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Problem of Functional Extension
and Space-Like Surfaces in Minkowski Space

E.G. Grigoryeva, A.A. Klyachin and V.M. Miklyukov

Abstract. Let Ξ(x) be the distribution of convex sets over a domain D ⊂ Rn and let
φ : ∂D → R be a function. We consider the existence problem of locally Lipschitz functions
f defined in the domain D so that f |∂D = φ and ∇f(x) ∈ Ξ(x) almost everywhere in
D. These questions are related to the existence problem for space-like surfaces of arbitrary
codimension with prescribed boundary in Minkowski space.
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1. Introduction

Let Rn+1
1 be an (n + 1)-dimensional Minkowski space, that is an (n + 1)-dimensional

pseudo-Euclidean space with a metric of signature (1, n). Let x = (x1, x2, . . . , xn)
and χ = (t, x) ∈ Rn+1

1 . For an arbitrary pair of vectors χ′ = (t′, x′) and χ′′ = (t′′, x′′)
in Rn+1

1 we will set the inner product to be

〈χ′, χ′′〉 = −t′t′′ +
n∑

i=1

x′ix
′′
i

and the scalar square of a vector χ ∈ Rn+1
1 to be

|χ|2 = 〈χ, χ〉.

We say that a non-zero vector χ ∈ Rn+1
1 is space-like, time-like or light-like depending

on the realization of the conditions |χ|2 > 0, |χ|2 < 0 or |χ|2 = 0. The set of light-
like vectors χ ∈ Rn+1

1 from the origin forms a light cone. The space-like vectors lie
outside that cone, but the time-like ones lie inside it.

Let t = f(x) be a C1-function defined in a domain D ⊂ Rn, and let F be its
graph. The surface F is called space-like if any tangent vector to it is space-like. It
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is not difficult to see that F is space-like if and only if |∇f(x)| < 1 everywhere in D.
The area of the space-like graph can be calculated by the integral

∫

D

√
1− |∇f |2 dx. (1)

The problem of describing the sets of admissible functions in the variational problem
for the area functional (1) with Dirichlet boundary condition f |∂D = φ is trans-
formed into the following problem of extension for functions under restrictions on
the gradient:

Let φ : ∂D → R be a function. We are required to give conditions for the existence
of a function f : D → R such that f ∈ C0(D) ∩ C1(D), f |∂D = φ and |∇f(x)| < 1
everywhere in D.

From the point of view of these variational problems for sets of admissible func-
tions for the functional (1) it is enough to study locally Lipschitz functions.

Let LipD be the set of functions f : D → R satisfying the Lipschitz condition
on any compact subset of D. According to the Rademacher theorem, any function
f ∈ Lip D has a total differential almost everywhere in D. So, in the case of functions
belonging to the class LipD we may extend the conception of space-like graph t =
f(x) by supposing

ess sup
x∈K

|∇f(x)| < 1 for any compact K ⊂ D, (2)

and on the extension problem formulated above we may consider functions having
property (2) instead of functions f ∈ C0(D)∩C1(D). In the case of convex domains
D ⊂ Rn the solution of the problem follows immediately from the classical Kirsbraun
theorem about extension of Lipschitz functions (see [3 : Theorem 2.10.43] and new
results [6, 7]).

In the present paper we study the following general problem of extension for
functions under restrictions on the gradient.

Let D ⊂ Rn be a domain. Suppose that for every point χ = (t, x) ∈ Rn+1
1 with

x ∈ D the set Ξ(x, t) ⊂ Rn is defined. We will say that the distribution of sets Ξ(x, t)
is locally uniformly bounded over the domain D, if for every point x0 ∈ D there is a
neighborhood U(x0) of that point and a number R > 0 such that for all x ∈ U(x0)
the sets Ξ(x, t) contain inside an n-dimensional ball B(0, R) ⊂ Rn.

Let us fix an arbitrary distribution of sets Ξ(x, t) over the domain D ⊂ Rn. Then
φ : ∂D → R is a boundary function. We require to find conditions for the existence
of a function f ∈ Lip D with the property f |∂D = φ and such that

∇f(x) =
( ∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
is in Ξ(x, f(x)) a.e. in D. (3)

The case in which the sets Ξ = Ξ(x) are uniformly bounded, convex and symmetric
was studied in [4]. In that paper, the authors build some Finsler metric ρ by a
prescribed continuous distribution of Ξ(x), and they show a criterion for the existence
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of the extension for functions φ : ∂D → R to a locally Lipschitz function f : D → R,
defined on the domain D and having property (3).

In the present paper we give a criterion for the solvability of problem (3) in
the general case of locally bounded convex sets Ξ = Ξ(x), not necessarily open and
symmetric. We also replace the condition of continuity of the distribution Ξ(x) by
the weaker integral condition.

The problem is the key problem for the description of admissible functions for
the area functional of space-like and time-like surfaces in Minkowski space and in
warped Lorentz products. A partial solution of the problem in [4] led to very general
theorems of existence and uniqueness for solutions of the Dirichlet problem with
singularities for the maximal surface equation in Minkowski space [5].

Below we apply our results to the general existence problem for k-dimensional
space-like surfaces with prescribed boundary in the Minkowski space Rn+1

1 (2 ≤ k ≤
n) and in warped Lorentz products M ×δ R̂ with a warping function of the general
form δ = δ(m, t).

The basis of our approach to the extension problem with restrictions on the
gradient is the reduction of this problem to some problem about Lipschitz extension in
Finsler spaces [9] associated with the distribution of convex sets Ξ(x) over the domain
D. Moreover, abandoning conditions of symmetry and uniform boundedness of sets
Ξ(x) substantially complicate the problem, because the Finsler pseudometrics which
arise do not satisfy the traditional axioms of a metric space. So, asymmetry of the
sets Ξ(x) implies the omission of the symmetry axiom for the Finsler pseudometric.
Giving up of the local uniform boundedness condition for the distribution of the
sets Ξ(x) implies giving up the identity axiom. Besides, in the general case, the
(pseudo)metric can take values on the extended line R = R ∪ {−∞} ∪ {+∞}.

Acknowledgments. The third author wishes to thank Department of Mathe-
matics of Brigham Young University for the hospitality while the English version of
this manuscript was written, and Dr. Tyler J. Jarvis who corrected the initial En-
glish text. The authors wish to thank V. G. Tkachev and V. A. Klyachin for checking
mathematical text.

2. Pseudometric spaces

The general extension problem of functions with restrictions on the gradient can be
reduced to the problem of Lipschitz extension for functions in some special pseudo-
metric spaces. Below we research this problem.

Let X be an arbitrary non-empty set and let p : X ×X → R be a function, having
the following properties:

α) p(x, x) = 0 and p(x, y) ≥ 0 for all x, y ∈ X .
β) p(x, y) ≤ p(x, z) + p(z, y) for all x, y, z ∈ X .

The pair (X , p) is called a pseudometric space, and the function p is called a pseu-
dometric. We observe that here we do not suppose symmetry of the pseudometric
p, that is, p(x, y) 6= p(y, x) in the general case. On the set X we may introduce
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a topology associated with the pseudometric p as the topology determined by the
system of neighborhoods

Uε(x) =
{
y ∈ X : p(x, y) < ε

}
.

Thus, the concept of limit for the function f : X → R at a point and the concepts of
continuity and uniform continuity can be introduced by standard way.

Let S be a subset of X . A function φ : S → R is called p-Lipschitz if there is a
constant L < +∞ such that

−Lp(y, x) ≤ φ(x)− φ(y) ≤ Lp(x, y) (x, y ∈ S).

The smallest of the constants L we shall call a Lipschitz constant and denote it by
Lip (φ,S). Further, we restrict the study to functions φ for which Lip (φ,S) ≤ 1.

We define some additional notions. For an arbitrary triple of points x, y, z ∈ X
we set

Λ(x, y, z) =
p(x, y)

p(x, z) + p(z, y)
.

Since p is a pseudometric, then Λ(x, y, z) ≤ 1. The condition Λ(x, y, z) = 1 implies
that the points x, y, z are situated on a ’geodesic line’ with respect to the pseudometric
p. We will call by a pseudodistance from set P to set S the quantity

p(P,S) = inf
{
p(x, y) : x ∈ P and y ∈ S}

.

We will call by a distance between sets P,S ⊂ X the quantity

dist (P,S) = max
{
p(P,S), p(S,P)

}
.

A set U ∈ X is said to be p-compact, if a subsequence convergent to some point
x0 ∈ U may be chosen from every sequence {xm} of points of the given set U .

Lemma 1. Let S ⊂ X be an arbitrary set and let φ : S → R be a function with

−p(y, x) ≤ φ(x)− φ(y) ≤ p(x, y) (x, y ∈ S).

Then there is a function f : X → R with f |S = φ such that

−p(y, x) ≤ f(x)− f(y) ≤ p(x, y) (x, y ∈ X ).

Proof. We set
f(x) = inf

y∈S
{
φ(y) + p(x, y)

}
.

Then for an arbitrary ε > 0 and any x′, x′′ ∈ X there are points y′, y′′ ∈ S such that

f(x′) > φ(y′) + p(x′, y′)− ε

f(x′′) > φ(y′′) + p(x′′, y′′)− ε.

Hence
f(x′)− f(x′′) > φ(y′) + p(x′, y′)− ε− φ(y′)− p(x′′, y′)

= p(x′, y′)− p(x′′, y′)− ε

≥ −p(x′′, x′)− ε.

Similarly, we obtain
f(x′)− f(x′′) < p(x′, x′′) + ε.

Since ε > 0 was arbitrary, the lemma is proved
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Remark 1. In the case when X is a metric space, this expression is formulated
in Federer’s monograph [3: Section 2.10.44].

Our main problem in the present section is the extension problem of functions
from the boundary into a domain with Lipschitz constant strictly separated from 1
on every compact subset of the domain. The lemma formulated below is a key one
in the construction algorithm for this p-Lipschitz extension.

Fix a set S ⊂ X . Let φ be a p-Lipschitz function with Lip (φ,S) ≤ 1. For
arbitrary δ > 0 and µ with 0 < µ < 1 we set

Aµ
δ = Aµ

δ (φ,S)

=
{

(x, y) ∈ S × S : p(x, y) ≥ δ and φ(x)− φ(y) ≥ (1− µ) p(x, y)
}

.

Note that, for Lip (φ,S) < 1, Aµ
δ (φ,S) = ∅ for µ sufficiently close to 0.

