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On Summands
of Closed Bounded Convex Sets

J. Grzybowski, H. Przybycień and R. Urbański

Abstract. In this paper properties of the Minkowski-Pontryagin subtraction of closed
bounded convex sets are investigated (see Propositions 1 - 3) and four criteria for sum-
mands of closed bounded convex sets are given (see Theorems 1 - 4).
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Let X = (X, τ) be a Hausdorff topological vector space, and let B(X) (resp. K(X))
be the family of all non-empty, closed and bounded (resp. compact) convex subsets
of X. If A,B ∈ B(X), then let A+̇B = A + B, where C denotes the closure of C
and C = A + B is the usual algebraic Minkowski sum of A and B.

The family B(X) plays an important role in multi-valued analysis. The algebraic
structure of B(X) is far from being completely clarified. The family B(X) satisfies
the order cancellation law, i.e. for A,B, C ∈ B(X) the inclusion A+̇B ⊂ B+̇C
implies A ⊂ C (see [7]). The commutative semigroup (B(X), +̇) satisfies the law of
cancellation.

The lattice of quotient classes in B(X)×B(X) (or K(X)×K(X)) forms a vector
space that was studied by R̊adström and Hörmander. The lattice found an important
application in quasidifferential calculus.

For A ∈ B(X), by ext(A) we denote the set of A’s extremal points and by
exp(A) the set of its exposed points. A set B ∈ B(X) is called a summand of
A ∈ B(X) if there exists C ∈ B(X) such that B+̇C = A. If A, B ∈ B(X), then let
A−̇B = {x ∈ X : x+B ⊂ A} be the Minkowski-Pontryagin subtraction of A and B.

Summands of compact convex sets were studied by Schneider, Shephard, Weil
and others (see, e.g., [5, 6, 10]). These summands found applications in the study
of minimal representatives of quotient classes in B(X)2 and K(X)2. The Minkowski-
Pontryagin subtraction was investigated for compact convex sets of finite-dimensional
spaces.
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Lemma 1. Let X be a topological vector space and let A,B ∈ B(X). Then

A−̇B =
⋂

b∈B

(A− b).

Proof. The proof is easy and we omit it

From Lemma 1 it follows that if A,B ∈ B(X) and A−̇B 6= ∅, then A−̇B ∈ B(X).
Indeed, A−̇B is an intersection of members of B(X).

Now, we prove several algebraic properties of the Minkowski-Pontryagin subtrac-
tion.

Proposition 1. Let X be a Hausdorff topological vector space and let A,B, C ∈
B(X) and 0 < α, β ∈ R with α ≥ β. Then:

(i) If A−̇B 6= ∅, then (A−̇B)+̇B ⊂ A.
(ii) If A = B+̇C, then C = A−̇B.
(iii) (A−̇B)−̇C = A−̇(B+̇C).
(iv) (A+̇C)−̇(B+̇C) = A−̇B.
(v) If B−̇C 6= ∅, then (A+̇C)−̇B ⊂ A−̇(B−̇C).
(vi) If B−̇C 6= ∅, then (A−̇B)+̇C ⊂ A−̇(B−̇C).
(vii) (A−̇B)+̇(B−̇C) ⊂ A−̇C.
(viii) α(A−̇B) = αA−̇αB.
(ix) αA−̇βA = (α− β)A.

Proof. Assertion (i) follows immediately from the definition of A−̇B.
Assertion (ii): Let A = B+̇C. From (i) we have (A−̇B)+̇B ⊂ A = B+̇C. Hence

by the order cancellation law A−̇B ⊂ C. On the other hand, for every c ∈ C we have
c + B ⊂ C + B ⊂ C+̇B = A, hence c ∈ A−̇B. Therefore, C ⊂ A−̇B.

