On Summands of Closed Bounded Convex Sets

J. Grzybowski, H. Przybycień and R. Urbański

Abstract. In this paper properties of the Minkowski-Pontryagin subtraction of closed bounded convex sets are investigated (see Propositions 1 - 3) and four criteria for summands of closed bounded convex sets are given (see Theorems 1 - 4).

Keywords: Minkowski sum, summands of convex sets

AMS subject classification: 52A07, 26A27

Let $X = (X, \tau)$ be a Hausdorff topological vector space, and let $\mathcal{B}(X)$ (resp. $\mathcal{K}(X)$) be the family of all non-empty, closed and bounded (resp. compact) convex subsets of X. If $A, B \in \mathcal{B}(X)$, then let $A \dot{+} B = \overline{A + B}$, where \overline{C} denotes the closure of C and $C = A + B$ is the usual algebraic Minkowski sum of A and B.

The family $\mathcal{B}(X)$ plays an important role in multi-valued analysis. The algebraic structure of $\mathcal{B}(X)$ is far from being completely clarified. The family $\mathcal{B}(X)$ satisfies the order cancellation law, i.e. for $A, B, C \in \mathcal{B}(X)$ the inclusion $A+B \subset B+C$ implies $A \subset C$ (see [7]). The commutative semigroup $(\mathcal{B}(X), +)$ satisfies the law of cancellation.

The lattice of quotient classes in $\mathcal{B}(X) \times \mathcal{B}(X)$ (or $\mathcal{K}(X) \times \mathcal{K}(X)$) forms a vector space that was studied by Rådström and Hörmander. The lattice found an important application in quasidifferential calculus.

For $A \in \mathcal{B}(X)$, by ext(A) we denote the set of A's extremal points and by $\exp(A)$ the set of its exposed points. A set $B \in \mathcal{B}(X)$ is called a summand of $A \in \mathcal{B}(X)$ if there exists $C \in \mathcal{B}(X)$ such that $B \dot{+} C = A$. If $A, B \in \mathcal{B}(X)$, then let $A-B = \{x \in X : x + B \subset A\}$ be the Minkowski-Pontryagin subtraction of A and B.

Summands of compact convex sets were studied by Schneider, Shephard, Weil and others (see, e.g., [5, 6, 10]). These summands found applications in the study of minimal representatives of quotient classes in $\mathcal{B}(X)^2$ and $\mathcal{K}(X)^2$. The Minkowski-Pontryagin subtraction was investigated for compact convex sets of finite-dimensional spaces.

All authors: Adam Mickiewicz Univ., Fac. Math. & Comp. Sci., Umultowska 87, PL – 61-614 Pozna´n, Poland; jgrz@amu.edu.pl, hubert@amu.edu.pl, rich@amu.edu.pl

Lemma 1. Let X be a topological vector space and let $A, B \in \mathcal{B}(X)$. Then

$$
A \dot{-} B = \bigcap_{b \in B} (A - b).
$$

Proof. The proof is easy and we omit it

From Lemma 1 it follows that if $A, B \in \mathcal{B}(X)$ and $A - B \neq \emptyset$, then $A - B \in \mathcal{B}(X)$. Indeed, $\overline{A}-\overline{B}$ is an intersection of members of $\mathcal{B}(X)$.

Now, we prove several algebraic properties of the Minkowski-Pontryagin subtraction.

Proposition 1. Let X be a Hausdorff topological vector space and let $A, B, C \in$ $\mathcal{B}(X)$ and $0 < \alpha, \beta \in \mathbb{R}$ with $\alpha > \beta$. Then:

- (i) If $A-B \neq \emptyset$, then $(A-B)+B \subset A$.
- (ii) If $A = B \dot{+} C$, then $C = A \dot{=} B$.
- (iii) $(A-B)-C = A-(B+C)$.
- (iv) $(A\dot{+}C)\dot{-}(B\dot{+}C) = A\dot{-}B$.
- (v) If $B-C \neq \emptyset$, then $(A+C)-B \subset A-(B-C)$.
- (vi) If $B-C \neq \emptyset$, then $(A-B)+C \subset A-(B-C)$.
- (vii) $(A-B)+(B-C) \subset A-C$.
- (viii) $\alpha(\vec{A-B}) = \alpha \vec{A-\alpha B}$.
- (ix) $\alpha A-\beta A=(\alpha-\beta)A$.

