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Exact Solution
of a System of Generalized Hopf Equations

K. T. Joseph

Abstract. In this paper we construct explicit solutions for initial value problem for a system
of first order equations. When n = 1, this system is just the standard Hopf equation in
conservative form. When n > 1, the system is non-conservative. We use the vanishing
viscosity method to construct solutions. As the system is non-conservative we use Volpert
product and the algebra of generalized Colombeau functions to make sense of the products
which appear in the equations.
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1. Introduction

In this paper we consider the system of first order equations for u; (j =1,...,n) in

the domain 2 = R! x [0, c0)

(uj)e + (chuk) (uj)z =0 (1.1)
k=1
with initial condition
uj(z,0) = up;(z) (1.2)

where ¢ are real constants. We assume that at least one ¢, # 0, without loss of
generality we assume ¢; # 0. When n =1 and ¢; = 1, (1.1) is just the Hopf equation

u+ 1 (u?), =0 (1.3)
which was studied by Hopf [8]. He considered the initial value problem

us + %(UQ)QC = Sy }
u(z,0) = up(x)
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and linearized it by the transformation

known as Hopf-Cole transformation and obtained the formula

v r—y v
u”(x,t) :/ ; du(xyt)(y)
R

for its solution where du(, ,(y) (v > 0), a family of probability measures on R
parametrized by (z,t), is given by

6_% [foy up(z) dz+ (ng)Z}dy

ffo 6_% [foy ug(z)dz+ (z;ty)2:| dy.

o0

dpie ) (y) =

Further, Hopf studied its limit as ¥ — 0 and constructed the solution to equation
(1.3) in the sense of distributions with initial condition u(z,0) = ug(x) in the class
of bounded measurable functions.

Following this method we will construct the solution of system (1.1) with initial
data (1.2) in the class of bounded measurable functions. There are two difficulties to
overcome:

- Firstly, we need a generalized version of transformation (1.4).

- Secondly, for n > 1 system (1.1) is not conservative and then the product
> r_q ckuk)(u;), does not make sense in the standard theory of distributions.

We use the Volpert product [15] in the sense of measures and the Colombeau theory
of generalized functions [3 - 5] to overcome these difficulties. In Section 2 we construct
an explicit formula for the solution of the initial value problem with a viscous term
with viscous parameter v > 0. In Section 3 we construct the exact solution of system
(1.1) with Riemann data where the Volpert product [15] is used to define the non-
conservative product. Finally, in Section 4 the case is studied when the initial data
are in a class of the Colombeau algebra and the product is understood in the sense

of Colombeau [3, 5].

2. Explicit solution with viscous term

In this section we consider the viscous system for u; (j = 1,...,n) in the domain
Q=R x[0,00)

(uy): + (gkuk) (45)e = £ 21)

with initial conditions

uj(z,0) = ugp;(z) (2.2)
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where ug; are bounded measurable functions. We use a generalised Hopf-Cole trans-
formation to linearize system (2.1) and solve it in terms of a family of probability
measures dyi(, t)(y) defined by

e_% [ET Ck foy uok (2)dz+ (153)2} dy

dpe,y (y) = — p— -
(z,t) foooo 6_%[21 Ck fo uOk(z)dz+( 2t)2}dy

More presisely, we shall prove the following result.

Theorem 2.1. Let ug; (j = 1,...,n) be bounded measurable functions. Then
the functions

W)= [ @ 6= 1) (2.3)

are infinitely differentiable in the variables (x,t) and they are an exact solution of
initial value problem (2.1) — (2.2).