Lemma 2. Let P,Q,S ⊂ X be mutually disjoint sets and p(P,S) > 0. Let
φ : S → R be a p-Lipschitz function having the property

∀ δ > 0 ∃ µ ∈ (0, 1) : sup
{

Λ(x, y, ζ) : (x, y) ∈ Aµ
δ (φ,S) and ζ ∈ P

}
< 1. (4)

Let g : Q → R be a function such that for some L < 1

−Lp(η, ξ) ≤ g(ξ)− g(η) ≤ Lp(ξ, η) (ξ, η ∈ Q) (5)
−Lp(x, ξ) ≤ g(ξ)− φ(x) ≤ Lp(ξ, x) (ξ ∈ Q, x ∈ S). (6)

Then there is a function f : P → R and a constant L0 < 1 such that

−L0 p(η, ξ) ≤ f(ξ)− f(η) ≤ L0 p(ξ, η) (ξ, η ∈ P) (7)
−L0 p(ζ, ξ) ≤ f(ξ)− g(ζ) ≤ L0 p(ξ, ζ) (ξ ∈ P, ζ ∈ Q) (8)
−L0 p(x, ξ) ≤ f(ξ)− φ(x) ≤ L0 p(ξ, x) (ξ ∈ P, x ∈ S). (9)

Proof. We put ∆ = p(P,S). By condition (4), for δ = 1
2∆ there is µ ∈ (0, 1),

for which
sup

{
Λ(x, y, ζ) : (x, y) ∈ Aµ

δ and ζ ∈ P
}

= L1 < 1. (10)

We set
L0 = max

{
L1, L, 1− µ, 1

2

}

and consider the function

f(ξ) = inf
x∈S∪Q

{
ψ(x) + L0 p(ξ, x)

}

where

ψ(x) =
{

φ(x) for x ∈ S
g(x) for x ∈ Q.
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We fix arbitrary ξ, η ∈ P. For given ε > 0 points xε, yε ∈ Q ∪ S are found such that

f(ξ) ≥ ψ(xε) + L0 p(ξ, xε)− ε

f(η) ≥ ψ(yε) + L0 p(η, yε)− ε.

Hence,
f(ξ)− f(η) ≤ L0

(
p(ξ, yε)− p(η, yε)

)
+ ε ≤ L0p(ξ, η) + ε

f(ξ)− f(η) ≥ L0

(
p(ξ, xε)− p(η, xε)

)− ε ≥ −L0p(η, ξ)− ε

and by virtue of the arbitrary choice of ε > 0, we obtain (7).
We shall prove inequalities (8) - (9) simultaneously. Let ξ ∈ P and x ∈ S ∪ Q.

Then
f(ξ)− ψ(x) ≤ L0p(ξ, x)

which implies the validity of inequalities in the right parts of (8) - (9). Let us show
that

f(ξ)− ψ(x) ≥ −L0p(x, ξ).

We have
∀ ε > 0 ∃ xε ∈ S ∪ Q : f(ξ) ≥ ψ(xε) + L0p(ξ, xε)− ε.

We carry out the following arguments separately depending on the placement of the
points x, xε on the sets Q and S.

α) Let x, xε ∈ Q. Then by (5)

f(ξ)− ψ(x) ≥ ψ(xε)− ψ(x) + L0p(ξ, xε)− ε

= g(xε)− g(x) + L0p(ξ, xε)− ε

≥ −L0p(x, xε) + L0p(ξ, xε)− ε

≥ −L0p(x, ξ)− ε.

β) Let x ∈ S and xε ∈ Q, or x ∈ Q and xε ∈ S. Then, as above, by virtue of (6)
we have

f(ξ)− ψ(x) ≥ −L0p(x, ξ)− ε.

γ) Let x, xε ∈ S and p(x, xε) ≤ δ = 1
2∆. Then

f(ξ)− ψ(x) ≥ φ(xε)− φ(x) + L0p(ξ, xε)− ε

≥ −p(x, xε) + L0p(ξ, xε)− ε

≥ −∆
2 + L0∆− ε

≥ −ε

≥ −L0p(x, ξ)− ε.

δ) Let (x, xε) ∈ Aµ
δ . It follows from (10) that

p(x, xε)
p(x, ζ) + p(ζ, xε)

≤ L1 ≤ L0 (ζ ∈ P).
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Moreover,
f(ξ)− ψ(x) ≥ φ(xε)− φ(x) + L0p(ξ, xε)− ε

≥ −p(x, xε) + L0p(ξ, xε)− ε

≥ −L0

(
p(x, ξ) + p(ξ, xε)

)
+ L0p(ξ, xε)− ε

= −L0p(x, ξ)− ε.

ε) Now, if the point (x, xε) does not belong to the set Aµ
δ but p(x, xε) > δ, then

by definition of the set Aµ
δ

φ(xε)− φ(x) ≥ −(1− µ) p(x, xε).

From here we obtain

f(ξ)− ψ(x) ≥ φ(xε)− φ(x) + L0p(ξ, xε)− ε

≥ −(1− µ) p(x, xε) + L0p(ξ, xε)− ε

≥ −L0p(x, ξ)− ε.

Combining the cases α)− ε) and passing to the limit as ε → 0, we get

f(ξ)− ψ(x) ≥ −L0p(x, ξ) (ξ ∈ P, x ∈ S ∪ Q)

that implies the validity of the left inequalities in relations (8) - (9) and the lemma
is proved

Suppose that the pseudometric space (X , p) is a so-called arcwise connected one
and that the pseudometric p coincides with the so-called pseudointrinsic distance.

Let us explain the terminology. By a arcwise connected spaces (X , p) we designate
spaces with the property that for all x, y ∈ X there is a continuous mapping γ :
[0, 1] → (X , p) such that γ(0) = x and γ(1) = y. We also say that p coincides with
the pseudointrinsic distance in X if p(x, y) = infγ |γ|p, where the infimum is taken
over all curves γ joining the points x and y. Moreover,

|γ|p = sup
n∑

i=1

p
(
γ(ti), γ(ti+1)

)

where the supremum is calculated over all partitions of the segment [0, 1] by points
0 = t1 ≤ t2 ≤ . . . ≤ tn+1 = 1. We note that the length |γ|p of a curve depends on
how one traces the curve γ.

The following statement provides the main result of this section.

Lemma 3. Let (X , p) be a pseudometric space with the described properties. Let
S ⊂ X be an arbitrary subset and let φ : S → R be a p-Lipschitz function. In order
that the function φ be a trace of some function f : X → R satisfying the conditions

∀ U ⊂ X with dist (U,S) > 0 ∃ constant LU < 1 :

lim sup
y→x

f(x)− f(y)
p(x, y)

≤ LU ∀ x ∈ U (11)

lim inf
y→x

f(x)− f(y)
p(y, x)

≥ −LU (12)



726 E.G. Grigoryeva et al.

it is sufficient that

∀ p-compact U ⊂ X with dist (U,S) > 0 and ∀ δ > 0

∃ µ ∈ (0, 1) such that sup
{
Λ(x, y, z) : (x, y) ∈ Aµ

δ , z ∈ U
}

< 1.
(13)

In the case when either the function φ or the set S is bounded, condition (13) is also
necessary.

Proof. First we prove sufficiency. For an arbitrary k ∈ N we set

Ωk =
{
x ∈ X : dist (x,S) > 1

k

}

Sk =
{
x ∈ X : dist (x,S) = 1

k}
Ωk = Sk ∪ Ωk.

Note that Si ∩ Sj = ∅ and dist (Si, Sj) > 0 for an arbitrary i 6= j. It is not hard to
see that the sets Ωk are closures of the sets Ωk in the topology determined by the
pseudometric p. Using property (13) and Lemma 2 for P = Ω1 and Q = ∅, we find
a constant L1 < 1 and a function u1 : Ω1 → R such that

−L1p(η, ξ) ≤ u1(ξ)− u1(η) ≤ L1p(ξ, η) (ξ, η ∈ Ω1)

−L1 p(x, ξ) ≤ u1(ξ)− φ(x) ≤ L1p(ξ, x) (ξ ∈ Ω1, x ∈ S).

Now, using (13) and Lemma 2 for P = Ω2 \ Ω1 and Q = Ω1, we find a constant
L2 < 1 and a function u2 : Ω2 \ Ω1 → R such that

−L2 p(η, ξ) ≤ u2(ξ)− u2(η) ≤ L2p(ξ, η) (ξ, η ∈ Ω2 \ Ω1)

−L2p(ζ1, ξ) ≤ u2(ξ)− u1(ζ1) ≤ L2p(ξ, ζ1) (ξ ∈ Ω2 \ Ω1, ζ1 ∈ Ω1)

−L2p(x, ξ) ≤ u2(ξ)− φ(x) ≤ L2p(ξ, x) (ξ ∈ Ω2 \ Ω1, x ∈ S).

Continuing this process for an arbitrary k > 1 we find a constant Lk < 1 and a
function uk : Ωk \ Ωk−1 → R for which

−Lkp(η, ξ) ≤ uk(ξ)− uk(η) ≤ Lkp(ξ, η)
(
ξ, η ∈ Ωk \ Ωk−1

)

−Lkp(ζi, ξ) ≤ uk(ξ)− ui(ζi) ≤ Lkp(ξ, ζi)
( ξ ∈ Ωk \ Ωk−1

ζi ∈ Ωi (i = 1, . . . , k − 1)

)

−Lk p(x, ξ) ≤ uk(ξ)− φ(x) ≤ Lkp(ξ, x)
(
ξ ∈ Ωk \ Ωk−1, x ∈ S

)
.

Thus, the function f̃ is equal uk on Ωk and is defined on the set ∪∞k=1Ωk. It is clear
that f̃ has properties (11) - (12) by construction.

We put S ′ = {x ∈ X : dist (x,S) = 0}. It is obvious that ∪∞k=1Ωk ∪ S ′ = X . Let
x ∈ S ′. There exists a sequence of points {yk}∞k=1 ⊂ S for which p(x, yk) → 0 for
k → ∞. We set f0(x) = limk→∞ φ(yk). Let us show that the limit exists and does
not depend on the choice of the sequence. As

φ(yk)− φ(yk+l) ≤ p(yk, yk+l) ≤ p(yk, x) + p(x, yk+l) → 0

φ(yk)− φ(yk+l) ≥ −p(yk+l, yk) ≥ −(
p(yk+l, x) + p(x, yk)

) → 0,
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the sequence φ(yk) is fundamental in R and has a limit. The independence of this
limit from the sequence {yk} can be established similarly.

