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A Leray-Schauder Alternative for Mönch Maps
on Closed Subsets of Fréchet Spaces

M. Frigon and D. O’Regan

Abstract. In this paper, a continuation principle is obtained for maps defined on a closed,
convex subset which may have empty interior in a Fréchet space, and satisfying a condition
of Mönch type. An application to first order systems of differential equations is presented
to illustrate our theory.
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1. Introduction

In [5], Mönch establised a generalization of the fixed point theorems of Schauder,
Krasnoselskii, Darbo, and Sadovskii. He also obtained a continuation theorem of
Leray-Schauder type. We state an analogue of these results to quasicomplete, metriz-
able, locally convex space. The proof is analogous to the ones presented in [5].

Theorem 1.1. Let X be a closed, convex subset of the quasicomplete, metrizable,
locally convex space E, f : X → X a continuous map, and x0 ∈ X such that for
every countable set C ⊂ X satisfying C = conv

({x0} ∪ f(C)
)

one has C compact.
Then f has a fixed point

Theorem 1.2. Let U be an open subset of E, x0 ∈ U , and f : U → E a
continuous map satisfying the following conditions:

(i) For every countable set C ⊂ U satisfying C ⊂ conv
({x0} ∪ f(C)

)
one has C

compact.
(ii) x 6∈ (1− λ)x0 + λf(x) for every x ∈ ∂U and every λ ∈ [0, 1].

Then f has a fixed point.

We note that in the Banach space setting, Theorem 1.2 is applicable to wide
classes of problems (see [7]). However, in the non-normable situation, Theorem 1.2 is
rarely of interest since in applications the set U constructed is usually bounded and

M. Frigon: Université de Montréal, Dept. Math. & Stat., C.P. 6128, Succ. Centre-ville,
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so has empty interior. As a result from an application viewpoint, Theorem 1.2 needs
to be adjusted.

In this paper, we obtain a continuation principle similar to Theorem 1.2 for a
map f defined on a closed, convex subset of E which can have empty interior. Indeed,
this situation occurs naturally in applications. For the sake of simplicity our results
will be stated for Fréchet spaces but it is worthwhile to mention that they are also
valid in quasicomplete, metrizable, locally convex spaces. In Section 5 we show how
our theory can be applied in practice by considering first order infinite systems of
differential equations.

2. Preliminaries

Let E be a Fréchet space with the topology generated by a family of semi-norms
{‖ · ‖n}n∈N. For the sake of simplicity, we will assume that the following condition is
satisfied:

(?) ‖x‖n ≤ ‖x‖m for every x ∈ E and n ≤ m.

We follow the construction in [3]. To E, we associate for every n ∈ N a normed space
En as follows: For each n ∈ N, we write

x ∼n y if and only if ‖x− y‖n = 0. (2.1)

This defines an equivalence relation on E. We denote by Ên = E/∼n the quotient
space, and by En the completion of Ên with respect to ‖·‖n (the norm on Ên induced
by ‖ ·‖n and its extension to En are still denoted by ‖ ·‖n). This construction defines
a continuous map µn : E → En. Now, observe that since condition (?) is satisfied,
the semi-norm ‖ · ‖n induces a semi-norm on Em for every m ≥ n. Again, this semi-
norm is still denoted by ‖ · ‖n. Also, relation (2.1) defines an equivalence relation on
Em from which we obtain a continuous map µn,m : Em → En since Em\∼n can be
regarded as a subset of En. Observe that E is the projective limit of (En)n∈N.

For each subset X ⊂ E and each n ∈ N, we set Xn = µn(X), and we denote
by Xn and ∂Xn the closure and the boundary of Xn with respect to ‖ · ‖n in En,
respectively. We denote by diamn the n-diameter induced by ‖ · ‖n; that is,

diamn(X) = sup
{‖x− y‖n : x, y ∈ X

}
.

Define Sn : X → X by

Sn(x) =
{
y ∈ X : ‖x− y‖n = 0

}
.

Since the set X that we will consider can have empty interior, we recall the notion
of pseudo-interior of X introduced in [3]

pseudo-int(X) =
{
x ∈ X : µn(x) ∈ Xn\∂Xn for every n ∈ N}

.

A notion of admissible map was introduced in [3] for compact maps. Let us
introduce an analogous definition which will permit us to consider non-compact maps.
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Definition 2.1. Let Y ⊂ X ⊂ E be such that X is convex. We say that a map
f : Y → X belongs to the class M if, for every n ∈ N:

(1) The multi-valued map F̂n : Yn → Xn defined by

F̂n(µn(x)) = conv
(
µn ◦ f ◦ Sn(x)

)

admits an upper semi-continuous extension Fn : Yn → Xn with convex, compact
values.