Proof. Assertion (i) follows immediately from the definition of $A - B$.

Assertion (ii): Let $A = B + C$. From (i) we have $(A-B)+B \subset A = B+C$. Hence by the order cancellation law $\overline{A}-\overline{B}\subset C$. On the other hand, for every $c\in C$ we have $c + B \subset C + B \subset C + B = A$, hence $c \in A - B$. Therefore, $C \subset A - B$.

Assertion (iii): Let $x \in (A-B)-C$. Then $x + C \subset A-B$. Hence, by (i), $x + C$ $C+B \subset (A-B)+B \subset A$. Therefore, $x \in A-(B+C)$ and $(A-B)-C \subset A-(B+C)$. To prove the inverse inclusion, take any $x \in A-(B+C)$. Then $x + B+C \subset A$ and $(x + B + C) - B \subset A - B$. But $(x + B + C) - B = [(x + C) + B] - B = x + C$ by (ii). Therefore, $x + C \subset A-B$ and $x \in (A-B)-C$.

Assertion (iv): Applying (iii) and (ii) we have

$$
(A \dot{+} C) \dot{-} (B \dot{+} C) = [(A \dot{+} C) \dot{-} C] \dot{-} B = A \dot{-} B.
$$

Assertion (v): Let $x \in (A \dot{+} C) - B$. Then $x + B \subset A \dot{+} C$. Hence

$$
(x+B)\dot{-}C \subset (A\dot{+}C)\dot{-}C = A.
$$

But

$$
(x + B) \dot{-} C = \{y : y + C \subset x + B\} \n= \{y : y - x + C \subset B\} \n= \{v + x : v + C \subset B\} \n= x + \{v : v + C \subset B\} \n= x + B \dot{-} C.
$$

Thus $x + (B-C) \subset A$ and $x \in A-(B-C)$.

Assertion (vi): Let $x \in A \dot{-} B$ and $y \in C$. Then

$$
x + y + (B-C) \subset x + C + (B-C) \subset x + C + (B-C) \subset x + B \subset A.
$$

Hence $(A-B)+C \subset A-(B-C)$. Since $A-(B-C)$ is closed, then $(A-B)+C \subset$ $A-\left(B-C\right).$

Assertion (vii): Let $x \in A-B$ and $y \in B-C$. Then

$$
x + y + C \subset x + (B - C) + C \subset x + B \subset A.
$$

Hence $\vec{A}-\vec{B}+\vec{B}-\vec{C} \subset \vec{A}-\vec{C}$ and, consequently, also $(\vec{A}-\vec{B})+(\vec{B}-\vec{C}) \subset \vec{A}-\vec{C}$.

Assertion (viii): Let $x \in \alpha(A-B)$. Then $\frac{x}{\alpha} \in A-B$. Thus $\frac{x}{\alpha} + B \subset A$ and $x + \alpha B \subset \alpha A$. Therefore, $x \in \alpha A - \alpha B$. On other hand, if $x \in \alpha A - \alpha B$, then $x + \alpha B \subset \alpha A$ and $\frac{x}{\alpha} + B \subset A$. Thus $\frac{x}{\alpha} \in A \dot{-} B$. Therefore, $x \in \alpha (A \dot{-} B)$.

Assertion (ix): Since $\alpha \ge \beta$, we have $\alpha A = \beta A + (\alpha - \beta)A$. Therefore,

$$
\alpha A - \beta A = [\beta A + (\alpha - \beta)A] - \beta A = (\alpha - \beta)A.
$$

Thus the theorem is proved \blacksquare

Corollary 1. Let X be a Hausdorff topological vector space and $A, B \in \mathcal{B}(X)$. Then B is a summand of A if and only if $A \subset (A-B)+B$.

