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Exact Solution
of a System of Generalized Hopf Equations

K. T. Joseph

Abstract. In this paper we construct explicit solutions for initial value problem for a system
of first order equations. When n = 1, this system is just the standard Hopf equation in
conservative form. When n > 1, the system is non-conservative. We use the vanishing
viscosity method to construct solutions. As the system is non-conservative we use Volpert
product and the algebra of generalized Colombeau functions to make sense of the products
which appear in the equations.
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1. Introduction

In this paper we consider the system of first order equations for uj (j = 1, ..., n) in
the domain Ω = R1 × [0,∞)

(uj)t +
( n∑

k=1

ckuk

)
(uj)x = 0 (1.1)

with initial condition
uj(x, 0) = u0j(x) (1.2)

where ck are real constants. We assume that at least one ck 6= 0, without loss of
generality we assume c1 6= 0. When n = 1 and c1 = 1, (1.1) is just the Hopf equation

ut + 1
2 (u2)x = 0 (1.3)

which was studied by Hopf [8]. He considered the initial value problem

ut + 1
2 (u2)x = ν

2uxx

u(x, 0) = u0(x)

}
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and linearized it by the transformation

u = −ν
vx

v
(1.4)

known as Hopf-Cole transformation and obtained the formula

uν(x, t) =
∫

R

x− y

t
dµν

(x,t)(y)

for its solution where dµν
(x,t)(y) (ν > 0), a family of probability measures on R

parametrized by (x, t), is given by

dµν
(x,t)(y) =

e
− 1

ν

[ ∫ y

0
u0(z) dz+

(x−y)2

2t

]
dy

∫∞
−∞ e

− 1
ν

[ ∫ y

0
u0(z)dz+

(x−y)2
2t

]
dy

.

Further, Hopf studied its limit as ν → 0 and constructed the solution to equation
(1.3) in the sense of distributions with initial condition u(x, 0) = u0(x) in the class
of bounded measurable functions.

Following this method we will construct the solution of system (1.1) with initial
data (1.2) in the class of bounded measurable functions. There are two difficulties to
overcome:

- Firstly, we need a generalized version of transformation (1.4).

- Secondly, for n > 1 system (1.1) is not conservative and then the product∑n
k=1 ckuk)(uj)x does not make sense in the standard theory of distributions.

We use the Volpert product [15] in the sense of measures and the Colombeau theory
of generalized functions [3 - 5] to overcome these difficulties. In Section 2 we construct
an explicit formula for the solution of the initial value problem with a viscous term
with viscous parameter ν > 0. In Section 3 we construct the exact solution of system
(1.1) with Riemann data where the Volpert product [15] is used to define the non-
conservative product. Finally, in Section 4 the case is studied when the initial data
are in a class of the Colombeau algebra and the product is understood in the sense
of Colombeau [3, 5].

2. Explicit solution with viscous term

In this section we consider the viscous system for uj (j = 1, ..., n) in the domain
Ω = R× [0,∞)

(uj)t +
( n∑

k=1

ckuk

)
(uj)x = ν

2 (uj)xx (2.1)

with initial conditions
uj(x, 0) = u0j(x) (2.2)
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where u0j are bounded measurable functions. We use a generalised Hopf-Cole trans-
formation to linearize system (2.1) and solve it in terms of a family of probability
measures dµν

(x,t)(y) defined by

dµν
(x,t)(y) =

e
− 1

ν

[∑n

1
ck

∫ y

0
u0k(z)dz+

(x−y)2

2t

]
dy

∫∞
−∞ e

− 1
ν

[∑n

1
ck

∫ y

0
u0k(z)dz+

(x−y)2
2t

]
dy

.

More presisely, we shall prove the following result.

Theorem 2.1. Let u0j (j = 1, ..., n) be bounded measurable functions. Then
the functions

uν
j (x, t) =

∫

Rn

u0j(y) dµν
(x,t)(y) (j = 1, ..., n) (2.3)

are infinitely differentiable in the variables (x, t) and they are an exact solution of
initial value problem (2.1)− (2.2).