(2) For every ε > 0 and x ∈ Y , there exists m ≥ n such that

diamn

(
f(Sm(x))

)
< ε.

Remark. We can state an analogous definition for maps f : Y × [0, 1] → X and
we also say that f is in the class M.

3. Fixed point result in class M
Our first result is an analog of the Mönch fixed point theorem [5] for maps in class
M. The proof is similar to the one presented in [7].

Theorem 3.1. Let X be a closed, convex subset of the locally convex space E,
and f : X → X a map in M. Assume that there exists x0 ∈ X satisfying:

(C) For every n ∈ N and every Y ⊂ X with Y = conv
({x0} ∪ f(Sn(Y ))

)
, and

for which there exists a countable set C ⊂ Y satisfying Cn = Yn, one has Yn

compact.

Then f has a fixed point.

Proof. For every n ∈ N, we define inductively a sequence of convex subsets of
X,

Y n,0 = {x0}
Y n,k = conv

({x0} ∪ f(Sn(Y n,k−1))
)

(k ≥ 1).

It is immediately seen by induction that, for every k ≥ 1 and every m ≥ n, Y n,k−1 ⊂
Y n,k and Y m,k ⊂ Y n,k. For every n ∈ N, we define

Y n = ∪k≥0Y
n,k.

Since f ∈ M, for every k ≥ 0, Y n,k
n is compact. Thus, there exists a countable set

Cn,k ⊂ Y n,k such that Cn,k
n = Y n,k

n , we have by assumption that Y n
n is compact.

Moreover, it is clear that

Y n = conv
({x0} ∪ f(Sn(Y n))

)
.

Again we can notice that, for every m ≥ n, Y m ⊂ Y n.
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Now we claim that, for every n ∈ N, Fn(x) ∩ Y n
n 6= ∅ for every x ∈ Y n

n . Indeed,
for every x ∈ Y n

n there exists a sequence {xi} in Y n such that µn(xi) → x as i →∞.
Let ki ≥ 1 be such that xi ∈ Y n,ki , and choose yi ∈ f(Sn(xi)). Observe that

yi ∈ f(Sn(Y n,ki)) ⊂ Y n,ki+1 ⊂ Y n.

The compactness of Y n
n implies the existence of a subsequence still denoted {µn(yi)}

converging to u ∈ Y n
n as i →∞. It follows from the upper semi-continuity of Fn that

u ∈ Fn(x). Therefore, for every n ∈ N, we can define an upper semi-continuous map
with non-empty, convex, compact values Gn : Y n

n → Y n
n by Gn(x) = Fn(x) ∩ Y n

n .
The Kakutani fixed point theorem implies the existence of zn ∈ Gn(zn) ⊂ Fn(zn).

Obviously, µn,m(zm) ∈ Gn(µn,m(zm)) for every m ≥ n. By compactness, the
sequence (µ1,m(zm))m≥1 has a subsequence (µ1,m(zm))m∈N1 converging to x1 ∈ Y 1

1 .
It follows from the upper semi-continuity of F1 that x1 ∈ F1(x1). Again, the sequence
(µ2,m(zm))m∈N1 has a subsequence (µ2,m(zm))m∈N2 converging to x2 ∈ Y 2

2 , with
x2 ∈ F2(x2). By uniqueness of the limit, µ1,2(x2) = x1. In repeating this argument
we obtain, for every n ∈ N, xn ∈ Y n

n such that xn ∈ Fn(xn) and µn,m(xm) = xn

for every m ≥ n. Since X is closed, we deduce the existence of x ∈ X such that
µn(x) = xn for every n ∈ N.

We claim that x = f(x). If this is false, there exists n ∈ N and δ > 0 such that
‖x− f(x)‖n = δ. Let ε < δ

2 . By Definition 2.1/(2), there exists m ≥ n such that

diamn

(
f(Sm(x))

)
= diamn

(
conv

(
f(Sm(x))

))
< ε.

On the other hand, since xm ∈ Fm(xm), we can take y ∈ conv
(
f(Sm(x))

)
such that

‖x− y‖m < ε. Thus,

δ = ‖x− f(x)‖n ≤ ‖x− y‖n + ‖y − f(x)‖n < ‖x− y‖m + ε < 2ε < δ

which is a contradiction.

4. Fixed point result of Leray-Schauder type in class M

We introduce the notion of homotopy in the class M.

Definition 4.1. Let f, g : X → E be maps in M. We say that f and g are
M-homotopic if there exists a map h : X × [0, 1] → E in M such that:

(1) h(·, 0) = f and h(·, 1) = g.
(2) For every n ∈ N, z 6∈ Hn(z, λ) for every z ∈ ∂Xn and every λ ∈ [0, 1].