Proof. To prove the result first we introduce o = 2221 cLpUr as new unknown
variable. It follows that problem (2.1) - (2.2) is equivalent to the problem

j=1,...n) (2.4)

where o is the solution to the problem

1 v

or + 5(02):5 = 50
n (2.5)
o(z,0) = Z cruok ().
k=1

Let w(x,t) be the solution of the problem

(wx)2 v
t + 2 — iwxx
0 (2.6)
w(zx,0) = ck/ ok (y) dy.
k=1 0
Then
o(x,t) = wy(z,t) (2.7)

is a solution of problem (2.5). We introduce new unkown variables v and v; (j =
1,...,n). Namely, v is defined by the usual Hopf-Cole transformation and v; by a
modified version of it as

(2.8)
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An easy calculation shows that

1 w
Vy = —;(w)te_T
2.
1 <w$)2 W ( 9)
Vo = _|: - (w)wx:|e v
vl v
and
uj _w
(03) = |(u))e = Lwp|e?
(2.10)
1 Uj ?U _w
(01)ar = 5 [V(0)a0 = 20u)0 + L = w00, |,
From (2.9) we get
v __1[ _’_(wx)Q_V ]_ﬂ
Ut zvx:r - t 92 2wzx €
and from (2.10) and (2.7) we get
v v w
(03t = 5w = |(03)e + 0 ()0 = S| exp (= =)
L+ 8ol Ty (=)
- - - 5 Wz j €X - -
vl! 2 2 3 XP v

From (2.4) - (2.7) and (2.9) - (2.10) it follows that v and v; (j =1, ...,n) are solutions
of the problems

14
UVt = 5 Uzz
2 D v (2.11)
v(a:, 0) — e vV Zuk=1°F fo uok (y) dy
and )
(Uj)t - E(U])mx
(2.12)

/U,] (aj, O) = U’OJ (x)e_% ::1 Ck fO UOk(y)dy

if and only if w is a solution of problem (2.6) and u; (j = 2,...,n) is a solution of
problem (2.4). Solving (2.11) and (2.12) explicitly we get

i [V (z—)?
’U(.’L’,t) = W /l‘ge i[Zl Ck fo uOk(Z)dZ+ 23 ]dy

(z—y)2

-1 e Y wor (2)dz

(2wt

From (2.7) - (2.8) we have o(z,t) = wg(x,t) = —v% and u;(z,t) = 2 (j=1,...,n).
Substituting herein (2.13) we get (2.3) B
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3. The Riemann problem

In this section we consider a system of n first order equations for n unknowns u; with
Riemann-type initial data. Thus we have the system

(u;)s + <;ckuk) (4)e = 0 (3.1)

for unknowns u; (j = 1,...,n) whose characteristic speeds are all same, namely
o= r_, ckuk, and consider it with Riemann-type initial data

_Jujp ifx <O
w0 ={ W £150 (32)
where u;7, and ujg are constants. Let
n n
o = Z CrUL, and OR = Z CLULR.-
k=1 k=1

If o), = oR, the problem reduces to a linear one and its explicit solution is easy. So
we assume 0,7, # ogr. As in the work of Lax [12] for conservation laws and that
of DalMaso, LeFloch and Murat [7] for non-conservative strictly hyperbolic systems,
we expect the structure of the solution to be constant states seperated by shocks
or rarefaction. We observe that the equation of characteristics for system (3.1) are
4t — o with 2(0) = y and equations (3.1) say that in the region of smoothness
Z—? = 0 along the characteristics. It follows that the characteristics starting at (y,0)
is x = ot +y along which u; = u;;, when y < 0 and is x = ort along which u; = u;gr
when y > 0. So when o7 > opR, the characteristics starting at y < 0 intersect with
the characteristics starting at y > 0, and at the point of intersection the solution is
multi-valued. The only way to get a global solution is by introducing a shock. On
the other hand, when o < og, the characteristics do not meet and there is a region
ot < x < ort where we can not get the solution by the characteristic method and
in fact this has to be filled by rarefaction.

We do these constructions by studying the limit lim,_.ou} where uY (j =
1,...,n) is the solution of the system

n

(1)1 + (chuk) ()0 = g(uj)m (3.1),

k=1
with Riemann-type initial data

UsL ifx <0
ujr ifx>0"

(uj)(z,0) = { (32),

We shall prove the following
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Theorem 3.1. Let uf (j =1,...,n) be the solution of problem (3.1), — (3.2),.