Assertion (iii): Let x ∈ (A−̇B)−̇C. Then x + C ⊂ A−̇B. Hence, by (i), x +
C+̇B ⊂ (A−̇B)+̇B ⊂ A. Therefore, x ∈ A−̇(B+̇C) and (A−̇B)−̇C ⊂ A−̇(B+̇C).
To prove the inverse inclusion, take any x ∈ A−̇(B+̇C). Then x + B+̇C ⊂ A and
(x + B+̇C)−̇B ⊂ A−̇B. But (x + B+̇C)−̇B = [(x + C)+̇B]−̇B = x + C by (ii).
Therefore, x + C ⊂ A−̇B and x ∈ (A−̇B)−̇C.

Assertion (iv): Applying (iii) and (ii) we have

(A+̇C)−̇(B+̇C) = [(A+̇C)−̇C]−̇B = A−̇B.

Assertion (v): Let x ∈ (A+̇C)−̇B. Then x + B ⊂ A+̇C. Hence

(x + B)−̇C ⊂ (A+̇C)−̇C = A.

But
(x + B)−̇C = {y : y + C ⊂ x + B}

= {y : y − x + C ⊂ B}
= {v + x : v + C ⊂ B}
= x + {v : v + C ⊂ B}
= x + B−̇C.
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Thus x + (B−̇C) ⊂ A and x ∈ A−̇(B−̇C).
Assertion (vi): Let x ∈ A−̇B and y ∈ C. Then

x + y + (B−̇C) ⊂ x + C + (B−̇C) ⊂ x + C+̇(B−̇C) ⊂ x + B ⊂ A.

Hence (A−̇B) + C ⊂ A−̇(B−̇C). Since A−̇(B−̇C) is closed, then (A−̇B)+̇C ⊂
A−̇(B−̇C).

Assertion (vii): Let x ∈ A−̇B and y ∈ B−̇C. Then

x + y + C ⊂ x + (B−̇C)+̇C ⊂ x + B ⊂ A.

Hence A−̇B + B−̇C ⊂ A−̇C and, consequently, also (A−̇B)+̇(B−̇C) ⊂ A−̇C.
Assertion (viii): Let x ∈ α(A−̇B). Then x

α ∈ A−̇B. Thus x
α + B ⊂ A and

x + αB ⊂ αA. Therefore, x ∈ αA−̇αB. On other hand, if x ∈ αA−̇αB, then
x + αB ⊂ αA and x

α + B ⊂ A. Thus x
α ∈ A−̇B. Therefore, x ∈ α(A−̇B).

Assertion (ix): Since α ≥ β, we have αA = βA+̇(α− β)A. Therefore,

αA−̇βA = [βA+̇(α− β)A]−̇βA = (α− β)A.

Thus the theorem is proved

Corollary 1. Let X be a Hausdorff topological vector space and A,B ∈ B(X).
Then B is a summand of A if and only if A ⊂ (A−̇B)+̇B.

Proof. Necessity: Let A = B+̇C for some C ∈ B(X). Then, by Proposition
1/(ii), C = A−̇B, thus A ⊂ B+̇(A−̇B). Sufficiency: It follows immediately from
Proposition 1/(i)

Similarly as in [3] (see Theorem 3) we can prove the following lemma.

Lemma 2. Let A,B, F ∈ B(X) and A∪B ∈ B(X). If A∩B ⊂ (A+̇F )∪(B+̇F ),
then A ∩B ⊂ A+̇F or A ∩B ⊂ B+̇F .

From Lemma 2 we get the following equality for Minkowski-Pontryagin subtrac-
tion:

Proposition 2. Let A,B, F ∈ B(X). If A ∪B is convex, then

[
(A+̇F ) ∪ (B+̇F )

]−̇A ∩B =
[
(A+̇F )−̇A ∩B

] ∪ [
(B+̇F )−̇A ∩B

]
.

Proposition 3. Let X be a Hausdorff topological vector space and let A,B ∈
B(X). The inclusion A ⊂ (A−̇B)+B holds if and only if for every a ∈ A there exists
b ∈ B such that B − b ⊂ A− a.