It remains to show that the function

f(x) =
{

f̃(x) for x ∈ ∪∞k=1Ωk

f0(x) for x ∈ S ′

coincides with φ on S. Let x ∈ S and y ∈ X . If y ∈ ∪∞k=1Ωk, then

f(y)− φ(x) = f̃(y)− φ(x) < p(y, x)

f(y)− φ(x) = f̃(y)− φ(x) > −p(x, y).

If y ∈ S ′ \S, then there is a sequence yk ∈ S for which f(y) = f0(y) = limk→∞ φ(yk).
Hence,

f(y)− φ(x) = lim
k→∞

φ(yk)− φ(x)

≤ lim
k→∞

p(yk, x)

≤ lim
k→∞

(
p(yk, y) + p(y, x)

)

= p(y, x).

Similarly,
f(y)− φ(x) = f0(y)− φ(x) ≥ −p(x, y).

From here we conclude that f |S = φ.
Finally, we turn to the proof of necessity. Assume that the function φ : S → R

is a trace of some function f : X → R satisfying condition (11) on the set S ⊂ X .
Then for all p-compact U with dist (U, S) > 0 there is ε > 0 and constant L < 1 such
that for any ξ ∈ U under every η ∈ {x ∈ X : p(ξ, x) = ε} = Cε we have

−Lp(η, ξ) ≤ f(ξ)− f(η) ≤ Lp(ξ, η).

a) First we consider the case when the set S is bounded, that is

sup
x,y∈S

p(x, y) = M < +∞.

Let γ be a path leading from x to ξ and such that p(ξ, x) > |γ|p − δ (δ > 0) and
η ∈ γ ∩ Cε. Then

f(ξ)− φ(x) = f(ξ)− f(η) + f(η)− φ(x)

≤ L p(ξ, η) + p(η, x)

=
(
p(ξ, η) + p(η, x)

)L p(ξ, η) + p(η, x)
p(ξ, η) + p(η, x)

≤ (
p(ξ, x) + δ

)L p(ξ, η) + p(η, x)
p(ξ, η) + p(η, x)

=
(
p(ξ, x) + δ

)L + 1
εp(η, x)

1 + 1
εp(η, x)
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and by arbitrarity in the choice of δ > 0 we obtain

f(ξ)− φ(x) ≤ L + M
ε

1 + M
ε

p(ξ, x). (14)

Suppose that property (13) does not hold. There is a sequence of points xm, ym ∈ S
and zm such that infm dist (zm,S) = ε > 0. And there is a δ1 > 0 such that, for all

m ∈ N, (xm, ym) ∈ A
1
m

δ1
and

p(xm, ym)
p(xm, zm) + p(zm, ym)

→ 1 (m →∞).

From the condition (xm, ym) ∈ A
1
m

δ1
we have

φ(xm)− φ(ym) ≥ (1− 1
m ) p(xm, ym). (15)

On the other hand, it follows from (14) that

φ(xm)− φ(ym) = φ(xm)− f(zm) + f(zm)− φ(ym)

≤ p(xm, zm) + p(zm, ym)
p(xm, ym)

L+ M
ε

1+ M
ε

p(xm, ym).

This contradicts (15) for large m.
b) Suppose that the function φ is bounded. Under realization of this condition

the function f is bounded. Let

M0 = sup
x∈S

|φ(x)| = sup
x∈X

|f(x)|.

If x ∈ S, then let γ be a path joining the points ξ and x such that p(ξ, x) >
|γ|p − δ (δ > 0). Assume that p(ξ, x) ≥ 4M0. We have

f(ξ)− φ(x) ≤ 2M0 ≤ 1
2 p(ξ, x).

If p(ξ, x) < 4M0, then

f(ξ)− φ(x) ≤ (
p(ξ, η) + p(η, x)

) L p(ξ, η) + p(η, x)
p(ξ, η) + p(η, x)

≤ (
p(ξ, x) + δ

) p(ξ, x) + δ − (1− L)ε
p(ξ, x)

.

Setting δ → 0 we obtain

f(ξ)− φ(x) ≤ p(ξ, x)
p(ξ, x)− (1− L)ε

p(ξ, x)

≤ p(ξ, x)
4M0 − (1− L)ε

4M0
.

Hence, we can find a constant L1 < 1 such that for all x ∈ S
f(ξ)− φ(x) ≤ L1p(ξ, x).

Repeating arguments of section a), we come to (13). The lemma is completely
proved
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We need the following construction. Let p : X × X → R be a function having
properties α) − β) of a pseudometric described above. We introduce the space X
as union ∪a∈AXa of subsets Xa ⊂ X such that for all a ∈ A and for all x, y ∈ Xa

the values p(x, y) and p(y, x) are finite. On each of the sets Xa the function p
induces a pseudometric. We shall say that the space (X , p) is arcwise connected if
any pseudometric space (Xa, p) is arcwise connected. In the case when for every
a ∈ A the pseudometric p is an intrinsic distance in the space (Xa, p) we say that the
function p is an intrinsic distance in X .

The next lemma follows immediately from Lemma 3.

Lemma 4. Let (X , p) be arcwise connected and p be an intrinsic distance on
X . Let S ⊂ X be an arbitrary set and let φ : S → R be a function satisfying the
condition

−p(y, x) ≤ φ(x)− φ(y) ≤ p(x, y) (x, y ∈ S).

In order that the function φ be the trace of a function f : X → R satisfying conditions
(11) − (12) it is sufficient for φ to have property (13) on every subset S ∩ Xa with
a ∈ A. In the case when on every Xa either the function φ or the set S ∩ Xa is
bounded, condition (13) is also necessary.

In the case when the pseudometric p is a metric, i.e. it satisfies the axioms of
identity and symmetry, the existence criterion of p-Lipschitz extensions of a function
can be formulated in a clearer manner.

For an arbitrary pair of points x1, x2 ∈ X we put

Γ(x1, x2) =
{
x ∈ X : p(x1, x2) = p(x1, x) + p(x, x2)

}
.

Note that the set Γ(x1, x2) is non-empty because at least x1, x2 ∈ Γ(x1, x2).

Theorem 1. Let K ⊂ X be a p-compact set. A function φ : K → R is the trace
on K of a function f : X → R satisfying the condition

lim sup
y→x

|f(x)− f(y)|
p(x, y)

< 1

if and only if φ has the properties

|φ(x1)− φ(x2)| ≤ p(x1, x2) (x1, x2 ∈ K) (16)
|φ(x1)− φ(x2)| < p(x1, x2) if p(x1, x2) > 0,Γ(x1, x2) ∩ (X \K) 6= ∅. (17)

Proof. Condition (16) means that φ is a Lipschitz function on K. Therefore, to
prove the theorem we establish that conditions (17) and (13) are equivalent. In fact,
suppose that (17) holds. We shall show that for any set U with U ⊂ X \K and for
any δ > 0 there is number m0 for which

sup
{

L(x, y, z) : (x, y) ∈ A
1

m0
δ and z ∈ U

}
< 1.
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We suppose the opposite, i.e. there are δ > 0, points xm, ym ∈ K and zm ∈ U such
that p(xm, ym) ≥ δ and

ρ(xm, ym)
ρ(xm, zm) + ρ(zm, ym)

→ 1 (m → +∞). (18)

From the assumptions for the sets K and U , there are points x0, y0 ∈ K and z0 ∈ U
for which

p(xm, x0) + p(x0, xm) → 0

p(ym, y0) + p(y0, ym) → 0

p(zm, z0) + p(z0, zm) → 0





(m → +∞).

From this and (18) we get p(x0, y0) = p(x0, z0)+p(z0, y0) which means z0 ∈ Γ(x0, y0).

On the other hand, since (xm, ym) ∈ A
1
m

δ , then

φ(xm)− φ(ym) ≥ (
1− 1

m

)
p(xm, ym).

Passing to the limit as m →∞ we obtain φ(x0)−φ(y0) ≥ p(x0, y0) ≥ δ. Therefore, as
φ is Lipschitz, we have the equality φ(x0)− φ(y0) = p(x0, y0) for z0 ∈ Γ(x0, y0)∩X

)
what contradicts to (17). Hence condition (13) holds.

Inversely, let us suppose that condition (13) holds. Then we shall show that
condition (17) holds too. Again we suppose the opposite. Then there are points
x0, y0 ∈ K and z0 ∈ Γ(x0, y0) ∩ X , for which φ(x0) − φ(y0) = p(x0, y0) > 0. We
put U = {z0}. From (13) for δ = ρ(x0, y0) we have L(x0, y0, z0) < 1. Therefore
z0 6∈ Γ(x0, y0) and we obtain a contradiction. The theorem is proved

3. Finsler metric

The extension problem of functions with restrictions on the gradient can be reduced
to the problem about Lipschitz extensions in Finsler spaces. Using results from the
previous section, we obtain very general theorems answering the formulated problem.

Let Ω ⊂ Rn be a domain and let Φ be a function, determined in Ω× Rn, which
takes values in R and such that the following conditions are fulfilled:

a) Φ(x, ξ) ≥ 0.
b) Φ(x, λξ) = λΦ(x, ξ) for all λ ≥ 0, ξ ∈ Rn and x ∈ Ω.
c) Ξ(x) =

{
ξ ∈ Rn : Φ(x, ξ) < 1

}
are convex for every x ∈ Ω.

Determine the dual function H by

H(x, η) = sup
Φ(x,ξ)=1

〈η, ξ〉

(see [8: Section 15]) and then set

h(x) = sup
|η|=1

sup
Φ(x,ξ)=1

〈η, ξ〉.
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It is clear that the function H has properties a) - c). We define the set

C(x) =
{
η ∈ Rn : H(x, η) < 1

}
.

We also note the formula

Φ(x, ξ) = sup
H(x,η) 6=0

〈ξ, η〉
H(x, η)

.

In the general case the function H takes on Ω×Rn values in R. Infinite values of H
arise in the cases when the convex set Ξ(x) is unbounded. On the other hand, it is
not difficult to see that the set Ξ(x) is bounded if and only if h(x) < +∞.

It is useful to consider the following example.

Example 1. Let (e1, e2, . . . , en) be an orthonormal basis in Rn
2 and let Φ(x, ξ) =

|〈e1, ξ〉|. Then

Ξ(x) = {ξ : |〈e1, ξ〉| < 1} = {ξ ∈ Rn : |ξ1| < 1}.