Proof. Necessity: Let $A = B \dot{+} C$ for some $C \in \mathcal{B}(X)$. Then, by Proposition $1/(ii)$, $C = \vec{A}-\vec{B}$, thus $\vec{A} \subset \vec{B}+(A-\vec{B})$. Sufficiency: It follows immediately from Proposition $1/(i)$

Similarly as in [3] (see Theorem 3) we can prove the following lemma.

Lemma 2. Let $A, B, F \in \mathcal{B}(X)$ and $A \cup B \in \mathcal{B}(X)$. If $A \cap B \subset (A \dot{+} F) \cup (B \dot{+} F)$, then $A \cap B \subset A \dot{+} F$ or $A \cap B \subset B \dot{+} F$.

From Lemma 2 we get the following equality for Minkowski-Pontryagin subtraction:

Proposition 2. Let $A, B, F \in \mathcal{B}(X)$. If $A \cup B$ is convex, then

$$
[(A \dot{+} F) \cup (B \dot{+} F)] \dot{-} A \cap B = [(A \dot{+} F) \dot{-} A \cap B] \cup [(B \dot{+} F) \dot{-} A \cap B].
$$

Proposition 3. Let X be a Hausdorff topological vector space and let $A, B \in$ $\mathcal{B}(X)$. The inclusion $A \subset (A-B)+B$ holds if and only if for every $a \in A$ there exists $b \in B$ such that $B - b \subset A - a$.

Proof. Necessity: Let $A \subset (A-B) + B$ and take any $a \in A$. There exists $x \in A-B$ and $b \in B$ such that $a = x + b$. Since $x \in A-B$, then $x + B \subset A$ and we obtain $B - b \subset A - a$.

Sufficiency: Take any $a \in A$. There exists $b \in B$ such that $B - b \subset A - a$, hence $a - b \in A - B$. Therefore, $a = a - b + b \in (A - B) + B$. Thus $A \subset (A - B) + B$

Theorem 1. Let X be a Hausdorff topological vector space and let $A, B \in \mathcal{B}(X)$. Let U denote a basis of neighbourhoods of 0 in X. Then B is a summand of A if and only if the condition

$$
\forall_{a \in A} \ \forall_{V \in \mathcal{U}} \ \exists_{b \in B} \ \exists_{v \in V} : \ B - b - v \subset A - a
$$

holds true.

Proof. Necessity: Suppose that $A \subset (A-B)+B$. Then

$$
A \subset (A-B)+B = \bigcap_{V \in \mathcal{U}} \left[(A-B)+B+V \right],
$$

hence $A \subset (A-B)+B+V$ for every $V \in \mathcal{U}$. Take any $a \in A$ and $V \in \mathcal{U}$. Then from the above inclusion it follows that there exist $x \in A-B, b \in B, v \in V$ such that $a = x + b + v$, hence $x = a - b - v$. Since $x \in \overline{A-B}$, $x + B \subset A$. Therefore, $B - b - v \subset A - a.$

Sufficiency: Take any $a \in A$ and $V \in U$. Then there exist $b \in B$ and $v \in V$ such that $a - b - v + B \subset A$ and $a - b - v \in A - B$. Thus

$$
a = a - b - v + b + v \in (A \dot{-} B) + B + V
$$

for every $V \in \mathcal{U}$. Hence

$$
a \in \bigcap_{V \in \mathcal{U}} [(A-B) + B + V] = (A-B) + B.
$$

Therefore, $A \subset (A-B)+B$ and B is a summand of A

Remark. From Proposition 3 and Theorem 1 it follows that a summand of $A \in \mathcal{B}(X)$ does not need to satisfy the condition contained in Proposition 3. However, it has to satisfy this condition if we replace $\mathcal{B}(X)$ by $\mathcal{K}(X)$.

Indeed, if for example $X = c_0$ (the usual space of sequences coverging to zero), then there exist $B, C \in \mathcal{B}(X)$ such that $B + C \neq B + C$ (see [2]). Let $A = B + C$. Then B is a summand of A, and $C = A-B$. Suppose that B satisfy the condition contained in Proposiotion 3. Then

$$
B \dot{+} C = B \dot{+} (A \dot{-} B) = A \subset B + A \dot{-} B = B + C.
$$

This is imposible because $B + C \neq B+C$.

