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On Summands
of Closed Bounded Convex Sets

J. Grzybowski, H. Przybycien and R. Urbanski

Abstract. In this paper properties of the Minkowski-Pontryagin subtraction of closed
bounded convex sets are investigated (see Propositions 1 - 3) and four criteria for sum-
mands of closed bounded convex sets are given (see Theorems 1 - 4).
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Let X = (X, 7) be a Hausdorff topological vector space, and let B(X) (resp. K(X))
be the family of all non-empty, closed and bounded (resp. compact) convex subsets
of X. If A,B € B(X), then let A+B = A+ B, where C denotes the closure of C
and C = A + B is the usual algebraic Minkowski sum of A and B.

The family B(X) plays an important role in multi-valued analysis. The algebraic
structure of B(X) is far from being completely clarified. The family B(X) satisfies
the order cancellation law, i.e. for A, B,C € B(X) the inclusion A+B C B+C
implies A C C (see [7]). The commutative semigroup (B(X),+) satisfies the law of
cancellation.

The lattice of quotient classes in B(X) x B(X) (or I(X) x (X)) forms a vector
space that was studied by Radstrom and Héormander. The lattice found an important
application in quasidifferential calculus.

For A € B(X), by ext(A) we denote the set of A’s extremal points and by
exp(A) the set of its exposed points. A set B € B(X) is called a summand of
A € B(X) if there exists C € B(X) such that B+C = A. If A, B € B(X), then let
A-B={z € X : 2+ B C A} be the Minkowski-Pontryagin subtraction of A and B.

Summands of compact convex sets were studied by Schneider, Shephard, Weil
and others (see, e.g., [5, 6, 10]). These summands found applications in the study
of minimal representatives of quotient classes in B(X)? and (X )?. The Minkowski-
Pontryagin subtraction was investigated for compact convex sets of finite-dimensional
spaces.
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Lemma 1. Let X be a topological vector space and let A, B € B(X). Then

A-B=((A-b).

beB
Proof. The proof is easy and we omit it
From Lemma 1 it follows that if A, B € B(X) and A—B # (), then A—~B € B(X).
Indeed, A—B is an intersection of members of B(X).
Now, we prove several algebraic properties of the Minkowski-Pontryagin subtrac-

tion.

Proposition 1. Let X be a Hausdorff topological vector space and let A, B,C €
B(X) and 0 < a, B € R with « > 3. Then:
(i) If A-B #0, then (A-B)+B C A.
(ii) If A= B+C, then C = A—B.
(iii) (A—-B)-C = A~(B+C).
(iv) (A+C)—(B+C) = A-B.
(v) If B=C # 0, then (A+C)—B Cc A—(B-C).
(vi) If B—C # 0, then (A-B)+C Cc A—(B-C).
(vii) (A-B)+(B-C)cC A-C.
(viii) a(A-B)=aA-aB.
(ix) aA—BA = (a—p)A.
Proof. Assertion (i) follows immediately from the definition of A—B.
Assertion (ii): Let A = B4—.C’. From (i) we have (A—B)+B C A = B+C. Hence
by the order cancellation law A-B cCC. Qn the other hand, for every ¢ € C we have
c+BCC+ BCC+B = A, hence ¢c € A—B. Therefore, C C A—B.

Assertion (iii): Let 2 € (A—B)—C. Then z + C C A—-B. Hence, by (i), = +
C+B C (A-B)+B C A. Therefore, z € A—(B+C) and (A-B)—-C C A—(B+C).
To prove the inverse inclusion, take any x € A—(B+C). Then x + B+C C A and
(r + B+C)—B Cc A-B. But (z + B+C)—-B = [(z + C)+B]-B = z + C by (ii).
Therefore, x + C C A~B and z € (A-B)—-C.

Assertion (iv): Applying (iii) and (ii) we have

(A+C)—(B+C) = [(A+C)-C]-B = A-B.

Assertion (v): Let z € (A+C)—B. Then x + B C A+C. Hence

(xr + B)-C C (A+C)~-C = A.
But i
(x+B)-C={y: y+C Cz+ B}
={y:y—z+CC B}
={v+z:v+CC B}
=z+{v:v+CCB}
=x+ B-C.
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Thus = + (B—C) C A and x € A—(B-C).
Assertion (vi): Let x € A—B and y € C. Then

r+y+(B-C)Cx+C+(B-C)Ccx+C+HB-C)Cz+BCA.

