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A Certain Series
Associated with Catalan’s Constant

V. S. Adamchik

Abstract. A parametric class of series generated by integration of complete elliptic integrals
P∞
−r 6=k=0

( 2k
k

)

(k+r)16k is valuated in closed form. Alternative proofs to results of Ramanujan

and others are given. Also, a particular case of the Saalschützian hypergeometric series

4F3(1) is derived.
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1. Introduction

The subject of our interest is the hypergeometric series generated by elliptic integrals

S(r) =
∞∑

k=0

( 2k
k )2

(k + r)16k
=

1
r

4F3( 1
2 , 1

2 , r; 1, r + 1; 1). (1)

This series has a long and interesting story. About a century ago Ramanujan (see [8:
p. 351] and [3: p. 39]) in his first letter to Hardy stated without proof a particular
case of (1), when the parameter r = n is a positive integer, namely

S(r) =
16n

πn2( 2n
n )2

n−1∑

k=0

( 2k
k )2

16k
. (2)

In 1927, when Ramanujan’s collected papers were published and result (2) became
publicly known, it attracted a great deal of attention. Different proofs were given by
Watson [13] and Darling [4], later Bailey [2] and Hodgkinson [9] generalized (2) to

3F2

(
a, b, c + n− 1; c, a + b + n; 1

)
=

Γ(n)Γ(a + b + n)
Γ(a + n)Γ(b + n)

n−1∑

k=0

(a)k(b)k

(c)kk!
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which gives Ramanujan’s result when a = b = 1
2 and c = 1. Ramanujan (see [11:

pp. 237 - 239] and [3: p. 45]) also stated a complementary formula to (2), when the
parameter r = n + 1

2 is a half integer, namely

S(n + 1
2 ) =

4
π

( 2n
n )2

16n

(
2G +

n−1∑

k=0

16k

( 2k
k )2(2k + 1)2

)
. (3)

Here G is Catalan’s constant defined by

G = 1
2

∫ 1

0

K(k) dk =
∞∑

k=0

(−1)k

(2k + 1)2

and K is the complete elliptic integral of the first kind, given by

K(k) =
∫ π

2

0

dt√
1− k2 sin2 t

.

As mentioned in [3: p. 47], Ramanujan’s proofs of formulas (2) and (3) most likely
were based on the recurrence equation

(r + 1
2 )2S(r + 1)− r2S(r) = 1

π (4)

subject to initial conditions. This equation is derived from the fact that S(r) is
generated by integration of complete elliptic integrals as

S(r) = 2
π

∫ 1

0

zr−1K(z) dz (<(r) > 0). (5)

In 1981, unawared of Ramanujan’s equation (4), Dutka [5] employed (5) to rediscover
formulas (2) and (3). In Section 2 we outline the derivation of equation (4), as well
as its solution. In view of (4), it is pretty straightforward to see that for any rational
r = n + p, where n is a positive integer and 0 < p ≤ 1, series (1) has a closed form
representation

S(n + p) =
(p)2n

(p + 1
2 )2n

(
S(p) +

1
πp2

n−1∑

k=0

(p + 1
2 )2k

(p + 1)2k

)
.

Here (p)n = p(p + 1) · · · (p + n− 1) is the Pochhammer symbol. There are only three
known cases when the function S(p)is expressible in terms other than hypergeometric
functions, namely p ∈ {1, 1

2 , 1
4} with

S(1) = 3F2( 1
2 , 1

2 , 1; 1, 2; 1) = 2F1( 1
2 , 1

2 ; 2; 1) = 4
π

S( 1
2 ) = 23F2( 1

2 , 1
2 , 1

2 ; 1, 3
2 ; 1) = 8G

π

S( 1
4 ) = 43F2( 1

2 , 1
2 , 1

4 ; 1, 5
4 ; 1) = Γ( 1

4 )4

4π2
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where Γ(z) is the Euler gamma function. All these cases are due to Ramanujan (see
[3]). Glasser [6] made a conjecture that it is possible to express S( 1

2k ) for k ≥ 3 in
finite terms, however that is remained to be seen.

It does not appear to have been previously studied the case when the parameter
r in (1) is a negative integer (assuming that the term r = −k is dropped from
summation):

S(r) =
∞∑

−r 6=k=0

(2k
k )2

(k + r)16k
. (6)

A few particular cases of (6) appeared in the handbooks by Adams and Hippisley [1]
and by Hansen [7]:

S(−1) = − 2G+1
π + log 2− 1

2

S(−2) = − 18G+13
16π + 9

16 log 2− 21
64 .

In the present paper, using contour integration technique, we will show that for
negative integer r sum (6) is solvable in closed form by

S(r) = −S(1
2 − r) + 4

16−r

(−2r

−r

)2(
H−r −H−2r + log 2

)

where Hn are the harmonic numbers Hn =
∑n

k=1
1
k .