We write f ≈ g and we say that h is a homotopy.

Here is our main theorem.



A Leray-Schauder Alternative for Mönch Maps 757

Theorem 4.2. Let X be a closed subset of E, x0 ∈ pseudo-int(X), and f :
X → E in the class M. Assume that f is M-homotopical to the constant map x0

with a homotopy h. Finally, let the following condition be satisfied:
(C′) For every n ∈ N and every Y ⊂ X with Y ⊂ conv

(
h(Sn(Y ) × [0, 1])

)
, and

for which there exists a countable set C ⊂ Y satisfying Cn = Yn, one has Yn

compact.
Then f has a fixed point.

Proof. For n ∈ N, we set

An =
{
z ∈ Xn : z ∈ Hn(z, λ) for some λ ∈ [0, 1]

}
.

Observe that µn(x0) ∈ An. Also, An is closed and An ∩Xn\Xn = ∅, since h ∈ M.
Moreover, for m ≥ n, µn,m(Am) ⊂ An. Let θ : Xn → [0, 1] be an Urysohn’s function
such that θ(x) = 0 on Xn\Xn and θ(x) = 1 on An. We define inductively a sequence
of convex subsets of E by

Y n,0 = {x0}
Y n,k = conv

{
h(x, θ(µn(x))) : x ∈ Sn(Y n,k−1)

}
(k ≥ 1)

and we set Y n = ∪k≥0Y
n,k. It is easy to see that Y n ⊂ conv

(
h(Sn(Y n) × [0, 1])

)
.

Assumption (C′) implies that Y n
n is compact.

As in the proof of Theorem 3.1 we can show that the map Kn : Y n
n → Y n

n

defined by Kn(x) = Hn(x, θ(x)) ∩ Y n
n is upper semi-continuous with non-empty,

convex, compact values. The Kakutani fixed point theorem implies the existence of

zn ∈ Kn(zn, θ(zn)) ⊂ Hn(zn, [0, 1]).

So, zn ∈ An, and hence θ(zn) = 1. Thus zn ∈ Fn(zn). Moreover, for every m ≥ n,
µn,m(zm) ∈ An ∩ Y n

n and µn,m(zm) ∈ Fn(µn,m(zm)). Arguing as in the proof of
Theorem 3.1, we deduce the existence of x ∈ X such that x = f(x)

Corollary 4.3. Let X be a closed subset of E, x0 ∈ pseudo-int(X), and f :
X → E in the class M. Assume that the following conditions are satisfied:

(i) For every n ∈ N and every Y ⊂ X with Y ⊂ conv
({x0}∪f(Sn(Y ))

)
, and for

which there exists a countable set C ⊂ Y satisfying Cn = Yn, one has Yn compact.
(ii) For every n ∈ N, z 6∈ (1− λ)µn(x0) + λFn(z) for every z ∈ ∂Xn and every

λ ∈ [0, 1].
Then f has a fixed point.

Proof. It suffices to show that the map h : X × [0, 1] → E defined by h(x, λ) =
(1 − λ)x0 + λf(x) is in M. Then the conclusion follows directly from the previous
theorem

Remark. All the previous results can be generalized to a map f : X → K with
K a closed, convex subset of E. In that case, one takes the closure and the boundary
of Xn relative to Kn.
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5. Application

Consider the infinite system of differential equations

y′(t) = g(t, y(t)) (t ∈ [0, T ])

y(0) = a = (a1, a2, . . .) ∈ B =
∏

n∈NBn

}
(5.1)

where (Bn, ‖ · ‖n) is a Banach space for every n ∈ N. For any bounded subset Y of
B, we define {βn(Y )}n∈N the family of Hausdorff’s measure of non-compactness of
Y as follows: for any n ∈ N, βn(Y ) denotes the infimum of all ε > 0 such that there
exists a finite set {x1, . . . , xk} ⊂ A with

Y ⊂
k⋃

j=1

{
y ∈ B : ‖xj − y‖i < ε for i = 1, . . . , n

}
.

For properties of {βn(Y )}n∈N, the reader is referred to [1, 5, 6]. Observe that βn

corresponds to the measure of non-compactness of B1 × · · · ×Bn.

Theorem 5.1. Let B be as above and g : [0, T ] × B → B a continuous map
satisfying:

(i) For every n ∈ N, there exist qn ∈ C([0, T ], B), and φn : [0,∞) → (0,∞) a
non-increasing function such that

‖gn(t, y)‖n ≤ qn(t)φn(‖y‖n) ∀ t ∈ [0, T ], y ∈ B

and ∫ T

0

qn(t) dt <

∫ ∞

‖an‖n

ds

φn(s)
.