Proof. To prove the result first we introduce σ =
∑n

k=1 ckuk as new unknown
variable. It follows that problem (2.1) - (2.2) is equivalent to the problem

(uj)t + σ(uj)x = ν
2 (uj)xx

uj(x, 0) = u0j(x)

}
(j = 1, ..., n) (2.4)

where σ is the solution to the problem

σt +
1
2
(σ2)x =

ν

2
σxx

σ(x, 0) =
n∑

k=1

cku0k(x).





(2.5)

Let w(x, t) be the solution of the problem

wt +
(wx)2

2
=

ν

2
wxx

w(x, 0) =
n∑

k=1

ck

∫ x

0

u0k(y) dy.





(2.6)

Then
σ(x, t) = wx(x, t) (2.7)

is a solution of problem (2.5). We introduce new unkown variables v and vj (j =
1, ..., n). Namely, v is defined by the usual Hopf-Cole transformation and vj by a
modified version of it as

v = e−
w
ν

vj = uje
−w

ν (j = 1, ...., n).
(2.8)
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An easy calculation shows that

vt = −1
ν

(w)te
−w

ν

vxx =
1
ν

[ (wx)2

ν
− (w)xx

]
e−

w
ν

(2.9)

and
(vj)t =

[
(uj)t − uj

ν
wt

]
e−

w
ν

(vj)xx =
1
ν

[
ν(uj)xx − 2(uj)xwx +

ujw
2
x

ν
− ujwxx

]
e−

w
ν .

(2.10)

From (2.9) we get

vt − ν

2
vxx = −1

ν

[
wt +

(wx)2

2
− ν

2
wxx

]
e−

w
ν

and from (2.10) and (2.7) we get

(vj)t − ν

2
(vj)xx =

[
(uj)t + σ(uj)x − ν

2
wxx

]
exp

(
− w

ν

)

− 1
ν

[
wt +

(wx)2

2
− ν

2
wxx

]
uj exp

(
− w

ν

)
.

From (2.4) - (2.7) and (2.9) - (2.10) it follows that v and vj (j = 1, ..., n) are solutions
of the problems

vt =
ν

2
vxx

v(x, 0) = e
− 1

ν

∑n

k=1
ck

∫ x

0
u0k(y) dy



 (2.11)

and
(vj)t =

ν

2
(vj)xx

vj(x, 0) = u0j(x)e−
1
ν

∑n

k=1
ck

∫ x

0
u0k(y)dy



 (2.12)

if and only if w is a solution of problem (2.6) and uj (j = 2, ..., n) is a solution of
problem (2.4). Solving (2.11) and (2.12) explicitly we get

v(x, t) = 1
(2πtν)1/2

∫

R
e
− 1

ν

[∑n

1
ck

∫ y

0
u0k(z)dz+

(x−y)2

2t

]
dy

vj(x, t) = 1
(2πtν)1/2

∫

R
u0j(y)e−

1
ν

[∑n

1
ck

∫ y

0
u0k(z)dz+

(x−y)2

2t

]
dy

(2.13)

From (2.7) - (2.8) we have σ(x, t) = wx(x, t) = −ν vx

v and uj(x, t) = vj

v (j = 1, ..., n).
Substituting herein (2.13) we get (2.3)



Exact Solution of Hopf Equations 673

3. The Riemann problem

In this section we consider a system of n first order equations for n unknowns uj with
Riemann-type initial data. Thus we have the system

(uj)t +
( n∑

k=1

ckuk

)
(uj)x = 0 (3.1)

for unknowns uj (j = 1, ..., n) whose characteristic speeds are all same, namely
σ =

∑n
k=1 ckuk, and consider it with Riemann-type initial data

(uj)(x, 0) =
{

ujL if x < 0
ujR if x > 0 . (3.2)

where ujL and ujR are constants. Let

σL =
n∑

k=1

ckujL and σR =
n∑

k=1

ckukR.