Here the dual function H has the form

H(x, η) =
{ |η1| if ηi = 0; i = 2, 3, . . . , n

+∞ if ηi 6= 0 for some i ≥ 2

and takes infinite values. The set C(x) is the open interval (−1, 1) situated on the
axis Oη1. Here h(x) ≡ +∞.

For arbitrary points x, y ∈ Ω we set

ρ(x, y) = inf
γ

∫ 1

0

H(γ(t), γ̇(t)) dt

where the infimum is taken over all locally Lipschitz curves γ : [0, 1] → Ω such that
γ(0) = x and γ(1) = y. It is clear that in the general case the quantities ρ(x, y) and
ρ(y, x) do not coincide.

Lemma 5. The function ρ has properties α) and β) of a pseudometric.

Proof. The realization of condition α) is obvious. We show the validity of con-
dition β). Let x, y, z ∈ Ω and suppose ρ(x, z), ρ(z, y) < ∞. For every ε > 0 there are
curves γi : [0, 1] → Ω (i = 1, 2) such that

γ1(0) = x, γ1(1) = z,

∫ 1

0

H
(
γ1(t), γ̇1(t)

)
dt < ρ(x, z) + ε

2

γ2(0) = z, γ2(1) = y,

∫ 1

0

H
(
γ2(t), γ̇2(t)

)
dt < ρ(z, y) + ε

2 .

We put

γ3(t) =
{

γ1(2t) for t ∈ [0, 1
2 )

γ2(2t− 1) for t ∈ [ 12 , 1].
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Then

ρ(x, y) ≤
∫ 1

0

H
(
γ3(t), γ̇3(t)

)
dt

=
∫ 1

0

H
(
γ1(t), γ̇1(t)

)
dt +

∫ 1

0

H
(
γ2(t), γ̇2(t)

)
dt

≤ ρ(x, z) + ρ(z, y) + ε.

By virtue of the arbitrary choice of ε > 0, the triangle axiom is realized. In the case
of conversion in +∞ for even one of the quantities ρ(x, z) or ρ(z, y) inequality α) is
obvious

Later we shall call a pseudometric which has properties α) and β) by Finsler
pseudometric.

Let us consider the case when the distribution Ξ(x) of convex sets is locally
uniformly bounded. Let Ω be a domain in R and let ρ be a Finsler pseudometric. We
shall assume that the function h is locally bounded in Ω, fix a subdomain Ω′ ⊂⊂ Ω
and set h′ = supx∈Ω′ h(x). For an arbitrary pair of points x1, x2 ∈ Ω′ such that for
the connecting segment x1x2 we have x1x2 ⊂ Ω′, we get

ρ(x1, x2) ≤
∫ 1

0

H(x1 + te, e) dt ≤ h′ |x2 − x1|

where e = x2−x1
|x2−x1| . Therefore, any ρ-Lipschitz in Ω function f is locally Lipschitz

in the Euclidean metric. By the Rademacher theorem, the function f has a total
differential almost everywhere in Ω. In particular, the vector (fx1 , fx2 , . . . , fxn) =
∇f(x) is defined almost everywhere in Ω.

Let Ωρ be the completion of the domain Ω by the pseudometric ρ and let ∂Ωρ =
Ωρ \ Ω. Assume that the completion Ωρ is non-empty.

The following theorem is the main result of the present paper.

Theorem 2. In order that the function φ : ∂Ωρ → R be the trace on ∂Ωρ for a
function f : Ω → R satisfying the condition

ess sup
U

Φ(x,∇f(x)) < 1 (U ⊂ Ω compact) (19)

it is sufficient that φ is ρ-Lipschitz and has the property

∀ δ > 0 ∃ µ ∈ (0, 1) :

sup
{

L(x, y, z) : (x, y) ∈ Aµ
δ (φ, ∂Ωρ) and z ∈ U

}
< 1

(20)

on every subset U ⊂⊂ Ω. In the case when the boundary ∂Ωρ or the boundary
function φ is bounded, condition (20) is also necessary.

Proof. By Lemma 3, it is necessary to establish the equivalence of restrictions
(19) and (20). Suppose that (19) is held. We fix a set U with U ⊂ Ω and a subdomain
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Ω1 ⊃ U with Ω1 ⊂ Ω. Let x1, x2 ∈ Ω1 be arbitrary and choose a locally Lipschitz
path γ : [0, 1] → Ω such that γ(0) = x1 and γ(1) = x2. We have

f(x2)− f(x1) =
∫ 1

0

〈∇f(γ(t)), γ̇(t)
〉
dt.

Suppose that the points x1, x2 ∈ Ω1 are sufficiently near in the following sense: for
every ε > 0 there is a path γ : [0, 1] → Ω1 with γ(0) = x1 and γ(1) = x2 for which

∫ 1

0

H
(
γ(t), γ̇(t)

)
dt < ρ(x2, x1) + ε.

If ∇f(γ(t)) exists almost everywhere on γ, then

f(x2)− f(x1) =
∫ 1

0

〈∇f(γ(t)), γ̇(t)
〉
dt

≤
∫ 1

0

Φ
(
γ(t),∇f(γ(t))

)
H

(
γ(t), γ̇(t)

)
dt

≤ ess sup
Ω1

Φ(x,∇f(x))
∫ 1

0

H(γ(t), γ̇(t)) dt

≤ ess sup
Ω1

Φ(x,∇f(x))
(
ρ(x2, x1) + ε

)
.

(21)

Suppose that γ does not have the described property. Without loss of generality
we may assume that the path γ is piecewise linear. We choose a unit vector θ such
that for sufficiently small δ > 0 the parallel translation γδ of the path γ on a vector δθ
does not have intersections with each other. Using the Rademacher theorem about
differentiability of Lipschitz functions almost everywhere, it is not hard to see that
the function f has a total differential at almost every point x ∈ γδ on almost all γδ.
Let γδm with δm → 0 be a sequence of curves with this property, and let x2,m and
x1,m be their end points. Arguing as for the proof of (21), we find

f(x2,m)− f(x1,m) ≤ ess sup
Ω1

Φ
(
x,∇f(x)

)(
ρ(x2,m, x1,m) + ε

)
.

Going over to the limit for m →∞ and ε → 0, we obtain

f(x2)− f(x1) ≤ ess sup
Ω1

Φ(x,∇f(x)) ρ(x2, x1). (22)

Similarly we get the inequality

f(x2)− f(x1) ≥ −ess sup
Ω1

Φ(x,∇f(x)) ρ(x1, x2). (23)

Relations (22) and (23) imply (20).
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Suppose that (20) holds. Let U ⊂ Ω1 ⊂⊂ Ω and let h < 1 be a constant for
which

lim sup
y→x

f(x)− f(y)
ρ(x, y)

≤ h

lim inf
y→x

f(x)− f(y)
ρ(y, x)

≥ −h

for all x ∈ Ω1. Let l ⊂ Ω1 be an arbitrary segment and let θ be a unit directing
vector of the segment l such that

l =
{
y : y = x + tθ (0 ≤ t ≤ 1)

}
.

Since the function f is ρ-Lipschitz, the derivative ∂f
∂θ exists almost everywhere on l.

In each point t0, where ∂f
∂θ (x + t0θ) > 0, we have

∂f

∂θ
(x + t0θ) = lim

t→t0+0

f(x + tθ)− f(x + t0θ)
t− t0

≤ lim sup
t→t0+0

f(x + tθ)− f(x + t0θ)
ρ(x + tθ, x + t0θ)

lim inf
t→t0+0

ρ(x + tθ, x + t0θ)
t− t0

≤ h lim
t→t0+0

1
t−t0

∫ t

t0

H(x + sθ, θ) ds.

If at a point t0 for the derivative we have ∂f
∂θ (x + t0θ) ≤ 0, then the given inequality

is obvious. So, for almost all t ∈ [0, 1],

∂f

∂θ
(x + tθ) ≤ h lim inf

t→t0+0

1
t−t0

∫ t

t0

H(x + sθ, θ) ds ≤ hH(x + tθ, θ).

Since the choice of segment l ⊂ Ω1 was arbitrary, we have ∂f
∂θ (x) ≤ h H(x, θ) for θ

almost everywhere in Ω1. As ∂f
∂θ (x) = 〈∇f(x), θ〉 almost everywhere, we have

Φ(x,∇f(x)) = sup
θ 6=0

〈∇f(x), θ〉
H(x, θ)

≤ h

and the theorem is proved

We say that a set K is ρ-compact in the pseudometric space (Ωρ, ρ) if for any
sequence of points {xm}+∞m=1 ⊂ K there is subsequence {xmk

}+∞k=1 such that for some
point x ∈ K

ρ(xmk
, x) + ρ(x, xmk

) → 0 (k → +∞).

For an arbitrary pair of points x1, x2 ∈ Ωρ we set

Γ(x1, x2) =
{

x ∈ Ωρ : ρ(x1, x2) = ρ(x1, x) + ρ(x, x2)
}

.

Note that the set Γ(x1, x2) is non-empty, since the points x1, x2 lie in Γ(x1, x2) at
least. But, in contrast to a metric, the equality Γ(x, x) = x can be broken for the
pseudometric ρ.

In the case when the extension of a function φ takes place from a compact set,
the extension conditions may be essentially simplified.
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Theorem 3. Let K ⊂ ∂Ωρ be a ρ-compact set. The function φ : K → R is the
trace on K of a function f : Ω → R satisfying the conditions

ess sup Φ(x,∇f(x)) < 1

for any set U ⊂⊂ Ω if and only if φ satisfies the conditions

− ρ(x2, x1) ≤ φ(x1)− φ(x2) ≤ ρ(x1, x2) (x1, x2 ∈ K) (24)
− ρ(x2, x1) < φ(x1)− φ(x2) < ρ(x1, x2) if ρ(x1, x2) > 0, Γ(x1, x2) ∩ Ω 6= ∅.(25)

Proof. Condition (24) implies that φ satisfies the ρ-Lipschitz condition on K.
Therefore, for the proof of the theorem it is sufficient to establish the equivalence
of (25) and (20). Suppose that (25) holds out. We show that for an arbitrary set
U ⊂⊂ Ω and for every δ > 0 there is a number m0 for which

sup
{

L(x, y, z) : (x, y) ∈ A
1

m0
δ and z ∈ U

}
< 1.

Assume the opposite. Then there are δ > 0, points xm, ym ∈ K and zm ∈ U such
that ρ(xm, ym) ≥ δ and

ρ(xm, ym)
ρ(xm, zm) + ρ(zm, ym)

→ 1 (m → +∞). (26)

By virtue of the assumptions on the sets K and U , there are points x0, y0 ∈ K and
z0 ∈ U for which

ρ(xm, x0) + ρ(x0, xm) → 0

ρ(ym, y0) + ρ(y0, ym) → 0

ρ(zm, z0) + ρ(z0, zm) → 0





(m → +∞).