Then the limit uj(x,t) = lim, o u(x,t) exists and is given by the formula

Ujr Zf.%’ S O'Lt
uj(z,t) = § Lt § 4 S s z.f ot <z < opt (3.3)
UjRr Zf.l‘ Z O'Rt
when oy, < or and by
ujL+ if x < ”J’%t
uj(z,t) = w if v = ”L’L%t . (3.4)
UjiR if x > %t

when or, > or. Further, these limit functions solve problem (3.1) — (3.2) where the
non-conservative product is understood in the sense of Volpert.

Proof. To give the proof, first we rewrite formula (2.3) for initial data (3.2), in
a more convenient way as

u;r A% (w,t) + ujr AR (2, 1)
A (x,t) + AYg (2, 1)

uf(w,t) = (3.5)

where

oo o 2

ir(w,t) :/ et gy
0
oo . 2

5L(x7t) :/ 6_%[( Jgf) _ULy]dy-
0

Next we try to write the above formula for v in terms of the standard "erfc’ function

erfc(y) :/ eV dy.

Y

Namely, since

o2t oR o0 (y—z+o t)2 o2t oRx oo
vo(m,t) = e 3 / e gy — (240 e A 7 o "
0 (2tv)1/2
we get
“r(z,t) = (2t0)'/? B f<_x+0Rt>
oz, t) = (2tv) ' “e2v T v erfe| —————
IR (2ut)1/2
and similarly
oft _opx x—ort
Yo(x,t) = 2ty 12050~ erfc(—L>.
]L( ) ( ) (2Vt)1/2
Using the asymptotic expansions of the erfc-function
1 1 1
exte(y) = (g, = g7 +2(35)) ™
Yy Yy Yy
(y — o0)
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we get for v — 0

2

—xiVaRte_;_”t if —x+ort>0
oLt ocpx
Vr(x,t) o Q (Tt)1/2e 3 - if —z+opt =0 (3.6)
o2t ocpT z2
(2ntv)1/2e =2~ 7% —m—tl—VaRte_Z_Ut if —x+opt<0
and
l‘2 .
x_tZLte_z_u: ifex—opt>0
o7t orx
V(e t) m (T2~ if z —opt=0 (3.7)
02t o1 T z2
(2mtv) ' /2e2 — 70 4 oee i ifr—opt <0

1. First we consider the case o1, < o and prove (3.3) for which we have to treat
three different regions.

Region 1: x < opt. Since o, < op, in this region x < ort and so —x + ort > 0
and z — ot < 0. First we treat the strong case x — ot < 0. Using (3.6) - (3.7) in
(3.5) we get

o2t 2 2
. 1/2, - — 2L ty - ujr(ty) — 2
) UjL, |:(27Ttl/) e + oteeT i | e w
uj (:C, t) ~ 52 ¢
(2mtv)l/2e ST 4t o~ 4t o
rx—ort —x+oRt
2
. 1/2 ()2 ()2 _(ement”
UJL(27T) + |::U—0'Lt UjR r—oRt € e
= 2
1/2 (tv)t/2 _ (tv)/2 ——(’”—"VL”
(27T) / + [;p—aLt r—onprt € vt

On the other hand, if x — ot = 0, then using (3.6) - (3.7) and rearranging the terms
we get

N1/2
v t) = ujL(zﬂ-)l/2 ~ YR Ect—szt
U (I, ) ~ 9.)1/2 (tv)1/2
2m)'/2 — =
From both above expressions for u} we get
lim uf(2,t) = u;r, if v <opt. (3.8)

v—0

Region 2: o5t < x < ort. In this case —z + ort > 0 and x — ot > 0, and using
(3.6) - (3.7) in (3.5) we get

uirtv z? u;ptyv z? Ui U;R
- e 2vt + J T 2ut — J J
'U/V(x t) ~ —m—l—oLt —m—l—oRt o —:r—i—aLt —$+0Rt
G\ P 22 2 1 1 :
o tv e~ 2t + tv e 51 — 7 7
—xz+ort —x+oRt —z+orL —T+oR