(ii) For every n ∈ N, there exists a continuous map wn : [0,∞) → [0,∞) such
that wn(0) = 0, wn(s) > 0 for all s > 0,

∫∞
0

ds
wn(s) = ∞ and

βn(g(t, Y )) ≤ wn(βn(Y )) ∀ t ∈ [0, T ], Y ⊂ B bounded.

(iii) For every n ∈ N, and for every bounded subset Y ⊂ B, there exists a
sequence (kn

m)m≥n converging to 0 such that, for every m ≥ n,

max
1≤i≤n

{∥∥gi(t, x)− gi(t, y)
∥∥

i

} ≤ kn
m

for every t ∈ [0, T ], x, y ∈ Y such that ‖xi − yi‖i = 0 for i = 1, . . . , m.
Then problem (5.1) has a solution.

Proof. Let us consider E = C([0, T ], B) endowed with the family of semi-norms
{| · |n}n∈N defined by

|u|n = max
1≤i≤n

{
max

t∈[0,T ]
‖ui(t)‖i

}
.
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For every n ∈ N we set

In(z) =
∫ z

‖an‖n

ds

φn(s)
and ζn(t) = I−1

n

(∫ t

0

qn(τ) dτ

)
+ 1.

Consider the closed set

X =
{
u ∈ E : ‖un(t)‖n ≤ ζn(t) for all t ∈ [0, T ]

}

and define f : X → E by

f(u)(t) =
∫ t

0

g(τ, u(τ)) dτ.

Essentially the same reasoning as in [3: Theorem 5.2] guarantees that f is in the class
M. Also, by standard arguments (see [4]) it can be shown that, for every n ∈ N,

z 6∈ (1− λ)(a1, . . . , an) + λFn(z) ∀ z ∈ ∂Xn, ∀λ ∈ [0, 1].

Indeed, to see this we need only to note that if there exists n ∈ N, z ∈ ∂Xn and
λ ∈ [0, 1] with z ∈ (1− λ)(a1, ..., an) + λ Fn(z), then

‖z(t)‖n ≤ ‖an‖n +
∫ t

0

qn(t)φn(‖z(s)‖n) ds ≡ u(t) (t ∈ [0, T ])

and so

ζn(t) = ‖z(t)‖n ≤ u(t) ≤ I−1
n

(∫ t

0

qn(s) ds

)
= ζn(t)− 1,

which is a contradiction.
Now, we claim that h(x, λ) = (1−λ)x0+λf(x) satisfies condition (C′). Indeed, let

n ∈ N and Y ⊂ X such that Y ⊂ conv
({a} ∪ f(Sn(Y ))

)
and for which there exists a

countable set C ⊂ Y with Cn = Yn. The assumptions imply the existence of Mn ≥ 0
such that ‖gi(t, u(t))‖i ≤ Mn for every u ∈ Sn(X) and every i ∈ {1, . . . , n}. So, Yn

is bounded. Moreover, for y ∈ Y , there exists u1, . . . , um in Sn(Y ) and λ0, . . . , λm in
[0, 1] such that

y = λ0a +
m∑

k=1

λkf(uk)

with λ0 + · · ·λm = 1. Thus, for i = 1, . . . , n,

∥∥yi(t)− yi(s)
∥∥

i
=

∥∥∥∥
m∑

k=1

λk

∫ t

s

gi(τ, uk(τ)) dτ

∥∥∥∥
i

≤ Mn|t− s|.

Therefore, Yn is equicontinuous.
To show that Yn is compact, by Arzela-Ascoli’s theorem, one needs to show that

Yn(t) is compact for every t ∈ [0, T ]. Fix t ∈ [0, T ]. Since C is countable, there
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exists D ⊂ Sn(Y ) countable such that C ⊂ conv
({a} ∪ f(D)

)
. The properties of the

measure of non-compactness and [6: Theorem 1] imply that

t 7→ ψ(t) = βn

({∫ t

0

g(τ, v(τ)) dτ : v ∈ D

})

is absolutely continuous, and

βn(D(t)) ≤ βn(Y (t)) = βn(C(t)) ≤ βn

(
conv({a} ∪ f(D)(t))

)
= βn(f(D)(t))

= ψ(t) =
∫ t

0
ψ′(τ) dt ≤ 2

∫ t

0
βn

({g(τ, v(τ)) dτ : v ∈ D})

≤ 2
∫ t

0
βn

(
g(τ, D(τ))

)
dτ ≤ 2

∫ t

0
wn

(
βn(D(τ))

)
dτ.

It follows from [10: Lemma 2] that wn

(
βn(D(τ))

)
= 0 for every τ ≤ t. This implies

that βn(Y (t)) = 0, so Yn(t) is compact for each t ∈ [0, T ]. Therefore Yn is compact.
Now the conclusion follows from Corollary 4.3
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