that OH is homogeneous, in other words,
every bounded linear operator u: H — OH is completely bounded and

lull = flep- (1.1)

Note also that Ss is completely isometric to OH x OH. We denote by OH,, the
n-dimensional version of the Hilbert operator space OH. If now SY¥ (N € N)
is equipped with the operator-space structure OH y2, then for any linear map T :
SY¥ — OH,, we have by homogeneity of OH

T[] = 1Tl cb- (1.2)

Finally, let us recall the last property. Let Y be an operator space such that ¥ C
A C B(H), A a commutative C*-algebra, and let X be an arbitrary operator space.
Then, for all bounded linear operators u: X — Y,

lull = flee- (1.3)

Let now X be an operator space. As usual we denote by [,(X) and [} (X)
the spaces of infinite sequences {x1,...,Z,,...} and finite sequences {z1,...,z,} in
X equipped with the norm (), |zn|[P)? and >, l|z;||P) ¥, respectively, which
become operator spaces. Let now S, [X]| (for more details see [11: p. 10 and Theorem
1.5]) and S} [X] be subspaces of M. (X) and M,,(X) with norms

ulls,(x] = uizﬂai;b lall sy, 10l ao (x) 1] 52,

lullsgixy = inf lallsg lellar, o Bl
respectively, where
Moo(X) = {u = (i h1<ijcroo t (iihisisenli, o S K (n21)}

and ||(ij)1<4,j<oo || M. (x) = inf K, which is a subspace of B(ly ®2 H).

2. Non-commutative p-summing operators

We first give the following definition which was introduced in [11: p. 31].

Definition 2.1. Let 1 < p < o0, let X and Y be operator spaces, and let
u: X — Y be a linear operator. We will say that u is completely p-summing if
there is a constant C' > 0 such that, for all n > 1 and all (2;5)1<;j<n € Mp(X),

[u(zi5) || sp1x7 < Cll(@ij) |57 @ minx -

We will denote by 7)) (u) the smallest constant with this property and by 7 (X,Y")
the space of all completely p-summing operators equipped with the norm Wg(-) for
which it becomes a Banach space.
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The classical definition in the sens of Pietsch [9] is the following: If X and Y
are Banach spaces, an operator v : X — Y is absolutely p-summing if there exists a
constant C' > 0 such that, for all n > 1 and for all {z;}1<i<n C X, [lu(@;)[in(x) <

CH(%)H;;;@X where [7®X is the injective tensor product.
After this outline and to facilitate the comprehension we will use a definition due
to Junge intermediate between absolutely p-summing operators in the case of Banach

spaces and completely p-summing in the case of operator spaces. All these definitions
are rejoining on certain operator spaces, particularly those which interest us.

The next definition is due to Junge [7].
Definition 2.2. Let H be a Hilbert space, let X C B(H) be an operator space,
and let u : X — Y be a linear operator from X into a Banach space Y. We will say

that u is [,-summing (1 < p < 4o00) if there is a constant C' > 0 such that for all
finite sequences {z;}1<i<n in X

(anz ||p) < s (Xt )
=1

a beB;rzp

We denote by m;, (u) the smallest constant C' for which this holds and by 7, (X,Y)
the space of all [,,-summing operators with the norm 7 (-) which becomes a Banach
space. We can show that

sup (Znawzbus (H)) e ey = Sl @zl (21)

a bGBS2p(H) =1

where ¢ is the conjugate of p and {e;}1<;<n is the canonical basis of I. By (2.1)
Definition 2.2 is equivalent to the following: For all n € N, {z;}1<i<n, € X and
T € cb(ly, X) such that T'(e;) = z;,

(Z T (e H”) < [T (22)

The following remark will be needed to prove Lemma 2.3.

Remark 1. Let C' > 0 be a constant. Then u is [,-summing and m;, (u) < C' if

and only if
Hl®u t 1y ®min X — ZZ(Y)H <C (2.3)

for all n > 1.

Remark 2.

1) Let E and X be operator spaces and let Y and F' be Banach spaces. Let
E 5 X 5 Y 5 F such that v is completely bounded, u is l,-summing and w is a
bounded operator. Then 7, (wuv) < ||w||7, (w)||v]|cp.

2) Let X and Y be operator spaces and consider u in WB(X, Y). Then u €
m,(X,Y) and 7, (u) < 7 (u).
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3) Let X be an operator space, Y a Banach space, and consider u in m,(X,Y).
Then u € m,(X,Y) and 7, (u) < mp(u).

4) Let X € A C B(H) with A a commutative C*-algebra and Y be operator
spaces. Then by (1.3) and (2.2) m, (X,Y) = m,(X,Y).
5) If X = OH, then by (1.1) and (2.2) m,(OH,Y) = 79(OH,Y).

The following theorem is the extension of the Pietsch factorization for /,-summing
operators. The proof is exactly the same than that used in [11: Theorem 3.1].

Theorem 2.3. Let X C B(H) be an operator space, Y a Banach space and
u: X — Y a linear operator. Let 1 < p < 4o00. The following properties of a
constant C' > 0 are equivalent:

(i) w is l,-summing and T, (u) < C.
(ii) There are a set I, families a, and by, in Bg;p and an ultrafilter U on I such
that ||u(z)|| < Climy ||aaxbals, () for all z € X.
(iii) u factors of the form u = u(M/E)i and ||a| < C as

where
- i(z) ={za}acr withxo =z for alla € 1
- B = i(X) which is a closed subspace of B(H) and ||i|| = 1
- B(H) = (Bo(H))/U with Bo(H) = B(H) for all a € I
- M is the operator associated to {My}oecr, Mo : B(H) — Sp(H), My (z) = agxby
and m, (M) <1
- Sp(H) = (So(H)) /U with So(H) = Sp(H) for all a € I
- E, = M(E.,) which is a closed subspace of S,(H)
- —B(H) and S,(H) are operator spaces.