As a consequence of this result, in Section 3 we derive the new representation for
Saalschẗzian 4F3(1) series with a special set of the parameters

(n− 1
2 )4F3(1, 1, n + 1

2 , n + 1
2 ; 2, n + 1, n + 1; 1)

= 4n2

2n−1 (Hn−1 + log 4)− 16n

( 2n
n )2 3F2(1

2 , 1
2 , n− 1

2 ; 1, n + 1
2 ; 1).

2. Evaluation

We consider two cases, namely when r is positive and negative. We denote

S+(r) = S(r) (<(r) > 0)

S−(r) = S(r) (<(r) ≤ 0).

Let r be a positive integer. We transform series (1) to a definite integral involving
complete elliptic integrals. Multiplying the summand by xk+r and differentiating it
with respect to x, we get

g(r, x) = xr−1
∞∑

k=0

(2k

k

)2 xk

16k
=

2
π

xr−1K(x) (7)

for |x| < 1 where K(x) is the elliptic integral. Integrating both sides of (7), we arrive
at

S+(r) =
∫ 1

0

g(r, x) dx = 2
π

∫ 1

0

xr−1K(x) dx (<(r) > 0). (8)
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In the next subsections we evaluate S+(r) by first developing a recurrent equation
for S+(r) and then solving it by iteration. The result depends on the disparity of r.

Now let us consider the second case when r is a negative integer. We split the
series S(r) into two sums as

S−(r) =
∞∑

−r 6=k=0

( 2k
k )2

(k + r)16k
=

(−r−1∑

k=0

+
∞∑

k=−r+1

)
( 2k

k )2

(k + r)16k
.

Leaving the first sum unchanged, and converting the second sum into an elliptic
integral (by applying the same reasoning as above), we obtain

S−(r) =
−r−1∑

k=0

(2k
k )2

(k + r)16k
+

∫ 1

0

xr−1

(
2
π
K(x)−

−r∑

k=0

(2k

k

)2 xk

16k

)
dx (9)

for <(r) ≤ 0. In Subsection 2.3, using contour integration technique, we establish a
functional relation transforming S−(r) into S+(r).

2.1 S+(r) for r a non-negative integer. Consider the system of indefinite inte-
grals

kp(x) =
∫

xpK(x) dx

ep(x) =
∫

xpE(x) dx





(10)

where the parameter p is a positive integer or zero, and E(x) and K(x) are complete
elliptic integrals. Using integration by parts, the above integral system can be reduced
to the system of coupled recurrent equations

kp(x) = xpk0(x)− 2p
(
kp(x)− kp−1(x) + ep−1(x)

)

ep(x) = xpe0(x)− 2
3p

(
ep−1(x) + ep(x) + kp(x)− kp−1(x)

)
}

with initial conditions

2k0(x) = E(x) + (x− 1)K(x)
3
2e0(x) = (x + 1)E(x) + (x− 1)K(x).

Eliminating ep−1(x) from the first equation, and kp−1(x) and kp(x) from the second,
the system is simplified to

kp(x) =
4p2

(2p + 1)2
kp−1(x) +

2xpE(x) + 2(2p + 1)(x− 1)xpK(x)
(2p + 1)2

ep(x) =
4p2

(2p + 1)(2p + 3)
ep−1(x)

+
2
(
1− 2p + (2p + 1)x

)
xpE(x) + 2(x− 1)xpK(x)

(2p + 1)(2p + 3)





.
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Now we compute the values of kp(x) and ep(x) at the limiting points x = 0 and
x = 1. We get two recurrent equations

kp(0) = 0 (p ≥ 0)

k0(1) = 2

kp(1) =
4p2

(2p + 1)2
kp−1(1) +

2
(2p + 1)2

(p ≥ 1)





(11)

and
ep(0) = 0 (p ≥ 0)

ep(1) =
4p2

(2p + 1)(2p + 3)
ep−1(1) +

4
(2p + 1)(2p + 3)

(p ≥ 1).

In view of formulas (8) and (11) we conclude that

S+(r) = 2
π

(
kr−1(1)− kr−1(0)

)
= 2

π kr−1(1)

where S+(r) satisfies the recurrence relation

S+(1) = 4
π

(r + 1
2 )2S+(r + 1)− r2S+(r) = 1

π (r ≥ 1)

}
. (12)

This recurrence equation can be solved by iteration (see Section 4 for details).
We have proven

Proposition 2.1. Let n be a positive even. Then S(n) defined by (1) evaluates
to

S(n) =
16n

πn2( 2n
n )2

n−1∑

k=0

(2k

k

)2 1
16k

.