Hence (A—B) + C ¢ A—(B-C). Since A—(B—C) is closed, then (A-B)+C C
AZ(BC).
Assertion (vii): Let z € A—B and y € B—C. Then

r+y+CCz+ (B-C)+C Cx+ B C A.

Hence A—B + B—C C A—C and, consequently, also (A—B)+(B—C) Cc A-C.

Assertion (viii): Let # € a(A—B). Then £ € A—B. Thus £ + B C A and
x + aB C aA. Therefore, + € aA—aB. On other hand, if z € aA—aB, then
z+aB CaAand £ 4 B C A Thus £ € A—B. Therefore, z € o(A—B).

Assertion (ix): Since o > 3, we have aA = 3A+(a — 3)A. Therefore,
QA-BA = [BAF(a — B)AI-BA = (o — B)A.

Thus the theorem is proved B

Corollary 1. Let X be a Hausdorff topological vector space and A, B € B(X).
Then B is a summand of A if and only if A C (A—B)+B.

Proof. Necessity: Let A = B+C for some C' € B(X). Then, by Proposition
1/(ii), C = A=-B, thus A C B+(A=-B). Sufficiency: It follows immediately from
Proposition 1/(i) B

Similarly as in [3] (see Theorem 3) we can prove the following lemma.

Lemma 2. Let A,B,F € B(X) and AUB € B(X). If ANB C (A+F)U(B+F),
then ANB C A+F or ANB C B+F.

From Lemma 2 we get the following equality for Minkowski-Pontryagin subtrac-
tion:

Proposition 2. Let A,B,F € B(X). If AU B is convez, then

[(A+F)U (B+F)|-ANB = [(A+F)-ANB] U [(B+F)-ANB].

Proposition 3. Let X be a Hausdorff topological vector space and let A, B €
B(X). The inclusion A C (A—B)+ B holds if and only if for every a € A there exists
b€ B such that B—bC A —a.

Proof. Necessity: Let A C (A—B) + B and take any a € A. There exists
x € A-B and b € B such that a = x +b. Since x € A-B, then x + B C A and we
obtain B—bC A — a.

Sufficiency: Take any a € A. There exists b € B such that B —b C A — a, hence
a—be A—B. Therefore, a =a—b+be (A—B) + B. Thus A C (A-B) + B1
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Theorem 1. Let X be a Hausdorff topological vector space and let A, B € B(X).
Let U denote a basis of neighbourhoods of 0 in X. Then B is a summand of A if and
only if the condition

Vaea Vveu JveB Jvev: B—-b—-vCA-a

holds true.
Proof. Necessity: Suppose that A C (A—B)+B. Then

AcC(AB)+B= () [(A-B)+B+V],
Veu

hence A C (A—B) + B+ V for every V € U. Take any a € A and V € U. Then
from the above inclusion it follows that there exist + € A-B,b € B,v € V such
that a = x + b+ v, hence x = a — b —v. Since x € A-B, v + B C A. Therefore,
B-b—vCA-—a.

Sufficiency: Take any a € A and V € U. Then there exist b € B and v € V such
thata —b—v+BC Aand a—b—v € A-B. Thus

a=a—-b—v+b+ve(A-B)+B+V
for every V € U. Hence

ac () [(A-B)+B+V] =(A-B)+B.
Veu

Therefore, A C (A—B)+B and B is a summand of A 1l

Remark. From Proposition 3 and Theorem 1 it follows that a summand of
A € B(X) does not need to satisfy the condition contained in Proposition 3. However,
it has to satisfy this condition if we replace B(X) by K(X).

Indeed, if for example X = ¢ (the usual space of sequences coverging to zero),
then there exist B,C € B(X) such that B + C # B+C (see [2]). Let A = B+C.
Then B is a summand of A, and C = A—B. Suppose that B satisfy the condition
contained in Proposiotion 3. Then

B+C=B+(A-B)=ACB+A-B=DB+C.

This is imposible because B + C # B+C.

Now we give some criteria for being summand in terms of external and exposed
points. We start with three short lemmas.

Lemma 3. Let X be a vector space and let a +b € ext(A + B) with a € A and
be B. Then a € ext(A) and b € ext(B).

