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Solvability and Galerkin Approximations
of a Class of Nonlinear Operator Equations

G. N. Gatica

Abstract. We generalize the usual Babuška-Brezzi theory to a class of nonlinear varia-
tional problems with constraints. The corresponding operator equation has a dual-dual type
structure since the nonlinear operator involved has itself a dual structure with a strongly
monotone and Lipschitz-continuous main operator. We provide sufficient conditions for the
existence and uniqueness of solution of the continuous and Galerkin formulations, and derive
a Strang-type estimate for the associated error. An application to the coupling of mixed-
FEM and BEM for a nonlinear transmission problem in potential theory is also described.
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1. Introduction

The classical Babuška-Brezzi theory for variational problems with constraints is a
very well established tool for studying the weak solutions and Galerkin approxima-
tions, via mixed formulations, of a wide class of linear boundary value problems in
physics and engineering sciences (see, e.g., [2, 12] and the references therein).

However, the corresponding theory for nonlinear problems has not been fully
developed and only a few fundamental references can be found in the literature. For
the case of nonlinear problems with nonlinear constraints, we refer to [16, 17], where
the abstract theory and its applications to some problems in nonlinear incompressible
elasticity are presented. Also, we may mention the work [19] for nonlinear problems
with linear constraints, that is, those in which the associated operator has the typical
dual form

[
A
B

B∗

O

]
, where B is linear and bounded and A is nonlinear. In there, the

author uses the theory of monotone operators to obtain existence, uniqueness and
approximation results for a family of strongly nonlinear problems.

Now, when dealing with the variational formulations of some nonlinear trans-
mission problems, via the combined use of mixed finite elements (mixed-FEM) and
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boundary elements (BEM), we have realized recently that a more suitable way of
writing those formulations is in the form of what we call the dual-dual type. This
means that the corresponding operator equation can be written in the same matrix
structure as above, but where the operator A itself presents also the dual structure,
that is, A =

[
A1
B1

B∗1
O

]
, with B1 linear and bounded and A1 nonlinear. Unfortunately,

though very close to the classical dual form, this kind of operator equation has not
been studied yet.

Therefore, motivated by the applications to the coupling of mixed-FEM and BEM
for interior and exterior nonlinear transmission problems, our purpose in this work is
to extend the usual Babuska-Brezzi theory to the class of nonlinear operator equations
described in the above section. More precisely, we provide existence, uniqueness and
approximation results for the dual-dual mixed variational formulations in which the
nonlinear operator A1 becomes strongly monotone and Lipschitz continuous in the
appropriate spaces. A particular case of the general class studied in this paper was
considered in [6]. For a quick glance to our main contributions, we refer the reader
to Theorems 2.4, 3.2, 4.1 and to Section 5, below.

The rest of the paper is presented as follows. In Sections 2 and 3 we study the
continuous and discrete problems, respectively, and derive sufficient conditions for
the existence of unique solutions to both formulations. The error analysis is provided
in Section 4. We deduce there a Strang-type estimate that contains consistency terms
arising from the fact that the kernel of the discrete analogue of the operator B is
not necessarily contained in the kernel of B. Finally, an application to the coupling
of mixed-FEM and BEM for an exterior nonlinear tranmission problem in potential
theory is briefly described in Section 5. For related works on the coupling method
we refer to [1, 5, 7, 10, 11].

2. The continuous problem

Let X1,M1,M be Hilbert spaces and define X = X1 ×M1. We consider a nonlinear
operator A1 : X1 → X ′

1, and linear bounded operators

B : X → M ′

B1 : X1 → M ′
1

}
with transposes

{
B∗ : M → X ′

B∗
1 : M1 → X ′

1,

respectively. With A1, B1, B
∗
1 we define a nonlinear operator A : X → X ′ as

A(t, σ) =
[

A1 B∗
1

B1 O

] [
t

σ

]
∈ X ′ = X ′

1 ×M ′
1

or, equivalently,

[A(t, σ), (s, τ)]X′×X

= [A1(t), s]X′
1×X1 + [B∗

1(σ), s]X′
1×X1 + [B1(t), τ ]M ′

1×M1

(2.1)

for all (t, σ), (s, τ) ∈ X. Hereafter, [ ·, · ] denotes the duality pairing indicated by the
corresponding subscript. Then, we are interested in the following nonlinear varia-
tional problem:
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Given (F ,G) ∈ X ′ ×M ′, find ((t, σ), u) ∈ X ×M such that

[
A B∗

B O

] [
(t, σ)

u

]
=

[F
G

]
, (2.2)

that is
[A(t, σ), (s, τ)]X′×X + [B∗(u), (s, τ)]X′×X = [F , (s, τ)]X′×X

[B(t, σ), v]M ′×M = [G, v]M ′×M

}

for all ((s, τ), v) ∈ X ×M .

In what follows, we adapt the analysis from [12: Chapter I/Section 4] to the
present situation. To this end, for each G ∈ M ′ we set

V (G) =
{
(s, τ) ∈ X : B(s, τ) = G}

and, in particular,

V = V (O) =
{
(s, τ) ∈ X : B(s, τ) = O

}

or, equivalently, V = Ker (B). Since B is bounded, V becomes a closed subspace of
X. Also, let Π : X ′ → V ′ be the canonical injection defined by Π(F) = F|V for all
F ∈ X ′. Then with (2.2) we associate the following problem:

Find (t, σ) ∈ V (G) such that ΠA(t, σ) = Π(F), that is

[A(t, σ), (s, τ)]X′×X = [F , (s, τ)]X′×X (2.3)

for all (s, τ) ∈ V .

Clearly, if ((t, σ), u) ∈ X ×M is a solution of problem (2.2), then (t, σ) ∈ V (G)
and (t, σ) is a solution of problem (2.3) since for all (s, τ) ∈ V

[B∗(u), (s, τ)]X′×X = [B(s, τ), u]M ′×M = 0.

Conversely, if (t, σ) ∈ V (G) is a solution of problem (2.3) and if B satisfies a suitable
condition, then there exists u ∈ M such that ((t, σ), u) ∈ X × M is a solution of
problem (2.2). More precisely, we have the following result, which is an analogue of
[12: Chapter I/Theorem 4.1].

Theorem 2.1. For each (F ,G) ∈ X ′ × M ′ there exists a unique ((t, σ), u) ∈
X ×M solution of problem (2.2) if and only if the following conditions hold:

(i) There exists β > 0 such that

sup
0 6=(s,τ)∈X

[B(s, τ), v]M ′×M

‖(s, τ)‖X
≥ β ‖v‖M (2.4)

for all v ∈ M .
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(ii) For each (F ,G) ∈ X ′ × M ′ there exists a unique (t, σ) ∈ V (G) solution of
problem (2.3).