If σ′L = σR, the problem reduces to a linear one and its explicit solution is easy. So
we assume σjL 6= σkR. As in the work of Lax [12] for conservation laws and that
of DalMaso, LeFloch and Murat [7] for non-conservative strictly hyperbolic systems,
we expect the structure of the solution to be constant states seperated by shocks
or rarefaction. We observe that the equation of characteristics for system (3.1) are
dx
dt = σ with x(0) = y and equations (3.1) say that in the region of smoothness
du
dt = 0 along the characteristics. It follows that the characteristics starting at (y, 0)
is x = σLt+y along which uj = ujL when y < 0 and is x = σRt along which uj = ujR

when y > 0. So when σL > σR, the characteristics starting at y < 0 intersect with
the characteristics starting at y > 0, and at the point of intersection the solution is
multi-valued. The only way to get a global solution is by introducing a shock. On
the other hand, when σL < σR, the characteristics do not meet and there is a region
σLt < x < σRt where we can not get the solution by the characteristic method and
in fact this has to be filled by rarefaction.

We do these constructions by studying the limit limν→0 uν
j where uν

j (j =
1, . . . , n) is the solution of the system

(uj)t +
( n∑

k=1

ckuk

)
(uj)x =

ν

2
(uj)xx (3.1)ν

with Riemann-type initial data

(uj)(x, 0) =
{

ujL if x < 0
ujR if x > 0 . (3.2)ν

We shall prove the following
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Theorem 3.1. Let uν
j (j = 1, ..., n) be the solution of problem (3.1)ν − (3.2)ν .

Then the limit uj(x, t) = limν→0 uν
j (x, t) exists and is given by the formula

uj(x, t) =





ujL if x ≤ σLt
ujR−ujL

σR−σL

x
t + ujLσR−ujRσL

σR−σL
if σLt < x < σRt

ujR if x ≥ σRt
(3.3)

when σL < σR and by

uj(x, t) =





ujL if x < σL+σR

2 t
ujL+ujR

2 if x = σL+σR

2 t

ujR if x > σL+σR

2 t

. (3.4)

when σL > σR. Further, these limit functions solve problem (3.1) − (3.2) where the
non-conservative product is understood in the sense of Volpert.

Proof. To give the proof, first we rewrite formula (2.3) for initial data (3.2)ν in
a more convenient way as

uν
j (x, t) =

ujLAν
jL(x, t) + ujRAν

jR(x, t)
Aν

jL(x, t) + Aν
jR(x, t)

(3.5)

where
Aν

jR(x, t) =
∫ ∞

0

e−
1
ν [

(x−y)2

2t +σRy]dy

Aν
jL(x, t) =

∫ ∞

0

e−
1
ν [

(x+y)2

2t −σLy]dy.

Next we try to write the above formula for uν
j in terms of the standard ’erfc’ function

erfc(y) =
∫ ∞

y

e−y2
dy.

Namely, since

Aν
jR(x, t) = e

σ2
R

t

2ν −σRx

ν

∫ ∞

0

e−
(y−x+σRt)2

2tν dy = (2tν)
1
2 e

σ2
R

t

2ν −σRx

ν

∫ ∞

−x+σRt

(2tν)1/2

e−y2
dy

we get

Aν
jR(x, t) = (2tν)1/2e

σ2
R

t

2ν −σRx

ν erfc
(−x + σRt

(2νt)1/2

)

and similarly

Aν
jL(x, t) = (2tν)1/2e

σ2
L

t

2ν −σLx

ν erfc
( x− σLt

(2νt)1/2

)
.

Using the asymptotic expansions of the erfc-function

erfc(y) =
( 1

2y
− 1

4y3
+ o

( 1
y3

))
e−y2

erfc(−y) =
√

π −
( 1

2y
− 1

4y3
+ o

( 1
y3

))
e−y2

(y →∞).
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we get for ν → 0

Aν
jR(x, t) ≈





tν
−x+σRte

− x2
2νt if −x + σRt > 0

(πtν
2 )1/2e

σ2
R

t

2ν −σRx

ν if −x + σRt = 0

(2πtν)1/2e
σ2

R
t

2ν −σRx

ν + tν
−x+σRte

− x2
2νt if −x + σRt < 0

(3.6)

and

Aν
jL(x, t) ≈





tν
x−σLte

− x2
2νt if x− σLt > 0

(πtν
2 )1/2e

σ2
L

t

2ν −σLx

ν if x− σLt = 0

(2πtν)1/2e
σ2

L
t

2ν −σLx

ν + tν
x−σLte

− x2
2νt if x− σLt < 0

(3.7)