Proof. Suppose there exist ay,as € A such that a = aay + Bas for o, f > 0 with
a+ B =1. Then a + b = aay + Bas + b = a(a; + b) + B(az + b), hence a; = a and
az = a. Therefore, a € ext(A). In the same way we can prove that b € ext(B) i
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Lemma 4. Let X be a vector space and let a + b € ext(A+ B) with a € A and
b € B, where A and B are convex subsets of X. If for some a1 € A and by € B the
equality a + b = a1 + by holds true, then a = a; and b = b;.

Proof. Let o, > 0 with a 4+ 8 = 1. Then, by assumption,
a+b=ala+b)+ plar +b1) = (aa + Bay) + (ab+ Bby).

Since A and B are convex, then aa + a; € A and ab+ $b; € B. Hence, by Lemma
3, aa + PBa; € ext(A) and ab+ Bb; € ext(B). Thus a = a; and b= b; i

Lemma 5. Let X be a Hausdorff topological vector space and let A, B € B(X).
Ifa+beext(A+ B) witha€ A,b€ B and a—b e A-B, then a — b € ext(A-B).

Proof. Suppose that a — b = ax + By, where z,y € A—B and «, 8 > 0 with
a+pG =1. Sincex+B C Aand y+ B C A, there exist a;,as € A such that x4+b = a3
and y + b = as. Hence

aa) + Pay =axr+pPy+b=a—-b+b=a.

But from Lemma 3 we have that a € ext(A). Thus @ = a1 = ay. Therefore, x = y
and a — b € ext(A—B) B

Theorem 2. Let X be a locally convexr Hausdorff topological vector space and
let A,B € K(X). Then B is a summand of A if and only if for every sum a+b €
ext(A+ B) witha € A and b € B we have a — b € ext(A—DB).

Proof. Necessity: Let us assume that B is a summand of A. Since A and B
are compact, then A = B + (A—B). Now by Proposition 3 there exists by € B such
that B — by C A — a. Hence there exists ag € A such that b — by = ag — a. Hence
a+b=ag+by. Thus, by Lemma 4, a = ag and b = bg. Therefore, a —b € A—B and,
by Lemma 5, a — b € ext(A—B).

Sufficiency: Suppose that for every sum a+b € ext(A+ B) witha € Aand b € B
we have a — b € ext(A—B). Then

a+b=a—-b+b+be(A-B)+ B+ B.

Hence
ext(A+ B) C (A-B) + B + B.

Thus, by the Krein-Milman theorem,
A+ B = conv(ext(A + B)) C conv((A—B) + B+ B) = (A-B) + B + B.

Now, by the order cancellation law, A C (A—B) + B. Thus B is a summand of A il

Corollary 2. Let X be a locally convexr Hausdorff topological vector space. A
set B € K(X) is summand of a set A € K(X) if and only if for every sum a+b €
ext(A + B) with a € A and b € B we have a —b € A—B.

Proof. Necessity follows immediately from Theorem 2, sufficiency from Lemma
5 and Theorem 2 i
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Theorem 3. Let X be a real Banach space and let A, B € K(X). Then B is a
summand of A if and only if for every sum a+b € exp(A+ B) witha € A and b € B
we have a —b € A—B.

Proof. Since exp(A + B) C ext(A + B), necessity follows from Corollary 2. As
to sufficiency, analogously as in Theorem 2 we have

exp(A+ B) C ext(A+ B) C (A—B) + B + B.
Now, by the modification of Klee (see [4]) of the Krein-Milman theorem,
A+ B C conv(exp(A + B)) € conv((A-B) + B+ B) € (A~B) + B + B.
Thus, by the order cancellation law, A C (A—B) + B 11

Remark. If (X,7) is a reflexive locally convex topological vector space, then
B((X,7)) C K((X,7*)) where 7* denotes the weak topology in X. Thus, by the
Krein-Milman theorem, A C conv*(ext(A)) for A € B((X,7)), where conv*(A)
denotes the closed convex hull of A in (X,7*). But it is easy to observe that
conv(A) = conv*(A). Therefore, A = conv(ext(A)) for A € B((X,1)).

Applying this observation and Theorem 2 we get the following

Theorem 4. Let X be a reflexive locally convex Hausdorff topological vector
space and let A, B € B(X). Then B is summand of A if and only if for every sum
a+beext(A+ B) witha€ A and b € B we have a —b € A—B.
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