Proof. We prove first that (i) and (ii) are sufficient. In fact, from (ii) we deduce
that there exists a unique (t, σ) ∈ V (G) such that (F − A(t, σ)) ∈ V o, where V o is
the polar set of V defined by

V o =
{
F̃ ∈ X ′ : [F̃ , (s, τ)]X′×X = 0 for all (s, τ) ∈ V

}
.

Now, by virtue of (i) and [12: Chapter I/Lemma 4.1] we know that B∗ is an
isomorphism from M onto V o. Hence, there exists a unique u ∈ M such that
B∗(u) = F − A(t, σ). Thus, ((t, σ), u) ∈ X × M is the unique solution of prob-
lem (2.2).

We show now that (i) and (ii) are necessary. Let G ∈ M ′ and set ((t, σ), u) ∈
X × M be the unique solution of problem (2.2) with F ≡ 0. Since B(t, σ) = G,
the range of B is M ′. Thus, using that X = V ⊕ V ⊥ and that B is bounded, we
deduce that B is an isomorphism from V ⊥ onto M ′. Therefore, again by [12: Chapter
I/Lemma 4.1] we conclude that condition (i) holds.

On the other hand, given (F ,G) ∈ X ′ × M ′, there exists a unique ((t, σ), u) ∈
X ×M solution of problem (2.2). It follows that (t, σ) ∈ V (G) and that (t, σ) is a
solution of problem (2.3). Let (t̃, σ̃) ∈ V (G) be such that (t̃, σ̃) is also a solution of
problem (2.3). This implies that (F − A(t̃, σ̃)) ∈ V o. Now, since (i) holds, B∗ is
an isomorphism from M onto V o, and hence there exists a unique ũ ∈ M such that
B∗(ũ) = (F − A(t̃, σ̃)). It follows that both ((t, σ), u) and ((t̃, σ̃), ũ) are solutions of
problem (2.2), and therefore ((t, σ), u) = ((t̃, σ̃), ũ). This proves (ii) and completes
the proof of the theorem

In the sequel, we analyze problem (2.3) according to the structure of A given by
(2.1). From now on, we assume that B satisfies the continuous inf-sup Babuska-Brezzi
condition (2.4). Then, by [12: Chapter I/Lemma 4.1], there exists (t0, σ0) ∈ X such
that B(t0, σ0) = G. Thus, problem (2.3) can be replaced by the following problem:

Find (t̃, σ̃) ∈ V such that ΠA
(
(t̃, σ̃) + (t0, σ0)

)
= Π(F), that is

[
A

(
(t̃, σ̃) + (t0, σ0)

)
, (s, τ)

]
X′×X

= [F , (s, τ)]X′×X (2.5)

for all (s, τ) ∈ V .

Now, set V = X̃1 × M̃1 with X̃1 and M̃1 subspaces of X1 and M1, respectively.
Further, let

P1 : X̃1 → X1

Q1 : M̃1 → M1

}
and

{
P ′1 : X ′

1 → X̃ ′
1

Q′1 : M ′
1 → M̃ ′

1

be the canonical injections with respective adjoints. Then, denoting F = (F1,G1)
with F1 ∈ X ′

1 and G1 ∈ M ′
1 and using (2.1), problem (2.5) reduces to the following

one:
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Find (t̃, σ̃) ∈ V such that

P ′1A1(t̃ + t0) + P ′1B
∗
1(σ̃) = P ′1F̃1

Q′
1B1(t̃) = Q′1G̃1

}
(2.6)

where F̃1 = F1 −B∗
1(σ0) ∈ X ′

1 and G̃1 = G1 −B1(t0) ∈ M ′
1.

Equivalently, (2.6) reads:

Find (t̃, σ̃) ∈ V = X̃1 × M̃1 such that

[A1(t̃ + t0), s]X′
1×X1 + [B∗

1(σ̃), s]X′
1×X1 = [F̃1, s]X′

1×X1

[B1(t̃), τ ]M ′
1×M1 = [G̃1, τ ]M ′

1×M1

}
(2.7)

for all (s, τ) ∈ X̃1 × M̃1.

Next, we set

V1(G̃1) =
{

s ∈ X̃1 : Q′1B1(s) = Q′
1G̃1

}

=
{

s ∈ X̃1 : [B1(s), τ ]M ′
1×M1 = [G̃1, τ ]M ′

1×M1 ∀ τ ∈ M̃1

}

V1 = V1(O) =
{

s ∈ X̃1 : Q′1B1(s) = 0
}

=
{

s ∈ X̃1 : [B1(s), τ ]M ′
1×M1 = 0 ∀ τ ∈ M̃1

}
.

Also, we let Π1 : X ′
1 → V ′

1 be the canonical injection defined by Π1(F1) = F1|V1 for
all F1 ∈ X ′

1. Then, we associate to (2.7) the following problem:

Find t̃ ∈ V1(G̃1) such that Π1A1(t̃ + t0) = Π1(F̃1), that is

[A1(t̃ + t0), s]X′
1×X1 = [F̃1, s]X′

1×X1 (2.8)

for all s ∈ V1.

Thus, as a consequence of Theorem 2.1, we obtain the following result.

Theorem 2.2. There exists a unique (t̃, σ̃) ∈ V solution of problem (2.7) if and
only if the following conditions hold:

(i) There exists β1 > 0 such that

sup
0 6=s∈X̃1

[B1(s), τ ]M ′
1×M1

‖s‖X1

≥ β1‖τ‖M1 (2.9)

for all τ ∈ M̃1.
(ii) There exists a unique t̃ ∈ V1(G̃1) solution of problem (2.8).

In what follows, we assume that (2.9) holds. Then, using again [12: Chapter
I/Lemma 4.1] we deduce that there exists t̃0 ∈ X̃1 such that Q′

1B1(t̃0) = Q′1G̃1.
Therefore, problem (2.8) can be replaced by the following one:
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Find t̂ ∈ V1 such that Π1A1(t̂ + t̃0 + t0) = Π1(F̃1), that is
[
A1(t̂ + t̃0 + t0), s

]
X′

1×X1
= [F̃1, s]X′

1×X1 (2.10)

for all s ∈ V1.

The unique solvability of problem (2.10) can now be established by using well
known results from nonlinear monotone operator theory.

Theorem 2.3. Assume that for any t̃ ∈ X1 the nonlinear operator Π1A1(·+ t̃) :
V1 → V ′

1 is strongly monotone, that is, there exists a constant α1 > 0 independent of
t̃ such that

[
A1(t̂1 + t̃)−A1(t̂2 + t̃), t̂1 − t̂2

]
X′

1×X1
≥ α1‖t̂1 − t̂2‖2X1

for all t̂1, t̂2 ∈ V1. In addition, assume that A1 : X1 → X ′
1 is Lipschitz continuous,

that is there exists a constant γ > 0 such that

sup
0 6=s∈X1

∣∣[A1(t1)−A1(t2), s
]
X′

1×X1

∣∣
‖s‖X1

≤ γ ‖t1 − t2‖X1

for all t1, t2 ∈ X1. Then, there exists a unique t̂ ∈ V1 solution of problem (2.10).