From this by (26) we obtain ρ(x0, y0) = ρ(x0, z0) + ρ(z0, y0) which implies z0 ∈
Γ(x0, y0).

On the other hand, as (xm, ym) ∈ A
1
m

δ , then

φ(xm)− φ(ym) ≥ (1− 1
m )ρ(xm, ym).

Taking the limit, we establish that φ(x0)− φ(y0) ≥ ρ(x0, y0) ≥ δ. Thus, as φ is a ρ-
Lipschitz function, φ(x0)−φ(y0) = ρ(x0, y0) and z0 ∈ Γ(x0, y0)∩Ω what contradicts
to (25). Hence, condition (20) holds.

Conversely, suppose that (20) is true. Let us show that this implies (25). Suppose
the opposite. Then there are points x0, y0 ∈ K and z0 ∈ Γ(x0, y0) ∩ Ω for which
φ(x0) − φ(y0) = ρ(x0, y0) > 0. We set U = {z0}. For δ = ρ(x0, y0) it follows from
(20) that L(x0, y0, z0) < 1. Since z0 6∈ Γ(x0, y0), we have a contradiction. The
theorem is proved



736 E.G. Grigoryeva et al.

Let M be a Riemannian manifold and let g be a metric on M . Let δ(x) > 0 be a
function of class C1(M). Let L be Minkowski space with metric l. According to [2:
Section 2.6] we shall call the manifold with Lorentzian metric g defined by the rule

g(u, v) = g(πu, πv) + δ(π(p))l(ηu, ηv)
(
u, v ∈ Tp(M ×δ L)

)

where p ∈ M ×δ L, π and η are natural projections on M and L, respectively, by
Lorentzian warped product M ×δ L. It is clear that the tangent spaces Tπ(p)M and
Tη(p)L are orthogonal.

A vector u ∈ Tp(M ×δ L) is called space-like if g(u, u) > 0. We shall consider
Lorentzian warped spaces of the form M ×δ R̂, where R̂ is the real line provided by
a negative definite metric. Suppose that the hypersurface F in M ×δ R̂ is defined as
the graph of a function f over a domain Ω ⊂ M . We give the condition under which
it is space-like.

We put

r(m1,m2) = inf
∫

γ

δ−
1
2 (m)

where the infimum is taken over all arcs γ ⊂ Ω joining points m1,m2 ∈ Ω.

Lemma 6. The surface F is space-like if and only if

lim sup
m′→m

|f(m′)− f(m)|
r(m′,m)

< 1

for all m ∈ Ω.

The proof can be found in [4: Section 3.4].
Assuming that the completion Ωr of the domain Ω by the metric r is compact,

we obtain the following statement proved in [4].

Theorem 4. A function φ : ∂Ωr → R is the trace of a locally Lipschitz function
f : Ω → R with space-like graph if and only if φ satisfies conditions (16) − (17) in
the metric r on ∂Ωr.

4. Comparison with Euclidean boundary

The boundary data φ : ∂Ωρ → R of a function f defined in a domain Ω ⊂ Rn

were understood above as limits of f(x) with respect to the pseudometric ρ. In the
general case there are no relations between limited data f |∂Ω and f |∂Ωρ . So, a very
important problem is to find conditions on the distribution of convex sets Ξ(x), under
realization of which the boundaries ∂Ω and ∂Ωρ can be compared. In this section we
obtain some results in this direction.

We consider the intrinsic metric on Ω

dΩ(x, y) = inf
∫ 1

0

|γ̇(t)| dt
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where the infimum is taken over all rectifiable curves γ : [0, 1] → Ω with γ(0) = x
and γ(1) = y. Let Ωd be the completion of Ω by the metric dΩ and let ∂Ωd = Ωd \Ω.
Our purpose is to give the description of correlations between the boundaries ∂Ωd

and ∂Ωρ.

Further we shall say that the pseudometric ρ(x, y) is uniformly continuous with
respect to dΩ(x, y) if for any ε > 0 there is a δ > 0 such that, for any x, y ∈ Ω
with dΩ(x, y) < δ, ρ(x, y) + ρ(y, x) < ε. The intrinsic metric dΩ(x, y) is uniformly
continuous with respect to the pseudometric ρ if the uniform smallness of ρ(x, y) +
ρ(y, x) implies the uniform smallness of dΩ(x, y).

We construct a mapping j : ∂Ωd → ∂Ωρ by the following way. Let x̃ ∈ ∂Ωd be
an arbitrary point and let {xm}+∞m=1 be a d-fundamental sequence of points xm ∈ Ω,
convergent to x̃. Then

dΩ(xm, xn) → 0 (m,n → +∞)

and by the supposition on uniform continuity that sequence is ρ-fundamental. There-
fore, the sequence defines some point x ∈ ∂Ωρ. Set j(x̃) = x. It is clear that the
mapping j : ∂Ωd → ∂Ωρ is one-valued. Similarly we may define a single-valued map-
ping ĵ : ∂Ωρ → ∂Ωd which puts x ∈ ∂Ωρ into correspondence to a point x̃ ∈ ∂Ωd.

Note the following simple statement.

Lemma 7. Let f : Ωρ → R be a ρ-Lipschitz function and let φ : ∂Ωρ → R be
such that f |∂Ωρ = φ in the sense of the pseudometric ρ. Then f |∂Ωd

= φ ◦ j in the
sense of the intrinsic metric d. Inversely, if f : Ω → R is a d-Lipschitz function and
for the function φ : ∂Ωd → R it holds f |∂Ωd

= φ, then f |∂Ωρ = φ ◦ ĵ in the sense of
the pseudometric ρ.

Proof. It is enough to restrict oneself to the following explanations. Suppose
that the point x̃ ∈ ∂Ωd and the sequence {xm} with property dΩ(xm, x̃) → 0 (m →
+∞) are given. The uniform continuity of ρ implies that the sequence {xm} is ρ-
fundamental. So j(x̃) = x and ρ(xm, x) → 0 under m → +∞. On the other hand,
since the function f is ρ-Lipschitz, then

f(xm)− φ(j(x̃)) ≤ ρ(xm, x) → 0

f(xm)− φ(j(x̃)) ≥ −ρ(x, xm) → 0,

that is f |∂Ωd
= φ ◦ j.

Conversely, if the point x̃ ∈ ∂Ωρ and the sequence {xm} for which ρ(xm, x̃) +
ρ(x̃, xm) → 0 are given, then the sequence {xm} is d-fundamental. Therefore ĵ(x̃) = x

and d(xm, x) → 0. As the function f is d-Lipschitz, then |f(xm) − φ(ĵ(x̃))| ≤
d(xm, x) → 0 which is required

Clearly, a similar statement is true for a pseudometric ρ, uniformly continuous
in the Euclidean metric
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We give now a simple criterion of uniform continuity for the pseudometric ρ in
the metric dΩ. For that we define the quantity

Φ(x) = min
|ξ|=1

Φ(x, ξ).

Lemma 8. If there is a constant c > 0 such that

Φ(x) ≥ c (x ∈ Ω), (27)

then
ρ(x, y) + ρ(y, x) ≤ 2

c dΩ(x, y) (x, y ∈ Ω). (28)

Conversely, if there is a constant c > 0 such that

max
|ξ|=1

Φ(x, ξ) = Φ(x) ≤ c,

then
dΩ(x, y) ≤ c

2

(
ρ(x, y) + ρ(y, x)

)
(x, y ∈ Ω).

Proof. First of all, we observe that condition (27) implies

|H(x, η)| = sup
Φ(x,ξ)6=0

|〈η, ξ〉|
|Φ(x, ξ)| ≤ sup

Φ(x,ξ)6=0

|ξ| |η|
c |ξ| =

1
c
|η|.

Fix points x, y ∈ Ω and a locally Lipschitz path γ : [0, 1] → Ω with γ(0) = x and
γ(1) = y. We have

ρ(x, y) + ρ(y, x) ≤ 2
∫ 1

0

|H(γ(t), γ̇(t))| dt ≤ 2
c

∫

γ

|γ̇(t)| dt =
2
c

length γ.

Taking the infimum over all paths γ, we get (28).
Conversely, for any vector η ∈ Rn we have

H(x, η) = sup
Φ(x,ξ) 6=0

〈η, ξ〉
Φ(x, ξ)

≥ |η|
max|η|=1 Φ(x, η)

=
|η|

Φ(x)
≥ 1

c
|η|.

For fixed points x, y ∈ Ω, by the definition of the intrinsic distance dΩ,

dΩ(x, y) = inf
γ

∫

γ

|γ̇| dt ≤
∫

γ0

|γ̇0| dt

≤ c

∫

γ0

H(γ0, γ̇0) dt ≤ c

2
(
ρ(x, y) + ρ(y, x)− ε

)

for all ε > 0 where γ0 : [0, 1] → Ω with γ0(0) = x and γ0(1) = y is the locally
Lipschitz path, for which

∫

γ0

H(γ0, γ̇0) dt <

{
ρ(y, x)− ε

2
ρ(x, y)− ε

2 .

Because of the arbitrary choice of ε we have what was needed
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For an effective description of correlations between the boundary of the domain
Ω in the ρ-metric ∂Ωρ and the Euclidean boundary ∂Ω we need the concept of p-
modulus for the family of curves (see, for example, [11: Section 5]). Let {γ} be a
family of locally rectifiable arcs γ situated in the domain Ω ⊂ Rn and let p > 1 be
a certain number. p-modulus of the family {γ} (in Euclidean metric) is called the
quantity

modp{γ} = inf

∫
Ω

%pdx(
infγ

∫
γ

% |dx|)p (29)

where the infimum is taken over all non-negative Borel functions %. For an arbitrary
pair of points x, y ∈ Ω we define the family G(x, y) = {γ} as the family of the
rectifiable arcs γ ⊂ Ω joining the points x and y. If p > n and y → x, then
modpG(x, y) → +∞. However, for x, y → z ∈ ∂Ω the p-modulus of the family of arcs
G(x, y) may be both bounded and unbounded. This is connected with the structure
of the boundary ∂Ω near the point z ∈ ∂Ω, namely with the presence of arbitrarily
”narrow” places of the domain Ω at a neighborhood of z.