Proof. Necessity: Let A ⊂ (A−̇B) + B and take any a ∈ A. There exists
x ∈ A−̇B and b ∈ B such that a = x + b. Since x ∈ A−̇B, then x + B ⊂ A and we
obtain B − b ⊂ A− a.

Sufficiency: Take any a ∈ A. There exists b ∈ B such that B − b ⊂ A− a, hence
a− b ∈ A−̇B. Therefore, a = a− b + b ∈ (A−̇B) + B. Thus A ⊂ (A−̇B) + B
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Theorem 1. Let X be a Hausdorff topological vector space and let A,B ∈ B(X).
Let U denote a basis of neighbourhoods of 0 in X. Then B is a summand of A if and
only if the condition

∀a∈A ∀V ∈U ∃b∈B ∃v∈V : B − b− v ⊂ A− a

holds true.

Proof. Necessity: Suppose that A ⊂ (A−̇B)+̇B. Then

A ⊂ (A−̇B)+̇B =
⋂

V ∈U

[
(A−̇B) + B + V

]
,

hence A ⊂ (A−̇B) + B + V for every V ∈ U . Take any a ∈ A and V ∈ U . Then
from the above inclusion it follows that there exist x ∈ A−̇B, b ∈ B, v ∈ V such
that a = x + b + v, hence x = a − b − v. Since x ∈ A−̇B, x + B ⊂ A. Therefore,
B − b− v ⊂ A− a.

Sufficiency: Take any a ∈ A and V ∈ U . Then there exist b ∈ B and v ∈ V such
that a− b− v + B ⊂ A and a− b− v ∈ A−̇B. Thus

a = a− b− v + b + v ∈ (A−̇B) + B + V

for every V ∈ U . Hence

a ∈
⋂

V ∈U

[
(A−̇B) + B + V

]
= (A−̇B)+̇B.

Therefore, A ⊂ (A−̇B)+̇B and B is a summand of A

Remark. From Proposition 3 and Theorem 1 it follows that a summand of
A ∈ B(X) does not need to satisfy the condition contained in Proposition 3. However,
it has to satisfy this condition if we replace B(X) by K(X).

Indeed, if for example X = c0 (the usual space of sequences coverging to zero),
then there exist B, C ∈ B(X) such that B + C 6= B+̇C (see [2]). Let A = B+̇C.
Then B is a summand of A, and C = A−̇B. Suppose that B satisfy the condition
contained in Proposiotion 3. Then

B+̇C = B+̇(A−̇B) = A ⊂ B + A−̇B = B + C.

This is imposible because B + C 6= B+̇C.

Now we give some criteria for being summand in terms of external and exposed
points. We start with three short lemmas.

Lemma 3. Let X be a vector space and let a + b ∈ ext(A + B) with a ∈ A and
b ∈ B. Then a ∈ ext(A) and b ∈ ext(B).

Proof. Suppose there exist a1, a2 ∈ A such that a = αa1 +βa2 for α, β > 0 with
α + β = 1. Then a + b = αa1 + βa2 + b = α(a1 + b) + β(a2 + b), hence a1 = a and
a2 = a. Therefore, a ∈ ext(A). In the same way we can prove that b ∈ ext(B)
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Lemma 4. Let X be a vector space and let a + b ∈ ext(A + B) with a ∈ A and
b ∈ B, where A and B are convex subsets of X. If for some a1 ∈ A and b1 ∈ B the
equality a + b = a1 + b1 holds true, then a = a1 and b = b1.

Proof. Let α, β > 0 with α + β = 1. Then, by assumption,

a + b = α(a + b) + β(a1 + b1) = (αa + βa1) + (αb + βb1).

Since A and B are convex, then αa + βa1 ∈ A and αb + βb1 ∈ B. Hence, by Lemma
3, αa + βa1 ∈ ext(A) and αb + βb1 ∈ ext(B). Thus a = a1 and b = b1

Lemma 5. Let X be a Hausdorff topological vector space and let A,B ∈ B(X).
If a + b ∈ ext(A + B) with a ∈ A, b ∈ B and a− b ∈ A−̇B, then a− b ∈ ext(A−̇B).