Proof. The proof follows from a usual result in nonlinear functional analysis
(see, e.g., [18: Chapter III/Theorem 3.3.23])

Under the assumptions of Theorem 2.3, we remark that the solution t̃ = (t̂+ t̃0) ∈
V1(G̃1) of problem (2.8) is independent of the choice of t̃0 ∈ V1(G̃1). In fact, let
t̄0 ∈ V1(G̃1) and let t̄ ∈ V1 be the unique solution of

[
A1(t̄ + t̄0 + t0), s

]
X′

1×X1
=

[F̃1, s
]
X′

1×X1

for all s ∈ V1. Since
[
A1(t̄ + t̄0 + t0), s

]
X′

1×X1
=

[
A1

(
(t̄ + t̄0 − t̃0) + t̃0 + t0

)
, s

]
X′

1×X1

we deduce, according to the uniqueness of solution of problem (2.10) with t̃0, that
t̄+t̄0−t̃0 = t̂, which yields t̂+t̃0 = t̄+t̄0 ∈ V1(G̃1). Similarly, under the assumptions of
Theorems 2.2 and 2.3, it is easy to prove that the solution (t, σ) =

(
(t̃, σ̃)+(t0, σ0)

) ∈
V (G) of problem (2.3) is independent of the choice of (t0, σ0) ∈ V (G).

We are now in a position to state the main result concerning the solvability of
our original problem (2.2).

Theorem 2.4. With the definitions and notations indicated above, assume the
following:

(i) There exists a constant β > 0 such that

sup
0 6=(s,τ)∈X

[B(s, τ), v]M ′×M

‖(s, τ)‖X
≥ β ‖v‖M
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for all v ∈ M .
(ii) There exists a constant β1 > 0 such that

sup
0 6=s∈X̃1

[B1(s), τ ]M ′
1×M1

‖s‖X1

≥ β1‖τ‖M1

for all τ ∈ M̃1.
(iii) The nonlinear operator A1 : X1 → X ′

1 is Lipschitz continuous, and for
any t̃ ∈ X1, the nonlinear operator Π1A1(· + t̃) : V1 → V ′

1 is strongly monotone, as
described in Theorem 2.3.

Then, for each (F ,G) ∈ X ′×M ′ there exists a unique ((t, σ), u) ∈ X×M solution
of problem (2.2).

Proof. The proof follows straightforward from Theorems 2.1 - 2.3

3. The discrete problem

Let X1,h,M1,h and Mh be finite-dimensional subspaces of X1,M1 and M , respec-
tively, and let Xh = X1,h ×M1,h be the corresponding subspace of X. In addition,
let

ph : X1,h → X1

qh : M1,h → M1

ih = (ph, qh) : Xh → X

jh : Mh → M





and





p′h : X ′
1 → X ′

1,h

q′h : M ′
1 → M ′

1,h

i′h : X ′ → X ′
h

j′h : M ′ → M ′
h

be the canonical injections with respetive adjoints. Then, we define the nonlinear
operators

A1,h = p′hA1 : X1 → X ′
1,h

Ah = i′hA : X → X ′
h

and the linear bounded operators with respective transposes

B1,h = q′hB1 : X1 → M ′
1,h

Bh = j′hB : X → M ′
h

}
and

{
B∗

1,h = p′hB∗
1 : M1 → X ′

1,h

B∗
h = i′hB∗ : M → X ′

h.

Hence, the Galerkin scheme associated with (2.2) reads as follows:

Given (F ,G) ∈ X ′ ×M ′, find ((th, σh), uh) ∈ Xh ×Mh such that

[Ah(th, σh), (sh, τh)]h + [B∗
h(uh), (sh, τh)]h = [i′hF , (sh, τh)]h
[Bh(th, σh), vh]h = [j′hG, vh]h

}
(3.1)

for all ((sh, τh), vh) ∈ Xh ×Mh where hereafter [ ·, · ]h denotes the duality pairing in
the corresponding finite-dimensional subspaces, according to the above definitions of
the discrete operators.
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Now, similarly as in Section 2 we set

Vh(G) =
{

(sh, τh) ∈ Xh : Bh(sh, τh) = j′hG
}

=
{

(sh, τh) ∈ Xh : [Bh(sh, τh), vh]h = [G, vh]h ∀ vh ∈ Mh

}

Vh = Vh(0) =
{

(sh, τh) ∈ Xh : Bh(sh, τh) = O
}

=
{

(sh, τh) ∈ Xh : [Bh(sh, τh), vh]h = 0 ∀ vh ∈ Mh

}
.

Thus, with (3.1) we associate the following problem:

Find (th, σh) ∈ Vh(G) such that

[Ah(th, σh), (sh, τh)]h = [i′hF , (sh, τh)]h (3.2)

for all (sh, τh) ∈ Vh.

It is clear that if ((th, σh), uh) ∈ Xh × Mh is a solution of problem (3.1), then
(th, σh) ∈ Vh(G) and (th, σh) is a solution of problem (3.2) since for all (sh, τh) ∈ Vh

one has [
B∗

h(uh), (sh, τh)
]
h

=
[
Bh(sh, τh), uh

]
h

= 0.

Conversely, if (th, σh) ∈ Vh(G) is a solution of problem (3.2), and if Bh satisfies the
discrete inf-sup Babuska-Brezzi condition (see (3.3) below), then there exists uh ∈ Mh

such that ((th, σh), uh) ∈ Xh ×Mh is a solution of problem (3.1).
In other words, the previous comments indicate that the discrete analogue of

Theorem 2.1 also holds. Since its proof is almost identical to the continuous one
from Section 2, we omit further details. Therefore, to continue our analysis we
assume that there exists β∗ > 0 independent of the subspaces involved such that

sup
0 6=(sh,τh)∈Xh

[Bh(sh, τh), vh]h
‖(sh, τh)‖X

≥ β∗‖vh‖M (3.3)

for all vh ∈ Mh. This inequality states that Bh and B∗
h are isomorphisms from

V ⊥
h ∩ Xh onto M ′

h and from Mh onto V o
h ∩ X ′

h, respectively. In particular, there
exists a unique (t0,h, σ0,h) ∈ V ⊥

h ∩Xh such that Bh(t0,h, σ0,h) = j′hG, which implies
that Vh(G) is non-empty. As a consequence of this fact, problem (3.2) can be replaced
by the following one:

Find (t̃h, σ̃h) ∈ Vh such that
[
Ah

(
(t̃h, σ̃h) + (t0,h, σ0,h)

)
, (s̃h, τ̃h)

]
h

=
[
i′hF , (s̃h, τ̃h)

]
h

(3.4)

for all (s̃h, τ̃h) ∈ Vh.