Remark 3.

1) Let u : X — Y be a linear operator between operator spaces. Then the
property u to be [,-summing not implies that @ is completely bounded. On the
other hand, if p = 2 and Y = OH, then by (1.1) u is completely bounded and
7, (X,0H) = m3(X,0H).

2) Let Y € A C B(H) with A a commutative C*-algebra and X be operator
spaces. Then by (1.3) and (2.2) m,(X,Y)) = n)(X,Y).

3) If X =Y = OH, then clearly m,(OH,OH) = 78(OH,OH) = HS(OH,OH).

Lemma 2.4. Let X C B(H) be an operator space. Consider a,b € B:s*;p and
1 <p<q<+oo. Then [laxbls, ) < ||a§xb§|]5q(H) forallz € X.
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Proof. Let x € X and consider a,b € B;“Qp. We have

lazblls, )y = I|a1*§a§wb§b“§||sp(m
< ot~Fl, loFabiti =,
_p D D _p1-2
<l |g,,, lafabellg 0% lls 0
q—p q—p

< Hagxb%HSq(H)

a—p
because ||a* ™4 S =|lal|¢? < 1 and this illustrates that the diagram
2pq Sap
q—p

is commutative §

Proposition 2.5. Let 1 < p < q < +oo. Let X C B(H) be an operator space,
Y a Banach space and u : X — Y an l,-summing operator. Then u is l,-summing
and mq(u) < mpp(u).

Proof. We have

(@)l < mp (u) lim laa@balls, ) < mp(u) lim ad 2bé |5, (o)

ya b

by Lemma 2.4 where ad and b are in B;zq and the comparison is obtained H

3. The finite-dimensional case

Let us now give the following finite-dimensional version of Theorem 2.3.

Proposition 3.1. Consider N € N and 1 < p < +o00. Let X C My be a
finite-dimensional operator space, Y a Banach space and v : X —'Y an l,-summing
operator. Then there are a,b € B;FN such that |[u(z)|| < mp(u)||azd] sy

2p

Proof. Let
S ={s=(a,b) GS%: a,b>0}.

From the proof of [11: Theorem 3.1] there are a set I, an ultrafilter & on I and a
family {\, }aer of probabilities on .S such that

lu(@)|[” < f, (u) im /S by dha(s).
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As S is compact, there is a probability A on S such that A, — A in the weak topology
of measures on S and

lim/ |@02ba||GndAa(s) = / |azb|exdA(s).
u S P S p
Since the application

c(s) — S]]?V — R, s=(a,b) — azxb— |azd||

as composition of two continuous applications is continuous, then for all € > 0 there
are n. € N, {s; }1<i<n. C S and {\; }1<i<n, with A; > 0 and > A\; = 1 such that

/S||aa:b||gévd>\(s) <(1 +8)<Z)\¢||aixbi||p> "

Using [11: Lemma 1.4] we have

[tz axe <0 (S Fo( i)

for all € > 0. Hence there are a,b € S3) such that [ju(z)|| < Wlp(u)||a3:b||5év and this
gives the announced result i

Sy

The next lemma will be crucial to prove our main result in Section 4.

Lemma 3.2. Consider N € N and 2 < p < +00. LetY be a Banach space and
2
u: My —Y be a linear operator. Then mp,(u) < le(u)Hqu_%

Proof. Let u : My — Y be a linear operator. As wu is of finite rank, it is
automatically lo-summing and by (2.3) we have for all n > 1

|17 @u: 15 @min My — 15(Y)|| < i, (w). (3.1)
Apart from that we have abviously

HI@U: % @min MN—>ZQO(Y)H < Jul]. (3.2)
We will now interpolate these two estimates. Precisely, by putting 6 = ]%, we have

loo:l5lo =1y and  [I(Y), l5(Y)]o = 15 (Y).

p
We have also

Hence, by definition of operator space structures on I3, (7, and [},

[lgo ®min MN, lg @min MN}O = ZZ ®min Mn-
Therefore by interpolation of (3.1) and (3.2) we obtain
||I Ku: lg Qmin MN — l;(Y>H < 7Tl92 (U“)Hu“l_e

As this is true for all n > 1 whence the desired result i
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4. Main result

We now prove that the converse of Proportion 2.5 is not true in the non-commutative
case for certain spaces. This is the main result of this paper.

Theorem 4.1. Let 2 < p < +oo. Then m,(B(l2),OH) # m,(B(l2),OH).

Proof. We proceed by contradiction. Assume that 78(B(l2), OH) (= m,(B(l2),
OH)) = m,(B(lz),OH). Then there is a constant C' > 0 such that, for all u €
m, (B(lz), OH), 73 (u) < Cm, (u). Let N € N and consider u € m, (My,OH). Using

Lemma 3.2 we obtain 7, (u) = m9(u) < Cn’ (u)||ul|*~%. Hence 79(u) < C|ul|. Since

by [11: Corollary 3.5] ||ullep < 78(u), ||ulles < C|lul| for all u: My — OH which is a
contradiction by [10: Theorem 2.10] N

Corollary 4.2. Let B(B(l2),OH) be the space of all bounded operators from
B(lg) into OH. Then T, (B(Zz), OH) 7é B(B(lg), OH)

Remark. Corollary 4.2 implies that the little (the variant of) Grothendieck’s
theorem is not true.

We end this paper by mentioning the interesting question raised in [11: Problem
10.2] whether, considering u € cb(B(l2),OH), u € w2 on(B(l2), OH) is true.
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