Now we give some criteria for being summand in terms of external and exposed points. We start with three short lemmas.

Lemma 3. Let X be a vector space and let $a + b \in ext(A + B)$ with $a \in A$ and $b \in B$. Then $a \in ext(A)$ and $b \in ext(B)$.

Proof. Suppose there exist $a_1, a_2 \in A$ such that $a = \alpha a_1 + \beta a_2$ for $\alpha, \beta > 0$ with $\alpha + \beta = 1$. Then $a + b = \alpha a_1 + \beta a_2 + b = \alpha (a_1 + b) + \beta (a_2 + b)$, hence $a_1 = a$ and $a_2 = a$. Therefore, $a \in \text{ext}(A)$. In the same way we can prove that $b \in \text{ext}(B)$

Lemma 4. Let X be a vector space and let $a + b \in ext(A + B)$ with $a \in A$ and $b \in B$, where A and B are convex subsets of X. If for some $a_1 \in A$ and $b_1 \in B$ the equality $a + b = a_1 + b_1$ holds true, then $a = a_1$ and $b = b_1$.

Proof. Let $\alpha, \beta > 0$ with $\alpha + \beta = 1$. Then, by assumption,

$$
a + b = \alpha(a + b) + \beta(a_1 + b_1) = (\alpha a + \beta a_1) + (\alpha b + \beta b_1).
$$

Since A and B are convex, then $\alpha a + \beta a_1 \in A$ and $\alpha b + \beta b_1 \in B$. Hence, by Lemma 3, $\alpha a + \beta a_1 \in \text{ext}(A)$ and $\alpha b + \beta b_1 \in \text{ext}(B)$. Thus $a = a_1$ and $b = b_1 \blacksquare$

Lemma 5. Let X be a Hausdorff topological vector space and let $A, B \in \mathcal{B}(X)$. If $a + b \in \text{ext}(A + B)$ with $a \in A, b \in B$ and $a - b \in A-B$, then $a - b \in \text{ext}(A-B)$.

Proof. Suppose that $a - b = \alpha x + \beta y$, where $x, y \in A - B$ and $\alpha, \beta > 0$ with $\alpha + \beta = 1$. Since $x + B \subset A$ and $y + B \subset A$, there exist $a_1, a_2 \in A$ such that $x + b = a_1$ and $y + b = a_2$. Hence

$$
\alpha a_1 + \beta a_2 = \alpha x + \beta y + b = a - b + b = a.
$$

But from Lemma 3 we have that $a \in ext(A)$. Thus $a = a_1 = a_2$. Therefore, $x = y$ and $a - b \in \text{ext}(A - B) \blacksquare$

Theorem 2. Let X be a locally convex Hausdorff topological vector space and let $A, B \in \mathcal{K}(X)$. Then B is a summand of A if and only if for every sum $a + b \in$ $ext(A + B)$ with $a \in A$ and $b \in B$ we have $a - b \in ext(A - B)$.

Proof. Necessity: Let us assume that B is a summand of A. Since A and B are compact, then $A = B + (A - B)$. Now by Proposition 3 there exists $b_0 \in B$ such that $B - b_0 \subset A - a$. Hence there exists $a_0 \in A$ such that $b - b_0 = a_0 - a$. Hence $a+b = a_0 + b_0$. Thus, by Lemma 4, $a = a_0$ and $b = b_0$. Therefore, $a - b \in A \dot{-} B$ and, by Lemma 5, $a - b \in \text{ext}(A-B)$.

Sufficiency: Suppose that for every sum $a+b \in ext(A+B)$ with $a \in A$ and $b \in B$ we have $a - b \in \text{ext}(A-B)$. Then

$$
a + b = a - b + b + b \in (A - B) + B + B.
$$

Hence

$$
ext(A + B) \subset (A - B) + B + B.
$$

Thus, by the Krein-Milman theorem,

$$
A + B = \overline{\text{conv}}(\text{ext}(A + B)) \subset \overline{\text{conv}}((A - B) + B + B) = (A - B) + B + B.
$$

Now, by the order cancellation law, $A \subset (A-B) + B$. Thus B is a summand of A

Corollary 2. Let X be a locally convex Hausdorff topological vector space. A set $B \in \mathcal{K}(X)$ is summand of a set $A \in \mathcal{K}(X)$ if and only if for every sum $a + b \in$ $ext(A + B)$ with $a \in A$ and $b \in B$ we have $a - b \in A - B$.