In this way, given a unique solution (t̃h, σ̃h) ∈ Vh of problem (3.4), the pair
(th, σh) = (t̃h + t0,h, σ̃h +σ0,h) ∈ Vh(G) becomes the unique solution of problem (3.2).
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Now, in order to study the solvability of problem (3.4), we note first that we can
set

Vh = X̃1,h × M̃1,h

where X̃1,h and M̃1,h are subspaces of X1,h and M1,h, respectively. Also, we recall
that F = (F1,G1) with F1 ∈ X ′

1 and G1 ∈ M ′
1. Then, problem (3.4) can be rewritten

in the following manner:

Find (t̃h, σ̃h) ∈ Vh such that

[A1,h(t̃h + t0,h), s̃h]h + [B∗
1,h(σ̃h), s̃h]h = [F̃1,h, s̃h]h

[B1,h(t̃h), τ̃h]h = [G̃1,h, τ̃h]h

}
(3.5)

for all (s̃h, τ̃h) ∈ X̃1,h × M̃1,h, where

F̃1,h = p′hF1 −B∗
1,h(σ0,h) ∈ X ′

1,h (3.6)

G̃1,h = q′hG1 −B1,h(t0,h) ∈ M ′
1,h. (3.7)

We observe that (3.5) is a non-conforming Galerkin approximation scheme for
(2.7) since (th, σ0,h) does not necessarily coincide with (t0, σ0) and moreover, Vh is
not necessarily a subspace of V . This last fact will again be reflected in the derivation
of the error estimate in Section 4.

Next, we let P1,h : X̃1,h → X1,h and Q1,h : M̃1,h → M1,h be the canonical
injections with adjoints P ′1,h : X ′

1,h → X̃ ′
1,h and Q′

1,h : M ′
1,h → M̃ ′

1,h, and define

V1,h(G̃′1,h) =
{

s̃h ∈ X̃1,h : Q′
1,hB1,h(s̃h) = Q′

1,hG̃1,h

}
(3.8)

=
{

s̃h ∈ X̃1,h : [B1,h(s̃h), τ̃h]h = [G̃1,h, τ̃h]h ∀ τ̃h ∈ M̃1,h

}

V1,h = V1,h(0) =
{

s̃h ∈ X̃1,h : Q′
1,hB1,h(s̃h) = 0

}
(3.9)

=
{

s̃h ∈ X̃1,h : [B1,h(s̃h), τ̃h]h = 0 ∀ τ̃h ∈ M̃1,h

}
.

Also, let Π1,h : X ′
1,h → V ′

1,h be the canonical injection defined by Π1,h(F1,h) =
F1,h|V1,h

for all F1,h ∈ X ′
1,h. Then, we associate to (3.5) the following problem:

Find t̃h ∈ V1,h(G̃1,h) such that Π1,hA1,h(t̃h + t0,h) = Π1,h(F̃1,h), that is

[A1,h(t̃h + t0,h), s̃h]h = [F̃1,h, s̃h]h (3.10)

for all s̃h ∈ V1,h.

Similarly as before, we remark now that the discrete analogue of Theorem 2.2
also holds. Consequently, for the rest of the present analysis, we suppose that there
exists a constant β∗1 > 0 independent of the subspaces involved such that

sup
0 6=s̃h∈X̃1,h

[B1,h(s̃h), τ̃h]h
‖s̃h‖X1

≥ β∗1‖τ̃h‖M1 (3.11)
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for all τ̃h ∈ M̃1,h.
The above discrete inf-sup Babuska-Brezzi condition establishes that Q′1,hB1,h

and B∗
1,hQ1,h are isomorphisms from V ⊥

1,h ∩ X̃1,h onto M̃ ′
1,h and from M̃1,h onto

V o
1,h ∩X ′

1,h, respectively. In particular, there exists a unique t̃0,h ∈ V ⊥
1,h ∩ X̃1,h such

that Q′1,hB1,h(t̃0,h) = Q′1,hG̃1,h, which proves that V1,h(G̃1,h) is non-empty. Therefore,
instead of (3.10) we set the following equivalent problem:

Find t̂h ∈ V1,h such that
[
A1,h(t̂h + t̃0,h + t0,h), s̃h

]
h

=
[F̃1,h, s̃h

]
h

(3.12)

for all s̃h ∈ V1,h.

This means that given a unique solution t̂h ∈ V1,h of problem (3.12), the vector
t̃h = (t̂h + t̃0,h) ∈ V1,h(G̃1,h) becomes the unique solution of problem (3.10).

The unique solvability of problem (3.12), which is the discrete analogue of The-
orem 2.3, is stated as follows.

Theorem 3.1. Assume that for any t̃ ∈ X1,h the nonlinear operator

Π1,hA1,h(·+ t̃) : V1,h → V ′
1,h

is strongly monotone, that is there exists a constant αh > 0 independent of t̃ such
that [

A1,h(t̂1,h + t̃)−A1,h(t̂2,h + t̃), t̂1,h − t̂2,h

]
h
≥ αh‖t̂1,h − t̂2,h‖2X1

for all t̂1,h, t̂2,h ∈ V1,h. In addition, assume that A1,h : X1 → X ′
1,h is Lipschitz

continuous, that is there exists a constant γh > 0 such that

sup
0 6=sh∈X1,h

| [A1,h(t1)−A1,h(t2), sh]h|
‖sh‖X1

≤ γh‖t1 − t2‖X1

for all t1, t2 ∈ X1. Then, there exists a unique t̂h ∈ V1,h solution of problem (3.12).

Proof. The proof follows from [18: Chapter III/Theorem 3.3.23]

Clearly, the Lipschitz continuity of A1 yields the same property of A1,h, with the
same Lipschitz constant γ, independent of h, given in Theorem 2.3.

At this point, we remark as for the continuous case that the solution

t̃h = (t̂h + t̃0,h) ∈ V1,h(G̃1,h)

of problem (3.10) is independent of the choice of t̃0,h ∈ V1,h(G̃1,h). Also, the solution

(th, σh) = (t̃h + t0,h, σ̃h + σ0,h) ∈ Vh(G)

of problem (3.2) is independent of the choice of (t0,h, σ0,h) ∈ Vh(G).
According to our previous analysis, we have already proved the following theorem

concerning the solvability of the Galerkin scheme (3.1).
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Theorem 3.2. With the definitions and notations indicated above, assume the
following:

(i) There exists a constant β∗ > 0 independent of the subspaces involved such
that

sup
0 6=(sh,τh)∈Xh

[Bh(sh, τh), vh]h
‖(sh, τh)‖X

≥ β∗‖vh‖M

for all vh ∈ Mh.