Let p > n. We shall say that the domain Ω is p-uniform if a δ > 0 can be
found for every sufficiently large ε > 0 so that, for all x, y ∈ Ω with dΩ(x, y) < δ,
modpG(x, y) > ε.

The statement formulated later establishes a criterion of uniform continuity for
the pseudometric ρ(x, y) and as corollary it sets the existence and continuity of the
boundary mapping j : ∂Ωd → ∂Ωρ.

Theorem 5. If the domain Ω is p-uniform and the function Φ satisfies the con-
dition ∫

Ω

dx

Φp(x)
< ∞ (dx = dx1dx2 · · · dxn), (30)

then the pseudometric ρ is uniform continuous with respect to the intrinsic metric
dΩ.

Proof. We choose the function Φ−1 in (29) as metric %. For any x, y ∈ Ω we
have

modpG(x, y) ≤
∫
Ω

Φ−p(x) dx(
infγ

∫
γ

Φ−1(x) |dx|)p .

Since 1
Φ(x) ≥ H(x, η) for any η ∈ Rn, thus

inf
γ

∫

γ

Φ−1(x) |dx| ≥ inf
γ

∫

γ

|H(γ(t), γ̇(t))| dt ≥ max
{
ρ(x, y), ρ(y, x)

}
.

Hence
ρp(x, y) + ρp(y, x) ≤ 2

modpG(x, y)

∫

Ω

Φ−p(x) dx.

It follows from condition (30) that

(ρ(x, y) + ρ(y, x))p ≤ const
modpG(x, y)

and we can make the necessary conclusion because of the requirement about p-
uniformity of the domain Ω
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Now we give the concept of p-modulus for the family of curves {γ} in Finsler
space (also see [10]). Let {γ} be a family of locally rectifiable arcs γ ⊂ Ω and p > 1
be a number. We call the quantity

m̃odp{γ} = inf
ρ≥0

∫
Ω

ρpdx(
infγ

∫
γ

ρ H(x, dx)
)p

by p-modulus of this family, where ρ is a measurable function.
Denote by G(x, y) = {γ} the family of arcs γ ⊂ Ω joining the points x and y. We

say that the domain Ω is p-uniform with respect to the pseudometric ρ if for all ε > 0
there is a δ > 0 such that for all x, y ∈ Ω under the condition ρ(x, y) + ρ(y, x) < δ it
follows that m̃odpG(x, y) > ε.

The following theorem is true.

Theorem 6. If the domain Ω is p-uniform with respect to the pseudometric ρ
and the function H(x) = min|η|=1 H(x, η) has the property

∫
Ω

dx
Hp(x) < ∞, then the

metric dΩ is uniformly continuous with respect to the pseudometric ρ.

Proof. For any pair of points x, y ∈ Ω let us consider the curve γ ⊂ Ω joining
these points. Take the function H−1 as admissible function ρ. Then

m̃odpG(x, y) ≤
∫
Ω

H−p(x)dx(
infγ

∫
γ

H−1(x)H(x, dx)
)p .

Since for any vector η ∈ Rn it is true that 1
H(x) ≥ |η|

H(x,η) , we obtain

m̃odpG(x, y) ≤
∫
Ω

H−p(x)dx(
infγ

∫
γ
|dx|)p ≤

∫
Ω

H−p(x)dx

dp
Ω(x, y)

.

Hence,

dp
Ω(x, y) ≤ 1

m̃odpG(x, y)

∫

Ω

H−p(x)dx

implies uniform continuity of the metric dΩ with respect to the pseudometric ρ, by
virtue of the supposition about p-uniformity of the domain Ω

We shall say that a domain Ω ⊂ Rn satisfies the h-ball condition if we can touch
every boundary point by a ball of radius h completely lying into the domain.

Proposition 1. If the domain Ω ⊂ Rn satisfies the h-ball condition, then it is
p-uniform for every p > n.

Proof. We suppose the contrary. There is ε0 > 0 so that for any natural number
m under the condition d(xm, ym) < 1

m it follows that modp{γ} ≤ ε0. As Ω is
compact, we may assume that sequences of points {xm} and {ym} converge and
limm→∞ ym = limm→∞ xm = a ∈ Ω. For the point a there are two possibilities of
location: either a ∈ Ω or a ∈ ∂Ω.
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First let us consider the case when a is a boundary point of the domain Ω. We
construct h-balls B and B1m, B2m tangent to the boundary such that

B ∩ ∂Ω = {a}, B1m ∩ ∂Ω 6= ∅, xm ∈ B1m, B2m ∩ ∂Ω 6= ∅, ym ∈ B2m.

Clearly, beginning with a certain number m0 we have B∩B1m 6= ∅ and B∩B2m 6= ∅.
Denote by bm and am points nearest to a and lying in B ∩ B1m and B ∩ B2m,
respectively. It is clear that bm → a and am → a for m → +∞.

Further, let γm be a family of curves joining the points xm and ym in the domain
Ω, and δm be a family of broken lines passing through the points xm, am, bm, ym. By
properties of the modulus,

modp{γm} ≥ modp{δm}.

We estimate modp{δm}. Define in Rn cylindrical coordinates (t, z, θ) where the axis
z is directed along a line passing through the points xm and bm. Let Π(θ0) be a plane
corresponding to the point θ0 ∈ Sn−2. Next we define polar coordinates (r, ϕ) with
the center at the point xm in Ω ∩ Π(θ0). For an admissible function ρ, by Hölder’s
inequality we have

( ∫

r(ϕ)

ρ dr

)p

≤
( ∫

r(ϕ)

ρprn−1dr

)( ∫

r(ϕ)

r−
n−1
p−1 dr

)p−1

≤
( p− 1

p− n

)p−1

rp−n
∣∣∣
r(ϕ)

·
∫

r(ϕ)

ρprn−1dr

≤
( ∫

r(ϕ)

ρprn−1dr

)( p− 1
p− n

)p−1

dp−n(x, b).

Here r(ϕ) is the intersection of the ray corresponding angle ϕ with the set

Ω ∩B
(
xm, d(xm, bm)

)
.

By the mean value theorem, there is an ϕ̃ ∈ (0, π
4 ) so that

∫ π
4

0

sin ϕ

( ∫

r(ϕ)

ρ dr

)p

dϕ =
( ∫

r(ϕ̃)

ρ dr

)p(
1−

√
2

2

)
.

Integrating by the variable θ ∈ Sn−2 we obtain

ωn−2

(
1−

√
2

2

)( ∫

r(ϕ̃)

ρ dr

)p

≤ Cdp−n(x, b)
∫

Sn−2

∫ π
4

0

∫

r(ϕ)

ρprn−1 sin ϕdrdϕdθ

≤ Cdp−n(xm, bm)
∫

Ω

ρp(x) dx
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where C =
[

p−1
p−n ]p−1 and ωn−2 is the area of the unit (n − 2)-dimensional sphere.

Similarly, for the point bm we find the angle ψ̃ such that

ωn−2

(
1−

√
2

2

)( ∫

r(ψ̃)

ρ dr

)p

≤ Cdp−n(x, b)
∫

Sn−2

∫ π
4

0

∫

r(ψ)

ρprn−1 sin ϕdϕdrdθ

≤ Cdp−n(xm, bm)
∫

Ω

ρp(x) dx.

Joining these two inequalities, we find the broken line δ(xm, bm) for which

( ∫

δ(xm,bm)

ρ dr

)p

≤ 2pC

ωn−2

(
1−

√
2

2

)dp−n(xm, bm)
∫

Ω

ρpdx.

Making similar arguments for the pairs of points (bm, am) and (am, ym), we find the
respective broken lines δ(bm, am) and δ(am, ym), for which the inequalities

( ∫

δ(am,bm)

ρ dr

)p

≤ 2pC dp−n(am, bm)

ωn−2

(
1−

√
2

2

)
∫

Ω

ρpdx

( ∫

δ(am,ym)

ρ dr

)p

≤ 2pC dp−n(am, ym)

ωn−2

(
1−

√
2

2

)
∫

Ω

ρpdx

are true. Joining these broken lines in one line

δm = δm(xm, bm) ∪ δ(bm, am) ∪ δ(am, ym)

and summarizing the obtained inequalities, we get for any admissible function ρ ≥ 0

( ∫

δm

ρ ds

)p

=
( ∫

δm(xm,bm)

ρ ds +
∫

δm(bm,am)

ρ ds +
∫

δm(am,ym)

ρ ds

)p

≤ 3p−1

[( ∫

δm(xm,bm)

ρ ds

)p

+
( ∫

δm(bm,am)

ρ ds

)p

+
( ∫

δm(am,ym)

ρ ds

)p]

≤ 2 · 6p−1C
(
dp−n(xm, bm) + dp−n(am, bm) + dp−n(am, ym)

)

ωn−2

(
1−

√
2

2

)
∫

Ω

ρpdx.

Note that
dp−n(xm, bm) + dp−n(am, bm) + dp−n(am, ym)

≤ (
d(xm, bm) + d(am, bm) + d(am, ym)

)p−n
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and going over to the infimum by all functions ρ in the preceding inequality, we find

modp{δm} ≥ C1[
d(xm, bm) + d(am, bm) + d(am, ym)

]p−3 .

Passing to the limit in this inequality for m →∞ we obtain

lim
m→∞

modp{δm} = +∞

which contradicts to assumption modp{δm} ≤ ε0. In the case in which a is an intrinsic
point of the domain Ω we do the same thing, but choose the balls not necessarily
tangent to the boundary ∂Ω

5. Arbitrary codimension

In this section we give applications of our results obtained above to existence problems
for space-like surfaces of codim > 1 with the prescribed boundary in the Minkowski
space Rn+1

1 .

Let Rn+1
1 be a Minkowski space-time. Let Ω ⊂ Rk (k ≤ n) be a domain and let

F (u) =
(
x1(u), x2(u), ..., xn(u), t(u)

)
: Ω → Rn+1

1

be a Lipschitz mapping, which gives a k-dimensional Lipschitz surfaceM with bound-
ary L. The problem is to find conditions (necessary and sufficient) on the boundary
L for the existence of a space-like surfrace with the same boundary. We shall find
the solution of the problem in the form

R(u) =
(
x1(u), ..., xn(u), f(u)

)
(31)

where xi are coordinate functions for the surface F and the function f coincides with
the function t on the boundary of the domain ∂Ω. The last condition means that the
surfaces R and F have the similar boundary L.