2.2 S+(r) for r a positive half-integer. Consider slightly different (than (10))
system of indefinite integrals

k̂p(x) =
∫

xp− 1
2 K(x) dx

êp(x) =
∫

xp− 1
2 E(x) dx





(13)

where the parameter p is a positive integer or zero, and E(x) and K(x) are complete
elliptic integrals. Using integration by parts, we transform (13) to the system of
recurrent equations

p2k̂r(x) =
(
p− 1

2

)2
k̂p−1(x) + 1

2xp− 1
2
(
E(x) + 2p(x− 1)K(x)

)

p(p + 1)êr(x) =
(
p− 1

2

)2
êp−1(x) + xp− 1

2
(
(p(x− 1) + 1)E(x) + x−1

2 K(x)
) (14)
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where
k̂0(x) = π

√
x 3F2

(
1
2 , 1

2 , 1
2 ; 1, 3

2 ;x
)

ê0(x) = π
√

x3F2

(− 1
2 , 1

2 , 1
2 ; 1, 3

2 ; x
)

and 3F2(x) is the hypergeometric function. By computing the limits at x = 0 and
x = 1, system (14) yields

k̂p(0) = 0 (p ≥ 0)

k̂0(1) = 4G

k̂p(1) =
(p− 1

2 )2

p2
k̂p−1(1) +

1
2p2

(p ≥ 1)

where G is Catalan’s constant. Therefore, S+(p+ 1
2 ) = 2

π k̂p(1) (p ≥ 0). The sequence
S+(r), where r is a positive half integer, satisfies the same recurrence equation (12),
but with a different initial condition

S+( 1
2 ) = 8G

π

(r + 1
2 )2S+(r + 1)− r2S+(r) = 1

π .
(15)

Solving this recurrence by iteration (see Section 4 for details), we have proven

Proposition 2.2. Let n be a positive integer. Then S(n + 1
2 ) defined by (1)

evaluates to

S(n + 1
2 ) =

4
π

( 2n
n )2

16n

(
2G +

n−1∑

k=0

16k

( 2k
k )2(2k + 1)2

)
. (16)

2.3 S−(r) for r a negative integer. Recall formula (9). Observing that the
finite sum inside of the integrand

∑−r
k=0(

2k
k )2 xk

16k is the Taylor expansion of 2
πK(x)

at x = 0, we pull that sum out of integration, by understanding integration in the
Hadamard sense (finite part). Computing limits at the end points and obliterating
logarithmic and polynomial order singularities, we get

S−(r) = f.p.
2
π

∫ 1

0

x−r−1K(x) dx.

Comparing this integral with formula (8) immediately implies that

S−(r) = S+(r) + F (r)

where F (r) is an unknown function. The necessity of F becomes obvious once we
recall that in the original series we skip the term k = −r, when r is a negative integer.
In order to find F , we derive a contour integral representation for the sum S(r) as

S(r) = 1
2πi

∫ γ+i∞

γ−i∞

Γ(s)Γ( 1
2 − s)

Γ(1− s)Γ(1
2 + s)

ds

r − s
. (17)



A Certain Series 823

The contour (γ − i∞, γ + i∞) is a straight line lying in the strip 0 < γ = <(s) < 1
2 .

In fact, evaluating integral (17) by residues at single poles s = 0,−1,−2, ..., lying to
the left of the contour, we arrive at series (1). However, if r is a negative integer, the
integrand in (17) has a double pole at s = r. According to the definition of S−(r)
we must skip this pole. Thus, we have

S−(r) = 1
2πi

∫ γ+i∞

γ−i∞

Γ(s)Γ( 1
2 − s)

Γ(1− s)Γ(1
2 + s)

ds

r − s

− ress=r

( Γ(s)Γ( 1
2 − s)

Γ(1− s)Γ( 1
2 + s)

1
r − s

)
.

As a matter of fact, the contour integral herein can also be computed via residues at
the poles s = 1

2 , 3
2 , ..., lying to the right of the contour. Evaluating the integral via

those poles allows us to avoid the double pole at s = r. This yields

1
2πi

∫ γ+i∞

γ−i∞

Γ(s)Γ( 1
2 − s)

Γ(1− s)Γ( 1
2 + s)

ds

r − s
= −

∞∑

k=0

(2k)!2

k!4(k − r + 1
2 )16k

= −S+( 1
2 − r).

Finally, computing the residue

ress=r

( Γ(s)Γ( 1
2 − s)

Γ(1− s)Γ( 1
2 + s)

1
r − s

)
=

4
16−r

(−2r

−r

)2

(H−2r −H−r − log 2)

we establish

Proposition 2.3. Let r be a negative integer or zero. Then

S−(r) = −S+( 1
2 − r)− 4

16−r

(−2r
−r

)2(H−r −H−2r + log 2) (18)

where S+( 1
2 − r) is defined in Proposition 2.2.