(ii) There exists a constant β∗1 > 0 independent of the subspaces involved such
that

sup
0 6=s̃h∈X̃1,h

[B1,h(s̃h), τ̃h]h
‖s̃h‖X1

≥ β∗1‖τ̃h‖M1

for all τ̃h ∈ M̃1,h.

(iii) The nonlinear operator A1,h : X1 → X ′
1,h is Lipschitz continuous, and

for any t̃ ∈ X1,h the nonlinear operator Π1,hA1,h(· + t̃) : V1,h → V ′
1,h is strongly

monotone, as described in Theorem 3.1.

Then, for each (F ,G) ∈ X ′ ×M ′ there exists a unique ((th, σh), uh) ∈ Xh ×Mh

solution of problem (3.1).

It remains now to study the error associated with the Galerkin scheme (3.1).
This is, precisely, the purpose of the next section.

4. The error analysis

In what follows we assume that the index h, which identifies the finite-dimensional
subspaces, is taken in a numerable family I = {hn}n∈N such that hj ≥ hj+1 > 0
for all j ∈ N. Throughout this section, we suppose that all the hypotheses of both
Theorems 2.4 and 3.2 are satisfied. In addition we suppose that, for all t̃ ∈ X1,h, the
family of nonlinear operators {Π1,hA1,h(· + t̃)}h∈I is uniformly strongly monotone.
This means that there exists α > 0 independent of t̃ such that

αh ≥ α (h ∈ I) (4.1)

where αh is the constant indicated in Theorem 3.1.

Hence, our main goal is to demonstrate the following theorem.

Theorem 4.1. Let ((t, σ), u) ∈ X×M and ((th, σh), uh) ∈ Xh×Mh be the unique
solutions of problems (2.2) and (3.1), respectively. Then there exists a constant C > 0
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depending on α, γ, ‖B1‖, β∗1 , ‖B‖ and β∗ only such that the Strang-type error estimate

∥∥((t, σ), u)− ((th, σh), uh)
∥∥

≤ C

{
inf

((sh,τh)vh)∈Xh×Mh

∥∥((t, σ), u)− ((sh, τh), vh)
∥∥

+ sup
0 6=s̃h∈X̃1,h

[F1 −A1(t)−B∗
1(σ), s̃h

]

‖s̃h‖

+ sup
0 6=τ̃h∈M̃1,h

[G1 −B1(t), τ̃h

]

‖τ̃h‖
}

(4.2)

holds for all h ∈ I.

It is important to observe from (2.7) that if X̃1,h ⊆ X̃1, then

sup
s̃h∈X̃1,h

[F1 −A1(t)−B∗
1(σ), s̃h]

‖s̃h‖ = 0.

Similarly, if M̃1,h ⊆ M̃1, then

sup
0 6=τ̃h∈M̃1,h

[G1 −B1(t), τ̃h]
‖τ̃h‖ = 0.

It follows that if Vh ⊆ V , then (4.2) becomes the usual Cea estimate for the Galerkin
error. In other words, the second and third terms on the right-hand side of (4.2)
constitute the consistency error for the case in which Vh is not a subspace of V .

Hereafter, for simplicity we omit the subscripts for the norms and for the duality
pairings [ ·, · ] since the corresponding meanings will always be clear.

In order to prove Theorem 4.1 we need several previous results. To this end, we
recall that

(t, σ) = (t̃ + t0, σ̃ + σ0) where (t0, σ0) ∈ V (G), (t̃, σ̃) ∈ V

is the unique solution of problem (2.7). Also,

(th, σh) = (t̃h + t0,h, σ̃h + σ0,h) where (t0,h, σ0,h) ∈ Vh(G), (t̃h, σ̃h) ∈ Vh

is the unique solution of problem (3.5). Further,

t̃h = t̂h + t̃0,h where t̃0,h ∈ V1,h(G̃1,h), t̂h ∈ V1,h

is the unique solution of problem (3.12).
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Lemma 4.4. The estimate

‖t− th‖ ≤ 1
α sup

0 6=s̃h∈X̃1,h

[F1 −A1(t)−B∗
1(σ), s̃h

]

‖s̃h‖
+

(
1 + γ

α

)
inf

sh∈V1,h(G1)
‖t− sh‖

+ ‖B1‖
α inf

τ̃h∈M̃1,h

‖σ − (τ̃h + σ0,h)‖

(4.3)

holds for all h ∈ I where

V1,h(G1) =
{

sh ∈ X1,h : [B1(sh), τ̃h] = [G1, τ̃h] ∀ τ̃h ∈ M̃1,h

}
. (4.4)

Proof. First, by using the triangle inequality, we get

‖t− th‖ = ‖t− (t̃h + t0,h)‖ ≤ ‖t− (r̃h + t0,h)‖+ ‖t̃h − r̃h‖ (4.5)

for all r̃h ∈ V1,h(G̃1,h). Moreover, since (r̃h − t̃0,h) ∈ V1,h we can write

(t̃h − r̃h) = (t̃h + t0,h)− (r̃h + t0,h)

= (t̂h + t̃0,h + t0,h)− (r̂h + t̃0,h + t0,h)

= (t̂h − r̂h)

with r̂h = r̃h − t̃0,h. In this way, by employing the uniform strong monotonicity of
Π1,hA1,h(·+ t̃0,h + t0,h) (cf. Theorem 3.1 and (4.1)) we deduce

α‖t̃h − r̃h‖2 ≤
[
A1,h(t̃h + t0,h), t̃h − r̃h

]− [
A1,h(r̃h + t0,h), t̃h − r̃h

]
. (4.6)

Now, since (t̃h − r̃h) ∈ V1,h, we can apply (3.10) and use the definition of F̃1,h (cf.
(3.6)) to obtain

[
A1,h(t̃h + t0,h), t̃h − r̃h

]

=
[F̃1,h, t̃h − r̃h

]

=
[
p′hF1, t̃h − r̃h

]− [
B∗

1,h(σ0,h), t̃h − r̃h

]

=
[F1, t̃h − r̃h

]− [
B1(t̃h − r̃h), σ0,h

]
.

(4.7)

Thus, replacing this back into (4.6) and adding and substracting appropriate terms
we get

α‖t̃h − r̃h‖2 ≤
[F1, t̃h − r̃h

]− [
B1(t̃h − r̃h), σ0,h

]

− [
A1(r̃h + t0,h), t̃h − r̃h

]

+
[
A1(t), t̃h − r̃h

]
+

[
B1(t̃h − r̃h), σ

]

− [
A1(t), t̃h − r̃h

]− [
B1(t̃h − r̃h), σ

]

=
[F1 −A1(t)−B∗

1(σ), t̃h − r̃h

]

+
[
A1(t)−A1(r̃h + t0,h), t̃h − r̃h

]

+
[
B1(t̃h − r̃h), σ − σ0,h

]
.