1. First we consider the case σL < σR and prove (3.3) for which we have to treat
three different regions.

Region 1: x ≤ σLt. Since σL < σR, in this region x < σRt and so −x + σRt > 0
and x − σLt ≤ 0. First we treat the strong case x − σLt < 0. Using (3.6) - (3.7) in
(3.5) we get

uν
j (x, t) ≈

ujL

[
(2πtν)1/2e

σ2
L

t

2ν −σLx

ν + tν
x−σLte

− x2
2νt

]
+ ujR(tν)
−x+σRte

− x2
2νt

(2πtν)1/2e
σ2

L
t

2ν −σLx

ν + tν
x−σLte

− x2
2νt + tν

−x+σRte
− x2

2νt

=
ujL(2π)1/2 +

[
(tν)1/2

x−σLt − ujR
(tν)1/2

x−σRt

]
e−

(x−σLt)2

2νt

(2π)1/2 +
[

(tν)1/2

x−σLt − (tν)1/2

x−σRt

]
e−

(x−σLt)2

2νt

.

On the other hand, if x−σLt = 0, then using (3.6) - (3.7) and rearranging the terms
we get

uν
j (x, t) ≈ ujL(2π)1/2 − ujR

(tν)1/2

x−σRt

(2π)1/2 − (tν)1/2

x−σRt

.

From both above expressions for uν
j we get

lim
ν→0

uν
j (x, t) = ujL if x ≤ σLt. (3.8)

Region 2: σLt < x < σRt. In this case −x + σRt > 0 and x− σLt > 0, and using
(3.6) - (3.7) in (3.5) we get

uν
j (x, t) ≈ − ujLtν

−x+σLte
− x2

2νt + ujRtν
−x+σRte

− x2
2νt

− tν
−x+σLte

− x2
2νt + tν

−x+σRte
− x2

2νt

=
− ujL

−x+σLt + ujR

−x+σRt

− 1
−x+σLt + 1

−x+σRt

.

Simplifying this we get

lim
ν→0

uν
j (x, t) =

ujR − ujL

σR − σL
· x

t
+

ujLσR − ujRσL

σR − σL
(σLt < x < σRt). (3.9)
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Region 3: x ≥ σRt. First we take the strong case x > σRt. Then −x + σRt < 0
and x− σLt > 0, and using (3.6) - (3.7) in (3.5) we get

uν
j (x, t) ≈

ujL(tν)
x−σLt e−

x2
2νt + ujR(2πtν)1/2e

σ2
R

t

2ν −σRx

ν + ujR(tν)
−x+σRte

− x2
2νt

tν
x−σLte

− x2
2νt + (2πtν)1/2e

σ2
R

t

2ν −σRx

ν + tν
−x+σRte

− x2
2νt

=
ujL(tν)1/2

x−σLt e−
(x−σRt)2

2νt + ujR(2π)1/2 + ujR(tν)1/2

−x+σRt e−
(x−σRt)2

2νt

(tν)1/2

x−σLt e
− (x−σRt)2

2νt + (2π)1/2 + (tν)1/2

−x+σRte
− (x−σRt)2

2νt

.

On the other hand, if x = σRt, then x − σLt > 0 and using (3.6) - (3.7) in (3.5) we
get

uν
j (x, t) ≈

ujL(tν)1/2

x−σLt + ujR(2π)1/2

(tν)1/2

x−σLt + ujR(2π)1/2
.