2.4 S−(r) for r a negative half integer. This case immediately follows from the
previous subsection, taking into consideration that the integrand in (17) has only a
single pole at s = r.

Proposition 2.4. Let n be a positive integer. Then S−(−n + 1
2 ) = −S+(n).
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3. Special cases of hypergeometric functions

In this section we derive a particular case of the Saalschützian hypergeometric series
4F3(1). We begin by recalling that the hypergeometric series

p+1Fp

(
a1, . . . , ap+1; b1, . . . , bp; 1

)

is called Saalschützian if the parameters ai and bi satisfy the relation

1 + a1 + . . . + ap+1 = b1 + . . . + bp.

Proposition 3.1. Let n be a positive integer. Then

(2n− 1)2

8n2 4F3

(
1, 1, n + 1

2 , n + 1
2 ; 2, n + 1, n + 1; 1

)

= −4G

π
+ Hn−1 + log 4− 2

π

n−2∑

k=0

16k

(2k + 1)2( 2k
k )2

(19)

where G is Catalan’s constant and Hn are harmonic numbers.

Proof. In view of formula (18) with r = −n (n ∈ N0) we have

S−(−n) = −S+(n + 1
2 )− 4

16n

(
2n
n

)2(Hn −H2n + log 2) (20)

where S+(n + 1
2 ) is defined in (16). On the other hand, if we evaluate the original

sum (6) by means of the hypergeometric function, we obtain

S−(−n) =
n−1∑

k=0

( 2k
k )2

(k − n)16k

+
( 2n+2

n+1 )2

16n+1 4F3

(
1, 1, n + 3

2 , n + 3
2 ; 2, n + 2, n + 2; 1

)
.

(21)

The finite sum in the right-hand side herein can be evaluated in terms of harmonic
numbers (see Proposition 4.2) as

16n
n−1∑

k=0

( 2k
k )2

16k(n− k)
= 4

(2n

n

)2 n−1∑

k=0

1
2k + 1

= 2
(2n

n

)2

(2H2n−1 −Hn−1).

Combining formulas (20) and (21), and replacing n by n− 1, we arrive at (19)

Remark 3.2. By using different ideas, formula (19) was first proved in [10].
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4. Addendum

In this section we provide a solution to equations (12) and (15).

Proposition 4.1. The solution to the recurrence relation

x1 = b

(2n + 1)2xn+1 − (2n)2xn = a (n ≥ 1)

}

is

xn =
16n

4n2( 2n
n )2

(
b + a

n−1∑

k=1

( 2k
k )2

16k

)
.

Proof. We solve the recurrence by iteration. Iterating it n− 1 times, we get

xn+1 = b

n−1∏

j=0

(2n− 2j)2

(2n− 2j + 1)2
+ a

n−1∑

k=0

∏k−1
j=0 (2n− 2j)2

∏k
j=0(2n + 1− 2j)2

. (22)

In pretty straightforward manner the finite products herein can be converted to the
binomial coefficients by using Euler’s product representation for the Gamma function.
We obtain

n−1∏

j=0

(2n− 2j)
(2n− 2j + 1)

=
4n+1

2(n + 1)( 2n+2
n+1 )

and
n−1∑

k=0

∏k−1
j=0 (2n− 2j)2

∏k
j=0(2n− 2j + 1)2

=
16n+1

4(n + 1)2( 2n+2
n+1 )2

n∑

k=1

( 2k
k )2

16k
.

Substituting them into (22) yields the desired result

Proposition 4.2. Let n be a positive integer. Then

16n

4( 2n
n )2

n−1∑

k=0

( 2k
k )2

16k(n− k)
=

n−1∑

k=0

1
2k + 1

. (23)

Proof. We rearrange the terms in the sum in the left-hand side of (23) by sum-
ming them in the opposite order from n− 1 to 0. We get

n−1∑

k=0

( 2k
k )2

(n− k)16k
=

n∑

k=1

( 2n−2k
n−k )2

k 16n−k
.

Since the summand evaluates to zero for k > n, we extend the range of summation
to infinity. Using the definition of the hypergeometric series, we rewrite that sum in
terms of 4F3 as

16n

4( 2n
n )2

∞∑

k=1

( 2n−2k
n−k )2

k 16n−k
=

n2

(2n− 1)2 4F3

(
1, 1, 1− n, 1− n; 2, 3

2 − n, 3
2 − n; 1

)
.
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The latter further simplifies to polygamma functions by [13: Formula 7.5.3.43] as

2n2

(2n− 1)2 4F3

(
1, 1, 1− n, 1− n; 2, 3

2 − n, 3
2 − n; 1

)
= ψ(n + 1

2 )− ψ( 1
2 )

=
n−1∑

k=0

2
2k + 1

and the statement is proven
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