(4.8)
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But, using again that (t̃h − r̃h) ∈ V1,h which means that [B1(t̃h − r̃h), τ̃h] = 0 for all
τ̃h ∈ M̃1,h, the last term in (4.8) can be replaced by

[
B1(t̃h − r̃h), σ − (τ̃h + σ0,h)

]
.

Therefore, dividing inequality (4.8) by α‖t̃h − r̃h‖, using that V1,h ⊆ X̃1,h, applying
the Lipschitz continuity of A1 and the boundedness of B1, we deduce that

‖t̃h − r̃h‖ ≤ 1
α sup

0 6=s̃h∈X̃1,h

[F1 −A1(t)−B∗
1(σ), s̃h

]

‖s̃h‖
+ γ

α‖t− (r̃h + t0,h)‖
+ ‖B1‖

α ‖σ − (τ̃h + σ0,h)‖

(4.9)

for all r̃h ∈ V1,h(G̃1,h) and all τ̃h ∈ M̃1,h.

Now, we observe from the definition of V1,h(G̃1,h) (cf. (3.7) - (3.8)) that r̃h ∈
V1,h(G̃1,h) if and only if (r̃h + t0,h) ∈ V1,h(G1) (cf. (4.4)). Hence, the second term on
the right-hand side of (4.9) and the first term on the right-hand side of (4.5) can be
replaced by γ

α‖t− sh‖ and ‖t− sh‖, respectively, for all sh ∈ V1,h(G1). Consequently,
the previous remark together with (4.5) and (4.9) lead the required estimate (4.3),
thus completing the proof of the lemma

In order to improve the estimate given by Lemma 4.1, we deduce next a suitable
upper bound for the second term on the right-hand side of (4.3).

Lemma 4.2. The estimate

inf
sh∈V1,h(G1)

‖t− sh‖ ≤
(
1 + ‖B1‖

β∗1

)
inf

s̃h∈X̃1,h

‖t− (s̃h + t0,h)‖

+ 1
β∗1

sup
0 6=τ̃h∈M̃1,h

[G1 −B1(t), τ̃h]
‖τ̃h‖

(4.10)

holds for all h ∈ I.

Proof. Given s̃h ∈ X̃1,h, we have that Q′
1,hB1,h(t − (s̃h + t0,h)) ∈ M̃ ′

1,h. Also,
it is clear that Q′1,h(q′hG1 − B1,h(t)) ∈ M̃ ′

1,h. In addition, we recall that the discrete
inf-sup condition for B1,h (cf. (3.11)) establishes that Q′

1,hB1,h is an isomorphism
from X̃1,h ∩ V ⊥

1,h onto M̃ ′
1,h. It follows that there exists a unique s̄h ∈ X̃1,h ∩ V ⊥

1,h

such that

Q′
1,hB1,h(s̄h) = Q′

1,hB1,h

(
t− (s̃h + t0,h)

)
+ Q′1,h

(
q′hG1 −B1,h(t)

)

‖s̄h‖ ≤ 1
β∗1

∥∥∥Q′
1,hB1,h

(
t− (s̃h + t0,h)

)
+ Q′1,h

(
q′hG1 −B1,h(t)

)∥∥∥
(4.11)

which yields

‖s̄h‖ ≤ ‖B1‖
β∗1

‖t− (s̃h + t0,h)‖+ 1
β∗1

sup
0 6=τ̃h∈M̃1,h

[G1 −B1(t), τ̃h]
‖τ̃h‖ . (4.12)
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We now set ŝh = (s̄h + s̃h + t0,h) ∈ X1,h. It is easy to see according to (4.11) that

Q′
1,hB1,h(ŝh) = Q′1,h(q′hG1), i.e. [B1(ŝh), τ̃h] = [G1, τ̃h] ∀ τ̃h ∈ M̃1,h

which shows that ŝh ∈ V1,h(G1). Therefore, we can write

inf
sh∈V1,h(G1)

‖t− sh‖ ≤ ‖t− ŝh‖ = ‖t− (s̃h + t0,h)− s̄h‖ ≤ ‖t− (s̃h + t0,h)‖+ ‖s̄h‖

for all s̃h ∈ X̃1,h. Thus, this estimate and (4.12) complete the proof of the lemma

We now provide an upper bound for the error ‖σ − σh‖.
Lemma 4.3. The estimate

‖σ − σh‖ ≤ 1
β∗1

sup
0 6=s̃h∈X̃1,h

[F1 −A1(t)−B∗
1(σ), s̃h]

‖s̃h‖

+ γ
β∗1
‖t− th‖+

(
1 + ‖B1‖

β∗1

)
inf

τ̃h∈M̃1,h

‖σ − (τ̃h + σ0,h)‖
(4.13)

holds for all h ∈ I.

Proof. We first apply the triangle inequality to obtain

‖σ − σh‖ = ‖σ − (σ̃h + σ0,h)‖ ≤ ‖σ − (τ̃h + σ0,h)‖+ ‖σ̃h − τ̃h‖ (4.14)

for all τ̃h ∈ M̃1,h. On the other hand, from the first equation in (3.5) and using the
definition of F̃1,h (cf. (3.6)) we get

[B∗
1,h(σ̃h + σ0,h), s̃h] = [F1, s̃h]− [A1,h(t̃h + t0,h), s̃h]

from where
[B1,h(s̃h), σ̃h − τ̃h]

= [F1, s̃h]− [A1,h(t̃h + t0,h), s̃h]− [B1,h(s̃h), τ̃h + σ0,h]
(4.15)

for all (s̃h, τ̃h) ∈ X̃1,h × M̃1,h. Then, adding and substracting appropriate terms in
(4.15) we can write

[B1,h(s̃h), σ̃h − τ̃h] = [F1 −A1(t)−B∗
1(σ), s̃h]

+ [A1(t), s̃h]− [A1(t̃h + t0,h), s̃h]

+ [B1(s̃h), σ − (τ̃h + σ0,h)]

(4.16)

for all (s̃h, τ̃h) ∈ X̃1,h × M̃1,h. Now, since (σ̃h − τ̃h) ∈ M̃1,h for all τ̃h ∈ M̃1,h, we can
apply the discrete inf-sup condition for B1,h (cf. (3.11)) and deduce that

‖σ̃h − τ̃h‖ ≤ 1
β∗1

sup
0 6=s̃h∈X̃1,h

[B1,h(s̃h), σ̃h − τ̃h]
‖s̃h‖ . (4.17)

In this way, setting herein (4.16), applying the Lipschitz continuity of A1 and the
boundedness of B1 we conclude that

‖σ̃h − τ̃h‖ ≤ 1
β∗1

sup
0 6=s̃h∈X̃1,h

[F1 −A1(t)−B∗
1(σ), s̃h]

‖s̃h‖

+ γ
β∗1
‖t− th‖+ ‖B1‖

β∗1
‖σ − (τ̃h + σ0,h)‖

(4.18)

for all τ̃h ∈ M̃1,h. Finally, (4.18) and (4.14) finish the proof of the lemma
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As a consequence of the previous lemmata, we can state the following result.