Simplifying this we get

UjR—UjL ) f + UjLOR — UjROL

lim v (z,t) = (opt < x < oRt). (3.9)

v—0 J OR — O], t OR — O,
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Region 3: x > ort. First we take the strong case © > ogrt. Then —x + opt <0
and z — ot > 0, and using (3.6) - (3.7) in (3.5) we get

2

. .7:2 o<t opT . z2
uJL(tV) e 2t + UJR(Z’]TtV)l/2e2L;_ 13 + u]R(tV) b
v t) ~ T—ort —x+oRt
U/] ($7 ~ . .2 1/2 a%t TR " 22
v —z= 2 _ v — =
m_the 20t + (27Tty) e 2v v+ —x—i—aRte 20t
Tz—0o 2 1/2 (x—0o t)2

UjL(tl/)l/2 _¢ VRt) ) 1/2 ujr(tv) _ R

_ _z—ort € v +u3R(27T) + —x+oRt e
(tv)t/2 _ (z—opt)? (tv)1/2 (z—oRt)?

2vt

vt + (27T)1/2 + —z+oRrt

On the other hand, if x = ogt, then x — ot > 0 and using (3.6) - (3.7) in (3.5) we
get

r—ort

uyr ()2
CIE—O'Lt
(tl/)l/2
x—ort

+ uj'R(27T)1/2

uf(x,t) ~
’ + ujr(2m)1/2

From both above expressions for u} we get

lim u”(x,t) = ujr if © > opt. (3.10)

v—0 J

Combining (3.8) - (3.10) we get (3.3).

2. Now we shall take the case o7, > or and prove (3.4). Based on (3.6) - (3.7)
there are

Region 1: z < opt

Region 2: opt < x < ort.

Region 3: = > ot
to consider here. Regions 1 and 3 are can be treated exactly as Regions 1 and 3 in
the case o < op and we get

(3.11)

. v _ Juyr if x < ogt
glil%)uj(x’t)_ {UjR if.’E>O‘Lt |

For the remaining Region 2, again using (3.6) - (3.7) in (3.5) and rearranging the
terms we get

uy(w,t) ~

2
. 1/2 (tr)'/ (t)'/? —(x_UVLt) ) 1/2 (UL:UR)(m_ UL-‘rURt)
u;n(2m) " + [m_th t —iont|© wi 4 ujr(2m)t/%e 2

x—orpt —x+onRt

(2m)1/2 4 [ U2 (2] Bt (g1 R e 2R

From here, since o, > or, we get

UjL ifO’Rt<$<%t
lim uf (2, t) = ¢ “ELHE - if g = 2LdoRy : (3.12)
V—

UjR if%t<x<ayﬁ

Combining (3.11) and (3.12) we get (3.4).

At last, the proof that the limit functions (3.3) - (3.4) solves Riemann problem
(3.1) - (3.2) in the sense of Volpert [15] follows along the same way as by LeFloch
[13] or Joseph [9] and is omitted B
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4. Generalized solutions in the sense of Colombeau

In this section we consider system (1.1) with more general initial data and use the
theory of Colombeau to construct the solution. First we describe the Colombeau
algebra of generalized functions in Q = {(x,t) : * € R and ¢ > 0} denoted by G(Q).
Let C>°(£2) be the class of infinitely differentiable functions in © and take the infinite
product £(Q) = [C>®(2)]®V). Thus any element u of £(Q) is a map from (0,1) to
C*°(£2) which we denote by u = (u”)p<y,<1. Such an element is called

- moderate if, given a compact subset K of 2 and non-negative integers 5 and /,

there exists N > 0 such that

107 0 |l sy = O ™) (v —0)

- null if, for all compact subsets K of €2, for all non-negative integers j and ¢ and
for all M > 0, A
10] 05u” || Lo () = OWM) (v — 0).