Proof. Necessity follows immediately from Theorem 2, sufficiency from Lemma 5 and Theorem 2

Theorem 3. Let X be a real Banach space and let $A, B \in \mathcal{K}(X)$. Then B is a summand of A if and only if for every sum $a+b \in \exp(A+B)$ with $a \in A$ and $b \in B$ we have $a - b \in \overline{A-B}$.

Proof. Since $\exp(A + B) \subset \exp(A + B)$, necessity follows from Corollary 2. As to sufficiency, analogously as in Theorem 2 we have

$$
\exp(A+B) \subset \operatorname{ext}(A+B) \subset (\dot{A-B}) + B + B.
$$

Now, by the modification of Klee (see [4]) of the Krein-Milman theorem,

 $A + B \subset \overline{\text{conv}}(\exp(A+B)) \subset \overline{\text{conv}}((A-B)+B+B) \subset (A-B)+B+B.$

Thus, by the order cancellation law, $A \subset (A-B) + B$

Remark. If (X, τ) is a reflexive locally convex topological vector space, then $\mathcal{B}((X,\tau)) \subset \mathcal{K}((X,\tau^*))$ where τ^* denotes the weak topology in X. Thus, by the Krein-Milman theorem, $A \subset \overline{conv^*}(ext(A))$ for $A \in \mathcal{B}((X, \tau))$, where $\overline{conv^*}(A)$ denotes the closed convex hull of A in (X, τ^*) . But it is easy to observe that $\overline{\text{conv}}(A) = \overline{\text{conv}^*}(A)$. Therefore, $A = \overline{\text{conv}}(\text{ext}(A))$ for $A \in \mathcal{B}((X, \tau))$.

Applying this observation and Theorem 2 we get the following

Theorem 4. Let X be a reflexive locally convex Hausdorff topological vector space and let $A, B \in \mathcal{B}(X)$. Then B is summand of A if and only if for every sum $a + b \in \text{ext}(A + B)$ with $a \in A$ and $b \in B$ we have $a - b \in A \dot{-} B$.

References

- [1] Grzybowski, J. and R. Urbański: *Minimal pairs of bounded closed convex sets.* Studia Math. 126 (1997), 95 – 99.
- [2] Grzybowski, J. and R. Urbański: On pairs of closed bounded convex sets that lie in complementary subspaces. In: Proc. Int. Conf. "Function Spaces V" (Lect. Notes Pure & Appl. Math.: Vol. 213). New York: Marcel Decker 2000, pp. 165 – 170.
- [3] Grzybowski, J. and R. Urbański: On inclusions and summands of bounded closed convex sets. Comm. Math. (to appear).
- [4] Klee, V.: Extremal structure of convex sets II. Math. Z. 69 (1958), 90 104.
- [5] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory (Encyclopedia of Mathematics and its Applications: Vol. 44). Cambridge Univ. Press 1993.
- [6] Shepard, G. C.: Decomposable convex polyhedra. Math. 10 (1963), 89 95.
- [7] Urbański, R.: A generalization of the Minkowski-Rådström-Hörmander Theorem. Bull. Acad. Polon. Sci., Sér. Sci. Math., Astr., Phys. 24 (1976), 709 – 715.
- [8] Urbański, R.: Pairs of sets with convex union. Collet. Math. 48 (1997), 791 798.
- [9] Urba´nski, R.: On minimal convex pairs of convex compact sets. Archiv Math. 67 $(1996), 226 - 238.$
- [10] Weil, W.: *Decomposition of convex bodies.* Math. 21 (1974), $19-25$.

Received 06.04.2002; in revised form 30.07.2002