Theorem 4.4. There exists a constant C̃ > 0 depending only on α, γ, ‖B1‖, β∗1 ,
‖B‖ and β∗ such that

∥∥(t, σ)− (th, σh)
∥∥ ≤ C̃

{
inf

(sh,τh)∈Xh

‖(t, σ)− (sh, τh)‖

+ sup
0 6=s̃h∈X̃1,h

[F1 −A1(t)−B∗
1(σ), s̃h]

‖s̃h‖

+ sup
0 6=τ̃h∈M̃1,h

[G1 −B1(t), τ̃h]
‖τ̃h‖

}
(4.19)

for all h ∈ I,

Proof. The direct application of Lemmata 4.1 - 4.3 yields the estimate
∥∥(t, σ)− (th, σh)

∥∥ ≤ C1

{
inf

(s̃h,τ̃h)∈Vh

∥∥(t, σ)− (s̃h + t0,h, τ̃h + σ0,h)
∥∥

+ sup
0 6=s̃h∈X̃1,h

[F1 −A1(t)−B∗
1(σ), s̃h]

‖s̃h‖

+ sup
0 6=τ̃h∈M̃1,h

[G1 −B1(t), τ̃h]
‖τ̃h‖

}
(4.20)

where C1 > 0 is a constant depending on α, γ, ‖B1‖ and β∗1 only. Now, since
(t0,h, σ0,h) ∈ Vh(G), we note that (s̃h, τ̃h) ∈ Vh if and only if (s̃h + t0,h, τ̃h + σ0,h) ∈
Vh(G), and hence

inf
(s̃h,τ̃h)∈Vh

∥∥(t, σ)− (s̃h + t0,h, τ̃h + σ0,h)
∥∥ = inf

(s̃h,τ̃h)∈Vh(G)

∥∥(t, σ)− (s̃h, τ̃h)
∥∥. (4.21)

Next, we proceed similarly as in the proof of Lemma 4.2. Given (sh, τh) ∈ Xh,
we have that Bh

(
(t, σ) − (sh, τh)

) ∈ M ′
h. Also, we recall that the discrete inf-sup

condition for Bh (cf. (3.3)) states that Bh is an isomorphism from V ⊥
h ∩ Xh onto

M ′
h. It follows that there exists a unique (s̄h, τ̄h) ∈ V ⊥

h ∩Xh such that

Bh(s̄h, τ̄h) = Bh

(
(t, σ)− (sh, τh)

)
(4.22)

‖(s̄h, τ̄h)‖ ≤ 1
β∗

∥∥Bh

(
(t, σ)− (sh, τh)

)∥∥ ≤ ‖B‖
β∗

∥∥(t, σ)− (sh, τh)
∥∥. (4.23)

Then, we set (ŝh, τ̂h) = (s̄h, τ̄h) + (sh, τh) and observe from (4.22) that Bh(ŝh, τ̂h) =
Bh(t, σ) = j′hG, which means that (ŝh, τ̂h) ∈ Vh(G). Consequently, we deduce that

inf
(s̃h,τ̃h)∈Vh(G)

‖(t, σ)− (s̃h, τ̃h)‖ ≤ ‖(t, σ)− (ŝh, τ̂h)‖

≤ ‖(t, σ)− (sh, τh)‖+ ‖(s̄h, τ̄h)‖
(4.24)

for all (sh, τh) ∈ Xh. Thus, (4.24) and (4.23) yield

inf
(sh,τh)∈Vh(G)

‖(t, σ)− (s̃h, τ̃h)‖ ≤ (
1 + ‖B‖

β∗
)

inf
(sh,τh)∈Xh

‖(t, σ)− (sh, τh)‖

which, together with (4.20) and (4.21), completes the proof of the theorem
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The corresponding upper bound for the error ‖u − uh‖ is provided next in the
usual way.

Theorem 4.5. There exists a constant C̄ > 0 depending on γ, ‖B1‖, ‖B‖ and
β∗ only such that

‖u− uh‖ ≤ C̄
{
‖(t, σ)− (th, σh)‖+ inf

vh∈Mh

‖u− vh‖
}

(4.25)

for all h ∈ I.

Proof. We first note, by the triangle inequality, that

‖u− uh‖ ≤ ‖u− vh‖+ ‖uh − vh‖ (4.26)

for all vh ∈ Mh. Now, from the first equations in (3.1) and (2.2) we get

[B∗
h(uh), (sh, τh)]

= [F , (sh, τh)]− [Ah(th, σh), (sh, τh)]

= [A(t, σ), (sh, τh)] + [B(sh, τh), u]− [Ah(th, σh), (sh, τh)]

and hence [
Bh(sh, τh), uh − vh

]

=
[
A(t, σ)−A(th, σh), (sh, τh)

]
+

[
B(sh, τh), u− vh

] (4.27)

for all ((sh, τh), vh) ∈ Xh×Mh. Then, the discrete inf-sup condition for Bh (cf. (3.3))
leads to

β∗‖uh − vh‖

≤ sup
0 6=(sh,τh)∈Xh

[A(t, σ)−A(th, σh), (sh, τh)] + [B(sh, τh), u− vh]
‖(sh, τh)‖ .

In this way, applying the Lipschitz continuity of A1 and the boundedness of B1 and
B, we conclude from the above inequality that

‖uh − vh‖ ≤ 1
β∗ (γ + ‖B1‖)‖(t, σ)− (th, σh)‖+ ‖B‖

β∗ ‖u− vh‖ (4.28)

for all vh ∈ Mh. Therefore, estimates (4.28) and (4.26) complete the proof of the
theorem

To end this section, we remark that the proof of our main Theorem 4.1 follows
directly from Theorems 4.4 and 4.5.
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5. Application to coupling of mixed-FEM and BEM

We now show an example of an exterior nonlinear boundary value problem, whose
weak formulation, via the coupling of mixed-FEM and BEM, can be written in the
dual-dual type form studied in the previous sections (see [9]).