The sets of all moderate and null elements are denoted by Exq(2) and N (), re-
spectively. It is easy to see that E,(2) is an algebra with partial derivatives, the
operations being defined pointwise on representatives, and N () is an ideal closed
under differentiation. The quotient space denoted by

o) = %g)

is an algebra with partial derivatives, the operations being defined on representatives.
The algebra G(€2) is called the Colombeau algebra of generalized functions. Two
elements u and v in G(Q)) are said to be associated if, for some (and hence all)
representatives (u”)o<,<1 and (v¥)p<p<1 of w and v, u, — v, — 0 as v — 0 in the
sense of distributions, and this fact is denoted by "u ~ v”. We remark that this
notion is different from that of equality in G(Q2), which means that u —v € N(Q) or,
in other words,

18] 0% (u” = v") | L= (1) = O(W™M)
for all M, all compact subsets K of €2 and all non-negative integers j and /.

In the works [1 - 6, 9 - 11, 14] and those cited herein there was shown that the
Colombeau algebra is a useful tool to find global solutions of initial value problems
when non-conservative products appear. Thus we consider the coupled Hopf equation

(u;): + (;ckuk) ()e 20 (j=1,...,n) (4.1)

with initial conditions

U (.I‘, 0) = Uj0 (42)

where ujo = (u}y)o<v<1 are in the algebra of generalized functions G(R) and we
assume that u', are obtained by mollifying bounded measurable functions u;jo with
Friedrichs mollifiers so that we have the estimates

105650 ooy = O(v ™). (4.3)
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For each (z,t) € Q and v > 0 define the probability measures

67% [ZT Ck foy ug (2)dz+ (x;/)ﬂ dy

dul, o (y) = - v (1.4)
ey Ty

From Theorem 2.1 it follows that
)= [ i) G = 1) (4.5)

are infinitely differentiable and bounded and satisfy

(uj)e + (anckuk) (uj)e = g(uj)m (4.6)

k=1

in the domain Q = R x [0, c0) with initial condition
uj(2,0) = ug; (x).

These facts help us to prove the following result.

Theorm 4.1. Let u = (uf,uf,...,up,)o<v<1 with ui (j = 1,..,n) given by
(4.4) — (4.5) and with initial data u}, are as described above. Then u is in the
Colombeau algebra of generalized functions G(2) and solves problem (4.1) — (4.2).

Proof. First we show that u = (uY,uf,...,u%) is in G(Q2). It is clear from for-

v

mulas (4.4) - (4.5) that u} are in C°°(2). Further, u¥ can be written as uj = %
2

where

+oo v o—y
FY (x,t) = / Ugj(y)e_%[fo 7% ()=t o qdy

— 00

400 v N
lej(x’t) = / 6_% [fo O'O(z)dz+( 2ty)}dy‘

— 00

By Leibinitz’s rule, 820uY

; is a finite linear combination of elements of the form

oy oY M Ey gl Ry

where jr < jg—1 < j1 < jo and k = 0,1,...,jo. Making the change of variable
y = x — V/2tv z in the integrals of F} and Fj and using (4.4) we get H 0. Fy

Fy
—j I Fy
O(v™9) and || =2 Lo ()

observation on the form of 9o u]” leads to the estimates

Le(Q) —

= O(v™7). These estimates together with our earlier

070U || e () = O(v™7°) (j=1,..,n)



Exact Solution of Hopf Equations 679

from where with (4.6) we get
1056 |[ Lo () = O ™) (j=1,...,n).

Now we apply the differential operator 9,%° d,% on both sides of (4.6), first for £ =
1,70 > 0, then for £ = 2,55 > 0, etc. Proceeding succesively we get for each non-
negative integer ¢ the estimates [|87°9u WY || oo () = O~ jy > 0 showing that
u is in G(§2).

Now to show that u satisfies equation (4.1) in the sense of association we multiply
(4.6) by a test function ¢ and integrate by parts on the right-hand side to get

/O OO/( i cxu (u )dxdt /0 Oo/nu”¢mdxdt. (47)

for j = 1,...,n. By assumption (4.3) on the initial data and formula (4.5), u are
uniformly bounded. An application of the dominated convergence theorem shows
that the right-hand side of (4.7) goes to 0 as v — 0. This completes the proof of the

theorem N
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