Proof. Suppose that a − b = αx + βy, where x, y ∈ A−̇B and α, β > 0 with
α+β = 1. Since x+B ⊂ A and y+B ⊂ A, there exist a1, a2 ∈ A such that x+b = a1

and y + b = a2. Hence

αa1 + βa2 = αx + βy + b = a− b + b = a.

But from Lemma 3 we have that a ∈ ext(A). Thus a = a1 = a2. Therefore, x = y
and a− b ∈ ext(A−̇B)

Theorem 2. Let X be a locally convex Hausdorff topological vector space and
let A,B ∈ K(X). Then B is a summand of A if and only if for every sum a + b ∈
ext(A + B) with a ∈ A and b ∈ B we have a− b ∈ ext(A−̇B).

Proof. Necessity: Let us assume that B is a summand of A. Since A and B
are compact, then A = B + (A−̇B). Now by Proposition 3 there exists b0 ∈ B such
that B − b0 ⊂ A − a. Hence there exists a0 ∈ A such that b − b0 = a0 − a. Hence
a+ b = a0 + b0. Thus, by Lemma 4, a = a0 and b = b0. Therefore, a− b ∈ A−̇B and,
by Lemma 5, a− b ∈ ext(A−̇B).

Sufficiency: Suppose that for every sum a+b ∈ ext(A+B) with a ∈ A and b ∈ B
we have a− b ∈ ext(A−̇B). Then

a + b = a− b + b + b ∈ (A−̇B) + B + B.

Hence
ext(A + B) ⊂ (A−̇B) + B + B.

Thus, by the Krein-Milman theorem,

A + B = conv(ext(A + B)) ⊂ conv((A−̇B) + B + B) = (A−̇B) + B + B.

Now, by the order cancellation law, A ⊂ (A−̇B) + B. Thus B is a summand of A

Corollary 2. Let X be a locally convex Hausdorff topological vector space. A
set B ∈ K(X) is summand of a set A ∈ K(X) if and only if for every sum a + b ∈
ext(A + B) with a ∈ A and b ∈ B we have a− b ∈ A−̇B.

Proof. Necessity follows immediately from Theorem 2, sufficiency from Lemma
5 and Theorem 2
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Theorem 3. Let X be a real Banach space and let A,B ∈ K(X). Then B is a
summand of A if and only if for every sum a+ b ∈ exp(A+B) with a ∈ A and b ∈ B
we have a− b ∈ A−̇B.

Proof. Since exp(A + B) ⊂ ext(A + B), necessity follows from Corollary 2. As
to sufficiency, analogously as in Theorem 2 we have

exp(A + B) ⊂ ext(A + B) ⊂ (A−̇B) + B + B.

Now, by the modification of Klee (see [4]) of the Krein-Milman theorem,

A + B ⊂ conv(exp(A + B)) ⊂ conv((A−̇B) + B + B) ⊂ (A−̇B) + B + B.

Thus, by the order cancellation law, A ⊂ (A−̇B) + B

Remark. If (X, τ) is a reflexive locally convex topological vector space, then
B((X, τ)) ⊂ K((X, τ∗)) where τ∗ denotes the weak topology in X. Thus, by the
Krein-Milman theorem, A ⊂ conv∗(ext(A)) for A ∈ B((X, τ)), where conv∗(A)
denotes the closed convex hull of A in (X, τ∗). But it is easy to observe that
conv(A) = conv∗(A). Therefore, A = conv(ext(A)) for A ∈ B((X, τ)).

Applying this observation and Theorem 2 we get the following

Theorem 4. Let X be a reflexive locally convex Hausdorff topological vector
space and let A,B ∈ B(X). Then B is summand of A if and only if for every sum
a + b ∈ ext(A + B) with a ∈ A and b ∈ B we have a− b ∈ A−̇B.
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