We put necessary notations for the partial derivatives of the vector function
F : Rk → Rn+1

1 , which exist almost everywhere because the surface is Lipschitz

∂F

∂ui
(y) =

(
∂x1

∂ui
, ...,

∂xn

∂ui
,

∂t

∂ui

)
.

Then the matrixes

G = {gij(u)}k,k, gij(u) =
n∑

l=1

∂xl

∂ui
(u) · ∂xl

∂uj
(u)

A = {aij}k,k, aij =
∂t

∂ui
(u)

∂t

∂uj
(u)
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are defined almost everywhere. Besides that, the matrix G is non-negative defined
as Gram matrix. Further, we suppose that the condition

ess inf
u∈K

det G(u) > 0 (32)

is true for every compactly embedded subdomain K ⊂ Ω. The existence of the
inversal matrix G−1 with coefficients gij(u) almost everywhere follows from this con-
dition. We note that surface (31) is space-like if and only if det[G − A] > 0 or
det[E −G−1A] > 0. We calculate this determinant. Namely, we show that

det[E −G−1A] = 1− tr(G−1A).

By virtue of all mentioned above, we may suppose that the matrix G is diagonal.
Then

G = diag
{
λ1, λ2, ..., λk

}
, G−1 = diag

{
1
λ1

, 1
λ2

, ..., 1
λk

}
.

Hence
G−1A =

{aij

λi

}
and E −G−1A =

{
δij − aij

λi

}
.

We need the following

Lemma 9. For any numbers ai, bi (i = 1, 2, ..., k) the formula det[δij − aibj ] =
1−∑k

l=1 albl holds.

Proof. We proceed by induction. It is clear that the statement is true for k =
p− 1. We calculate the determinant of the order p, decomposing it by the elements
of the first string, and get

∆p = (1− a1b1)∆p−1 + a1b1 · a2b2

∣∣∣∣∣∣∣∣

−1 a3 . . . ap

b3 1− a3b3 . . . −apb3

...
...

...
...

bp −a3bp . . . 1− apbp

∣∣∣∣∣∣∣∣

+ . . . + a1b1 · apbp

∣∣∣∣∣∣∣

b2 1− a2b2 . . . −b2ap−1

...
...

...
...

bp−1 −bp−1a2 . . . 1− ap−1bp−1

∣∣∣∣∣∣∣
.

Note that the determinants are of the same type except ∆p−1 and therefore it is
sufficient for us to calculate one of them, for example the last one. Multiplying the
first column of this determinant consecutively by ai and adding it to the column with
number i we find that∣∣∣∣∣∣∣

b2 1− a2b2 . . . −b2ap−1

...
...

...
...

bp−1 −bp−1a2 . . . 1− ap−1bp−1

∣∣∣∣∣∣∣
= −1.

Substituting this in the expression for the determinant ∆p and using the induction
hypothesis for k = p− 1, we obtain

∆p = (1− a1b1)(1− a2b2 − . . .− apbp)− a1b1(a2b2 + . . . + apbp)

= 1−
p∑

l=1

albl

which was what we needed to prove
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Lemma 10. Let Π be a space-like k-dimensional plane and let the vectors r1, r2,
..., rk form a base in Π. If R1, R2, ..., Rk are the respective projections of these vectors
to the hyperplane {(x, t) : t = 0}, then

ch θ =
volume of parallelepiped on vectors R1, ..., Rk

volume of parallelepiped on vectors r1, ..., rk
.

Here the term ‘volume’ means the volume of the parallelepiped spanned by vectors
in a space-like plane, on which an Euclidean structure may be naturally induced.

Proof of Lemma 10. Let e be a directing unit vector of a time axis and e =
eT + eN be its decomposition into a tangent and a normal components to the plane
Π. Then the desired cosinus of the angle is equal to

ch θ =
∣∣∣∣
〈e, eN 〉
|eN |

∣∣∣∣ = |eN | =
√

1 + |eT |2.

Denote by Π′ the projection of the plane Π to the hyperplane t = 0 and by π : Π → Π′

the respective projecting mapping. Since the ratio of squares in the lemma does not
depend on the choice of vectors r1, r2, ..., rk, then we shall suppose that the vectors
form an ortonormal base in Π. Also, we assume that r1, r2, ..., rk−1 ∈ Π ∩ Π′. It is
clear that π(ri) = Ri = ri (i = 1, 2, ..., k − 1) and π(rk) = rk + 〈rk−1, e〉e. So

|π(rk)|2 = 1 + 〈rk, e〉2 = 1 +
k∑

i=1

〈ri, e〉2 = 1 + |eT |2 = ch2 θ.

We note that π(rk) is normal to r1, r2, ..., rk−1. The volume of the parallelepiped
built on the vectors R1, ..., Rk is ch θ, but the volume of the parallelepiped built on
the vectors r1, ..., rk equals to 1. The lemma is proved

Lemma 11. The condition to be space-like for the surface M, given by the radius
vector F : Rk → Rn+1

1 and satisfying (32), may be written in the form

ess inf
u∈K

(
1− tr G−1A

)
> 0

where inequality holds on every compactly embedded subdomain K in Rk.

Proof. Let u ∈ Rk be a point, in which there is a tangent plane. Then at
this point there are tangent vectors ∂F

∂ui
(i = 1, 2, ..., k). We calculate the quantity

ch θ(u). For that note that the volume of the parallelepiped, built on the vectors ∂F
∂ui

,
equals

√
detG, but the volume of the parallelepiped spanned on their projections

equals
√

det (G−A). So using Lemmas 9 and 10 we get the equality

ch θ(u) =

√
detG√

det (G−A)
=

1√
1− tr G−1A

.

Thus, the condition for the surface M to be space-like is equivalent to the condition

ess sup
u∈K

k∑

i,j=1

gij ∂t

∂ui

∂t

∂uj
< 1

for every compactly embedded subdomain K ⊂ Ω
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We define the quantity

ρ(w, v) = inf
γ

∫ 1

0

√
gij(u(τ))

dui

dτ
· duj

dτ
dτ

where the infimum is taken over all rectifable paths γ : [0, 1] → Ω joining the points w
and v. By condition (32) this quantity defines an intrinsic distance in the domain Ω.
Further, we denote by Ωρ the completion of the domain Ω by the metric ρ. Suppose
that it is compact. Finally, set

Γ(u, v) =
{
w ∈ Ωρ : ρ(u, v) = ρ(u,w) + ρ(w, u)

}

Using Theorem 4, we obtain the following

Theorem 7. If there is some k-dimensional Lipschitz surface with boundary L
and satisfying condition (32), then for the existence of a k-dimensional space-like
surface of form (31) with prescribed boundary L it is necessary and sufficient to
realize the conditions

|t(v)− t(w)| ≤ ρ(v, w) (v, w ∈ ∂Ωρ)

|t(v)− t(w)| < ρ(v, w) if Γ(v, w) \ ∂Ωρ 6= ∅.
Now we consider the existence problem of C1-smooth space-like surfaces with

prescribed boundary. First, we study the case when the surface is given by the graph
of a function. Namely, suppose that t = t(x) (x ∈ Ω ⊂ Rn be a Lipschitz function
such that

lim
x→y

|t(x)− t(y)|
|x− y| < 1 (x, y ∈ Ω) (33)

t(x) = ψ(x) (x ∈ ∂Ω). (34)

Note that from (33) it follows for the surface t = t(x) to be space-like (see, for
example, [4]). The Lipschitz function may be changed to a smooth one by smoothing
procedure.

Defintion. The function η is called smoothing, if

1) η ∈ C∞0 (Rn)

2) η(x) = 0 on the compact B1 = {x ∈ Rn : |x| ≤ 1}.
3)

∫
Rn η(x) dx = 1.

As an example of such a function there may be chosen the function η defined by

η(x) =
{

C e
− 1

1−|x|2 for |x| < 1
0 for |x| ≥ 1

where the constant C is defined by C =
( ∫
|x|<1

e
− 1

1−|x|2 dx
)−1.
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For every function g ∈ L1
loc(Rn) and every ε > 0 we set

gε(x) = ε−n

∫

Rn

η

(
x− z

ε

)
g(z) dz =

∫

Rn

η(w)g(x + εw) dw. (35)

For this function we have gε ∈ C∞(Rn). We may smooth our function by formula
(35), but it does not provide a realization of condition (34) for some new function
tε which will be defined below. Therefore, we present a modificated method whose
main idea is following:

For a smooth function ε : Rn → R with 0 < ε(x) < 1
3dist(x, ∂Ω) for x ∈ Ω and

ε(x) = 0 for x ∈ ∂Ω we define the function tε similarly to (35) by

tε(x) = ε−n(x)
∫

Rn

η

(
x− z

ε(x)

)
t(z) dz =

∫

Rn

η(w)t(x + ε(x)w) dw. (36)

This function will be desired if we prove the smoothness of it and the realization of
conditions (34) and (33) for it.

Although, we shall solve the problem in a more general case. Suppose that in
the domain Ω ⊂ Rn there is given a metric ρ locally equivalent to the Euclidean one,
that is for every compactly embedded subdomain K ⊂ Ω there is a constant µ ≤ 1
such that, for any points x, y ∈ K, 1

µ |x− y| ≤ ρ(x, y) ≤ µ|x− y|. The conditions for
the function ε can be written as

0 < ε(x) <
dist(x, ∂Ωρ)

3
(x ∈ Ω) and ε(x) = 0 (x ∈ ∂Ωρ).

Let a function t : Ωρ → R be given, satisfying the condition limx→y
|t(x)−t(y)|

ρ(x,y) < 1 in
Ω. It is necessary to construct a functon tε such that

tε ∈ C1(Ω) (37)

tε(x) = t(x) = ψ(x) (x ∈ ∂Ωρ) (38)

|∇tε(x)|ρ = lim
x→y

|tε(x)− tε(y)|
ρ(x, y)

< 1. (39)

We prove that the function tε given by (36) solves problem (37) - (39). In the
beginning we check condition (38). For all x ∈ ∂Ωρ we have ε(x) = 0, t(x) = ψ(x)
and

tε(x) =
∫

Rn

η(w)t(x) dw =
∫

|ω|≤1

η(x)t(x + ε(x)ω) dω.

The functions t and ε are uniformly continuous, and going to the limit for x → x0 ∈
Ωρ we get

lim
x→x0

tε(x) =
∫

|ω|≤1

η(x)t(x0) dω = ψ(x0).