From both above expressions for uν
j we get

lim
ν→0

uν
j (x, t) = ujR if x ≥ σRt. (3.10)

Combining (3.8) - (3.10) we get (3.3).
2. Now we shall take the case σL > σR and prove (3.4). Based on (3.6) - (3.7)

there are
Region 1: x ≤ σRt
Region 2: σRt < x < σLt.
Region 3: x ≥ σLt

to consider here. Regions 1 and 3 are can be treated exactly as Regions 1 and 3 in
the case σL < σR and we get

lim
ν→0

uν
j (x, t) =

{
ujL if x < σRt
ujR if x > σLt

. (3.11)

For the remaining Region 2, again using (3.6) - (3.7) in (3.5) and rearranging the
terms we get

uν
j (x, t) ≈

ujL(2π)1/2 +
[

(tν)1/2

x−σLt + (tν)1/2

−x+σRt

]
e−

(x−σLt)2

2νt + ujR(2π)1/2e
(σL−σR)

ν (x−σL+σR
2 t)

(2π)1/2 +
[

(tν)1/2

x−σLt + (tν)1/2

−x+σRt

]
e−

(x−σLt)2

2νt + (2π)1/2e
(σL−σR)

ν (x−σL+σR
2 t)

.

From here, since σL > σR, we get

lim
ν→0

uν
j (x, t) =





ujL if σRt < x < σL+σR

2 t
ujL+ujR

2 if x = σL+σR

2 t

ujR if σL+σR

2 t < x < σLt

. (3.12)

Combining (3.11) and (3.12) we get (3.4).
At last, the proof that the limit functions (3.3) - (3.4) solves Riemann problem

(3.1) - (3.2) in the sense of Volpert [15] follows along the same way as by LeFloch
[13] or Joseph [9] and is omitted
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4. Generalized solutions in the sense of Colombeau

In this section we consider system (1.1) with more general initial data and use the
theory of Colombeau to construct the solution. First we describe the Colombeau
algebra of generalized functions in Ω = {(x, t) : x ∈ R and t > 0} denoted by G(Ω).
Let C∞(Ω) be the class of infinitely differentiable functions in Ω and take the infinite
product E(Ω) = [C∞(Ω)](0,1). Thus any element u of E(Ω) is a map from (0, 1) to
C∞(Ω) which we denote by u = (uν)0<ν<1. Such an element is called
- moderate if, given a compact subset K of Ω and non-negative integers j and `,

there exists N > 0 such that

‖∂j
t ∂`

xuν‖L∞(K) = O(ν−N ) (ν → 0)

- null if, for all compact subsets K of Ω, for all non-negative integers j and ` and
for all M > 0,

‖∂j
t ∂`

xuν‖L∞(K) = O(νM ) (ν → 0).

The sets of all moderate and null elements are denoted by EM(Ω) and N (Ω), re-
spectively. It is easy to see that EM(Ω) is an algebra with partial derivatives, the
operations being defined pointwise on representatives, and N (Ω) is an ideal closed
under differentiation. The quotient space denoted by

G(Ω) =
EM(Ω)
N (Ω)

is an algebra with partial derivatives, the operations being defined on representatives.
The algebra G(Ω) is called the Colombeau algebra of generalized functions. Two
elements u and v in G(Ω) are said to be associated if, for some (and hence all)
representatives (uν)0<ν<1 and (vν)0<ν<1 of u and v, uν − vν → 0 as ν → 0 in the
sense of distributions, and this fact is denoted by ”u ≈ v”. We remark that this
notion is different from that of equality in G(Ω), which means that u− v ∈ N (Ω) or,
in other words,

‖∂j
t ∂`

x(uν − vν)‖L∞(K) = O(νM )

for all M , all compact subsets K of Ω and all non-negative integers j and `.
In the works [1 - 6, 9 - 11, 14] and those cited herein there was shown that the

Colombeau algebra is a useful tool to find global solutions of initial value problems
when non-conservative products appear. Thus we consider the coupled Hopf equation

(uj)t +
( n∑

k=1

ckuk

)
(uj)x ≈ 0 (j = 1, ..., n) (4.1)

with initial conditions
uj(x, 0) = uj0 (4.2)

where uj0 = (uν
j0)0<ν<1 are in the algebra of generalized functions G(R) and we

assume that uν
j0 are obtained by mollifying bounded measurable functions uj0 with