Let Ω0 be a bounded and simply connected domain in R2 with Lipschitz contin-
uous boundary Γ0. Also, let Ω1 be the annular domain bounded by Γ0 and another
Lipschitz continuous closed curve Γ1 whose interior region contains Ω0. In addition,
let ai : Ω1×R2 → R (i = 1, 2) be nonlinear mappings satisfying certain appropriate
conditions. Then, given f1 ∈ L2(Ω1), we consider the exterior nonlinear transmission
problem

Find u1 ∈ H1(Ω1) and u2 ∈ H1
loc(R2 \ Ω0 ∪ Ω1) such that

u1 = 0 on Γ0

−
2∑

i=1

∂

∂xi
ai(·,∇u1(·)) = f1 in Ω1

u1 = u2,

2∑

i=1

ai(·,∇u1(·))ni − ∂u2

∂n
= 0 on Γ1

−∆u2 = 0 in R2 \ Ω0 ∪ Ω1

u2(x) = O(1) as ‖x‖ → +∞





(5.1)

where n = (n1, n2) denotes the unit outward normal to ∂Ω1.

This kind of problem appears in the computation of magnetic fields of electromag-
netic devices (see, e.g., [13, 14]), in some subsonic flow and fluid mechanics problems
(see, e.g., [3, 4]), and also in steady heat conduction.

In what follows, we apply a dual-mixed finite element method in Ω1 and a
Dirichlet-to-Neumann mapping (arising from the boundary integral equation method)
in the exterior region R2 \Ω0 ∪Ω1. To this end, we first introduce a sufficiently large
circle Γ with center at the origin such that its interior region contains Ω0 ∪ Ω1. We
denote by Ω2 the annular region bounded by Γ1 and Γ and put Ω = Ω1 ∪ Γ1 ∪ Ω2.
Then, we define the global unknowns u, the flux variable σ and the global data f as

u =
{

u1 in Ω1

u2 in Ω2
σ =

{
(a1(·,∇u), a2(·,∇u))T in Ω1

∇u in Ω2
f =

{
f1 in Ω1

0 in Ω2,

respectively, and introduce the auxiliary unknowns

θ = ∇u in Ω

ξ = u|Γ

}
. (5.2)

By applying the boundary integral equation method in the region exterior to the cir-
cle Γ, and according to the results from [8, 15], we obtain the Dirichlet-to-Neumann
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mapping ∂u
∂ν = −2W (u|Γ) on Γ or, equivalently, σ · ν = −2W (ξ) on Γ where ν is the

unit outward normal to Γ and W is the hypersingular boundary integral operator
associated to the Laplacian. Hence, it is not difficult to see that the exterior trans-
mission problem (5.1) can be reformulated as the following non-local boundary value
problem in Ω:

Find (θ, ξ, σ, u) ∈ [L2(Ω)]2 ×H
1/2
0 (Γ)×H0(div,Ω)× L2(Ω) such that

u = 0 on Γ0

θ = ∇u in Ω

σ =
{

a(·, θ) in Ω1

θ in Ω2

div σ = −f in Ω

σ · ν = −2W (ξ), u = ξ on Γ





(5.3)

where we have adopted the notations

a(·, θ) =
(
a1(·, θ), a2(·, θ)

)T

H
1/2
0 (Γ) =

{
λ ∈ H1/2(Γ) : 〈λ, 1〉 = 0

}

H0(div, Ω) =
{
τ ∈ H(div, Ω) : 〈1, τ · ν〉 = 0

}

and hereafter 〈·, ·〉 denotes the duality pairing of H1/2(Γ) and H−1/2(Γ) with respect
to the L2(Γ)-inner product.

Now, for the weak formulation we multiply the second equation in (5.3) by a
function τ ∈ H0(div,Ω), integrate by parts in Ω and use that u = 0 on Γ0 and u = ξ
on Γ to obtain

−
∫

Ω

θ · τ dx + 〈ξ, τ · ν〉 −
∫

Ω

udivτ dx = 0. (5.4)

Next, the third equation in (5.3) is tested against ζ ∈ [L2(Ω)]2, which gives
∫

Ω1

a(·, θ) · ζ dx +
∫

Ω2

θ · ζ dx−
∫

Ω

σ · ζ dx = 0. (5.5)

Finally, the fourth and fifth equations in (5.3) are tested against v ∈ L2(Ω) and
λ ∈ H

1/2
0 (Γ), respectively, which yields

−
∫

Ω

v divσ dx =
∫

Ω

fv dx (5.6)

2〈λ,W (ξ)〉+ 〈λ, σ · ν〉 = 0. (5.7)

Therefore, collecting appropriately (5.4) - (5.7) and putting t = (θ, ξ), X1 = [L2(Ω)]2

×H
1/2
0 (Γ),M1 = H0(div,Ω), X = X1×M1 and M = L2(Ω), we arrive at the following

variational formulation of problem (5.3):
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Find ((t, σ), u) ∈ X ×M such that

[
A B∗

B O

] [
(t, σ)

u

]
=

[F
G

]
(5.8)

with F ≡ O ∈ X ′,

A(t, σ) :=
[

A1 B∗
1

B1 O

] [
t
σ

]
∈ X ′ = X ′

1 ×M ′
1

and where A1 : X1 → X ′
1, B1 : X1 → M ′

1, B
∗
1 : M1 → X ′

1, B : X → M ′, B∗ : M →
X ′ and G ∈ M ′ are defined as

[A1(t), s] =
∫

Ω1

a(·, θ) · ζ dx +
∫

Ω2

θ · ζ dx + 2〈λ,W (ξ)〉

[B1(t), τ ] = −
∫

Ω

θ · τ dx + 〈ξ, τ · ν〉

[B∗
1(σ), s] = −

∫

Ω

σ · ζ dx + 〈λ, σ · ν〉

[B(t, σ), v] = −
∫

Ω

v divσ dx

[B∗(u), (s, τ)] = −
∫

Ω

u divτ dx

[G, v] =
∫

Ω

fv dx

for all s = (ζ, λ) ∈ X1, all τ ∈ M1 and all v ∈ M .

Clearly, because of the coefficients ai (i = 1, 2), A1 becomes a nonlinear operator.
We note also that, assuming standard growth conditions on ai (see, e.g., [8, 10]) one
can easily prove that A1 is strongly monotone and Lipschitz continuous, as required
in Theorem 2.3. Moreover, it is not difficult to show that the variational formulation
(5.8) verifies all the hypotheses of Theorem 2.4. In addition, it is possible to define
explicit finite element subspaces of Raviart-Thomas type, so that all the hypotheses
of Theorems 3.2 and 4.1 are satisfied. Furthermore, with this particular choice of
subspaces one obtains that Vh is included in V and hence the usual Cea estimate
holds. We omit further comments at this point and just mention that all the details
are given in [9].

As a concluding remark we emphasize that, on the contrary to the previous
procedures dealing with nonlinear transmission problems (via the coupling of mixed-
FEM and BEM) (see, e.g., [10, 11]), the present dual-dual approach does provide
completely satisfactory results for both the continuous and discrete schemes.
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