So (38) is really true. Since ε(x) > 0, ∂ε
∂xi

∈ C(Ω) and η ∈ C2(Rn), the function
t = tε has continuous partial derivatives, i.e. Condition (37) is true. Finally, we find
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conditions on the function ε in order to provide the realization of condition (39). We
have

lim
x→y

|tε(x)− tε(y)|
ρ(x, y)

= lim
x→y

∫

Rn

η(w)

∣∣t(x + ε(x)w)− t(y + ε(y)w)
∣∣

ρ(x, y)
dw.

Denote

g(x) = max
{

1
2
, sup
x′,x′′∈B3ε(y)

|t(x′)− t(x′′)|
ρ(x′, x′′)

}

where B3ε(y) =
{
x̃ ∈ Ω : |x̃− y| < 3ε(x)

}
. Then

lim
x→y

|tε(x) − tε(y)|
ρ(x, y)

≤
∫

|ω|≤1

η(ω)

∣∣t(x + ε(x)ω − t(y + ε(x)ω
∣∣

ρ(x, y)
dω

+
∫

|ω|≤1

η(ω)

∣∣t(y + ε(x)ω)− t(y + ε(y)ω
∣∣

ρ(x, y)
dω

≤ g(y) lim
x→y

∫

|ω|≤1

η(ω)
(

1 + µ(y)
|ε(x)− ε(y)|
|x− y|

)
dω

where the function µ is defined by µ(y) = supx′,x′′∈B3ε(y)

ρ(x′,x′′)
|x′−x′′| . Hence for the

realization of condition (39) it is necessary and sufficient that g(y)
(
1+µ(y)|∇ε(y)|) <

1 in the domain Ω. Note that g(y) < 1 on every compactly embedded subdomain
of the domain Ω and the function µ is locally bounded. Then the function standing
in the left hand of the inequality is locally positive. So, the function tε defined by
formula (36) is desired if there is a C1-smooth function ε : Rn → R such that

0 < ε(x) <
dist(x, ∂Ωρ)

3
and ε(x) = 0 (x ∈ ∂Ωρ) (40)

|∇ε(x)| < 1− g(x)
µ(x)g(x)

. (41)

Note that by the mentioned theorem the function t has a total differential almost
everywhere in Ω and, in general, the function 1−g(y)

µ(y)g(y) is not continuous.

We use the following

Lemma 12. There is a point x0 ∈ Ω and Ωρ ϕ = ϕ(x) such that ϕ|∂Ωρ = 1, ϕ ∈
C1(Ω), ϕ(x0) = 0 and, becides that, there is a constant c > 0 such that |∇ϕ(x)| ≤ c
for all x ∈ Ω.

At this point we mean that the exausting function is a C1-smooth function ϕ :
Ω → [0, 1] such that, for an arbitrary sequence of points xk ∈ Ω (k ≥ 1), ϕ(xk) → 1
if and only if xk → ∂Ω.

Proof of Lemma 12. By [1: Theorem 4.1] there is a solution of the equality

div
( ∇u√

1− |∇u|2
)

= 1, |∇u| < 1 in Ω
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in the domain Ω with boundary condition u|∂Ω = 1. By the maximum principle for
the solution of the given equation, u(x) < 1 in Ω. We choose a point x0 ∈ Ω such
that u(x0) = minΩ u(x). Then the desired function ϕ is equal to ϕ(x) = u(x)−u(x0)

1−u(x0)
.

So |∇u| < 1. Then |∇ϕ(x)| < 1
1−u(x0)

. It is clear that the function ϕ may be
continuously extended to the boundary ∂Ωρ setting ϕ(x) = 1 for x ∈ ∂Ωρ. The
lemma is proved

Lemma 13. There exists a function ε with prescribed properties (40)− (41).

Proof. Define the function by setting

Σ(τ) =
{
x ∈ Ω : ϕ(x) = τ

}
, δ(τ) = inf

y∈Σ(τ)

1− g(y)
µ(y)g(y)

, a(τ) = sup
y∈Σ(τ)

|∇ϕ(x)|.

We find the function ε in the form ε(x) = ε(ϕ(x)) and require for it the execution of
the more strong inequality than (41)

|∇ε(ϕ(x))| = |ε′(ϕ(x))| · |∇ϕ(x)| ≤ a(ϕ(x)) · |ε′(ϕ(x))| < δ(ϕ(x)),

that is |ε′(τ)| < δ(τ)
a(τ) . In virtue of the remark done earlier and the definitions of the

functions δ(ϕ(x)) and a(ϕ), we can not simply put ε(ϕ(x)) = k
∫ 1

ϕ(x)
δ(ϕ)
a(ϕ) dϕ with

some constant k < 1, as in this case the function ε = ε(ϕ(x)) may be not C1-smooth.

We change the function δ(ϕ)
a(ϕ) into a positive function denoted by p(τ), such that

the new function shall be continuous and satisfy the inequality p(τ) < δ(τ)
a(τ) . Let

b(τ) = min
τ0≤τ

δ(τ0)
a(τ0)

≤ δ(τ)
a(τ)

(0 ≤ τ ≤ 1).

Then b(0) = δ(0)
a(0) > 0 as g(x0) < 1 and |∇ϕ(x0)| ≤ c < +∞. The function b is

decreasing. Let τk be an increasing sequence of points converging to 1. We put

p(τ) =

{
b(τk) for

(
τk−1 ≤ τ < τk−1+τk

2

)

2 b(τk+1)−b(τk)
τk−τk−1

(τ − τk) + b(τk+1) for τk−1+τk

2 ≤ τ < τk.

If τ ∈ [τk−1, τk], then it is obvious that p(τ) ≤ b(τk) ≤ b(τ). From the construction
of the function p it is clear that it is continuous and increasing. So we conclude that
0 < p(τ) < b(τ) ≤ δ(τ)

a(τ) . Now we give as required function ε

ε(ϕ(x)) = 1
4

∫ 1

ϕ(x)

p(ϕ) dϕ.

We calculate the derivative of this function. We have

ε′(ϕ) = −1
4
p(ϕ) ∈ C(Ω)

|∇ε(x)| = |ε′(ϕ)| |∇ϕ(x)| < 1
4b(ϕ)|∇ϕ(x)| ≤ 1

4b(ϕ) a(ϕ) < 1
4δ(ϕ) <

1− g(x)
4g(x)µ(x)

ε(ϕ(x)) = 0 (x ∈ ∂Ωρ).

Therefore, we obtain the following result:
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Theorem 8. Let ψ : ∂Ωρ → R be a function. If the Lipschitz function t : Ωρ →
R is such that limx→y

|t(x)−t(y)|
ρ(x,y) < 1 in Ω and t = ψ on ∂Ωρ, then there exists a

smooth function tε : Ωρ → R such that

|∇tε(x)|ρ < 1 (x ∈ Ω) and tε(x) = ψ(x) (x ∈ ∂Ωρ).

Theorem 8 claims that if a Lipschitz space-like hypersurface is given by the graph
of a function, then there is a smooth space-like hypersurface with the same boundary.
In the general case this is not true. Consider an example of a contour, which may be
spanned by Lipschitz space-like surface, but there is no smooth space-like surface.

Example 2. Let

Π =
{
(u1, u2) : −1 < u1 < 1 and 0 < u2 < 1

}
.

We consider the surface M given by the Lipschitz mapping

F (u1, u2) =





t = 0
x1 = u1

x2 = u2 for 0 ≤ u1 < 1
t = |u1|

2
x1 = |u1|
x2 = u2 for −1 < u1 ≤ 0.

The desired contour is the boundary of a surface M. Clearly, M is a space-like
surface, which consists of two parts of planes. If the obtained contour may be spanned
by a smooth space-like surface M1, then a smooth curve joining the points A( 1

3 , 0, 0)
and B( 1

3 , 0, 2
3 ) of this contour lying on the surface M1 and having tangent line,

parallel to the time axis, may be constructed. The last contradicts to fact that the
surface M1 is space-like.

We begin to study the case of surfaces with an arbitrary codimension.
Let L be a (k − 1)-dimensional closed surface, which is the boundary of a C1-

smooth surface

F (u) =
(
x1(u), ..., xn(u), t(u)

)
: Ω ⊂ Rk → Rn+1

1

so that, for every compactly subdomain K ⊂ Ω,

ess inf
K

detG > 0, G = {gij}, gij =
n∑

p=1

∂xp

∂ui
· ∂xp

∂uj
. (42)

This condition means that vectors orthogonal to the plane of a projection can not
belong to tangent planes. We introduce the Riemanian metric h with the element
of length ds2 =

∑n
l=1 dx2

l in the domain Ω. Denote by ρ(w, v) an intrinsic distance
between points w, v ∈ Ω in this metric and by Ωρ the completion of the domain Ω
by the metric ρ. Suppose that in the intrinsic metric the conditions

|t(w)− t(v)| ≤ ρ(w, v) (w, v ∈ ∂Ωρ)

|t(w)− t(v)| < ρ(w, v) if Γ(w, v) \ ∂Ωρ 6= ∅ (43)
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hold, that is there is a Lipschitz function f for which

f(u) = t(u) (u ∈ ∂Ωρ) and lim
u→v

|f(u)− f(v)|
ρ(u, v)

< 1 (u, v ∈ Ωρ).

From the last inequality, 1 − |∇f |2h > 0 follows almost everywhere in Ωρ. Let f̃ ∈
C1(Ωρ) be the result of smoothing f with a smoothing function ε, f̃ = t on Ωρ and

lim
u→v

|f̃(u)− f̃(v)|
ρ(u, v)

< 1 ⇐⇒ 1− |∇f̃ |2ρ > 0.

Now we show that from this condition it follows that the surface

R̃(u) =
(
x1(u), ..., xn(u), f̃(u)

)

is space-like and the vectors ∂R̃
∂ui

(u) (i = 1, .., k) are linear independent. We denote

A = {aij} =
{ ∂f̃

∂ui
· ∂f̃

∂uj

}
.

The surface, given by the radius vector R̃(u), is space-like if and only if for every
vector ξ = (ξ1, .., ξk) ∈ Rk

ξ · (G−A) · ξT > 0 (44)

is true. This condition follows from the inequality det (G−A) > 0, or the equivalent
inequality 1− tr(G−1A) = 1− |∇f̃ |2ρ > 0. So, the obtained surface R̃(u) is space-like

and C1-smooth because the linear indepedence of vectors ∂R̃
∂ui

(i = 1, ..., k) follows
from the fact that Gram’s determinant for these vectors is not equal to zero.

Therefore the following theorem is correct:

Theorem 9. If the contour L is such that assumptions (42)−(43) are true, then
there is a C1-smooth space-like surface spanned this contour.
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