Friedrichs mollifiers so that we have the estimates

‖∂`
xuν

j0‖L∞(Rn) = O(ν−`). (4.3)



678 K. T. Joseph

For each (x, t) ∈ Ω and ν > 0 define the probability measures

dµν
(x,t)(y) =

e
− 1

ν

[∑n

1
ck

∫ y

0
uν

0k(z)dz+
(x−y)2

2t

]
dy

∫∞
−∞ e

− 1
ν

[∑n

1
ck

∫ y

0
uν

0k
(z)dz+

(x−y)2
2t

]
dy

. (4.4)

From Theorem 2.1 it follows that

uν
j (x, t) =

∫

Rn

uν
0j(y)dµν

(x,t)(y) (j = 1, ..., n) (4.5)

are infinitely differentiable and bounded and satisfy

(uj)t +
( n∑

k=1

ckuk

)
(uj)x =

ν

2
(uj)xx (4.6)

in the domain Ω = R× [0,∞) with initial condition

uj(x, 0) = uν
0j(x).

These facts help us to prove the following result.

Theorm 4.1. Let u = (uν
1 , uν

2 , ..., uν
n, )0<ν<1 with uν

j (j = 1, ..., n) given by
(4.4) − (4.5) and with initial data uν

j0 are as described above. Then u is in the
Colombeau algebra of generalized functions G(Ω) and solves problem (4.1)− (4.2).

Proof. First we show that u = (uν
1 , uν

2 , ..., uν
n) is in G(Ω). It is clear from for-

mulas (4.4) - (4.5) that uν
j are in C∞(Ω). Further, uν

j can be written as uν
j = F ν

1
F ν

2

where

F ν
1 (x, t) =

∫ +∞

−∞
uν

0j(y)e−
1
ν

[ ∫ y

0
σν
0 (z)dz+

(x−y)
2t

]
dy

F ν
2 (x, t) =

∫ +∞

−∞
e
− 1

ν

[ ∫ y

0
σν
0 (z)dz+

(x−y)
2t

]
dy.

By Leibinitz’s rule, ∂j0
x uν

j is a finite linear combination of elements of the form

∂jk
x F ν

1

F ν
2

· ∂
(jk−1−jk)
x F ν

2

F ν
2

· · · ∂
j0−j1
x F ν

2

F ν
2

where jk < jk−1 < j1 < j0 and k = 0, 1, ..., j0. Making the change of variable
y = x−√2tν z in the integrals of F ν

1 and F ν
2 and using (4.4) we get

∥∥∂j
xF ν

1
F ν

2

∥∥
L∞(Ω)

=

O(ν−j) and
∥∥∂j

xF ν
2

F ν
2

∥∥
L∞(Ω)

= O(ν−j). These estimates together with our earlier
observation on the form of ∂j0uν

j leads to the estimates

‖∂j0
x uν

j ‖L∞(Ω) = O(ν−j0) (j = 1, ..., n)
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from where with (4.6) we get

‖∂tu
ν
j ‖L∞(Ω) = O(ν−1) (j = 1, ..., n).

Now we apply the differential operator ∂t
j0∂x

` on both sides of (4.6), first for ` =
1, j0 ≥ 0, then for ` = 2, j0 ≥ 0, etc. Proceeding succesively we get for each non-
negative integer ` the estimates ‖∂j0

t ∂`
xuν

j ‖L∞(Ω) = O(ν−(j0+`)), j0 ≥ 0 showing that
u is in G(Ω).

Now to show that u satisfies equation (4.1) in the sense of association we multiply
(4.6) by a test function φ and integrate by parts on the right-hand side to get

∫ ∞

0

∫

R

(
(uν

j )tφ +
n∑

k=1

ckuν
k(uν

j )xφ

)
dxdt = ν

2

∫ ∞

0

∫

Rn

uνφxxdxdt. (4.7)

for j = 1, ..., n. By assumption (4.3) on the initial data and formula (4.5), uν
j are

uniformly bounded. An application of the dominated convergence theorem shows
that the right-hand side of (4.7) goes to 0 as ν → 0. This completes the proof of the
theorem
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