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A Unified Approach to
Linear Differential Algebraic Equations

and their Adjoints

K. Balla and R. März

Abstract. Instead of a single matrix occurring in the standard setting, the leading term of
the linear differential algebraic equation is composed of a pair of well matched matrices. An
index notion is proposed for the equations. The coefficients are assumed to be continuous
and only certain subspaces have to be continuously differentiable. The solvability of lower
index problems is proved. The solution representations are based on the solutions of certain
inherent regular ordinary differential equations that are uniquely determined by the problem
data. The assumptions allow for a unified treatment of the original equation and its adjoint.
Both equations have the same index and are solvable simultaneously. Their fundamental
solution matrices satisfy a relation that generalizes the classical Lagrange identity.
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1. Introduction

For the implicit regular linear ordinary differential equation

Ax′ + Bx = 0 (1.1)

with continuous coefficients A,B : I ⊆ R → L(Cm), A non-singular, the adjoint
equation reads

−(A∗y)′ + B∗y = 0. (1.2)

To obtain equation (1.2), equation (1.1) is transformed into the form x′+A−1Bx = 0.
Its adjoint is −z′ + B∗A−1∗z = 0. Finally, we put A−1∗z = y. The standard theory
mostly deals with explicit regular ordinary differential equations. For each solution
pair of the explicit equations the Lagrange identity z∗(t)x(t) ≡ z∗(t0)x(t0) is valid
(see, e.g., [5]). In terms of equations (1.1) and (1.2), one obtains

y∗(t)A(t)x(t) ≡ y∗(t0)A(t0)x(t0). (1.3)
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This leads to the relation

Y (t) = {A(t0)[X(t)]−1[A(t)]−1}∗
= {[A(t)]∗}−1{[X(t)]−1}∗[A(t0)]∗

(1.4)

which connects the fundamental solution matrices X and Y that are normalized at
t0. For equation (1.1), the natural solution regularity to be met is x ∈ C1(I) while
for (1.2) a solution y has to be a continuous function with A∗y being differentiable
(see, e.g., [6]).

In the case of differential algebraic equations, the leading coefficient A in equation
(1.1) is singular everywhere on I. The standard formulation (1.1) is incomplete until
we fix a suitable solution regularity. In [9], a more precise reformulation

A(Px)′ + (B −AP ′)x = 0 (1.5)

is proposed instead of equation (1.1), where P : I → L(Cm) denotes an arbitrary
C1-projector function along the nullspace of A, say, P = A+A. The continuous
functions x with a continuously differentiable component Px form a natural solution
space for equation (1.5), hence, for (1.1).

For differential algebraic equations (1.1), the adjoint is of form (1.2), too, as it
was claimed first in [4]. However, (1.2) is not a standard form differential algebraic
equation. The standard theory (index notions, etc., see [3]) does not apply unless
we assume A to be smooth and change to −A∗y′ + (B∗ −A∗′)y = 0 instead of (1.2).
Similarly to the case of a non-singular coefficient A, there is no need for assuming A
to be smooth. Certain subspaces, typically kerA, may only be smooth (see [9, 12]).
In [1] a solvability theorem for equation (1.2) is proved under the same conditions as
used for (1.1) when the latter is an index-1 differential algebraic equation. Actually,
a reformulation of the adjoint equation (1.2), namely equation

−P ∗(A∗y)′ + (B∗ − P ∗′A∗)y = 0, (1.6)

stands behind the approach in [1]. One of the results of [1] establishes the connection
between normalized maximal fundamental solution matrices of the index-1 equation
(1.1) and its adjoint (1.2). With the notations of the present paper, the identity

Y (t) = [A(t)]∗−c [X(t)]−∗[A(t0)]∗

is stated. It generalizes formula (1.4). Here, A(t), X(t) and Y (t) are singular matrices
and [X(t)]− and [A(t)]∗−c denote special reflexive generalized inverses.

An additional argument for reconsidering differential algebraic equations is de-
livered by optimal control. Both types of equations, (1.1) and (1.2) (or (1.5) and
(1.6)), are coupled together into one large system (see [11]). The standard theory of
differential algebraic equations does not apply to those mixed systems either.

In this paper we assign the term linear differential algebraic equation to the
equation

A(Dx)′ + Bx = q (1.7)
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with well matched continuous leading coefficients A,D : I → L(Cm). None of these
coefficients has to be a projector. D is a kind of incidence matrix that figures out
which derivatives are involved in fact. Only certain subspaces, typically im D, are
assumed to be spanned by C1 functions. Moreover, the solution need not to be
differentiable. A natural solution of equation (1.7) is a continuous function x having
a continuously differentiable part Dx. We show that the new form brings more
symmetry, transparency and beauty into the theory. In particular, the equation

−D∗(A∗y)′ + B∗y = p (1.8)

is of a similar structure as (1.7) and it proves to be the adjoint to (1.7). We focus
on the simultaneous analysis of equations (1.7) and (1.8) under the lowest possible
smoothness conditions. The results relying upon possible higher differentiability are
out of the scope of this paper. Nevertheless, we touch the relation to some further
index definitions that are applicable to smooth problems only. We stop at index
2. One could define equations with higher index (see [13]). As we shall show, each
solution pair of the homogeneous versions of equations (1.7) and (1.8) satisfies the
Lagrange identity

y∗(t)A(t)D(t)x(t) ≡ y∗(t0)A(t0)D(t0)x(t0).

In the case of equation (1.1), where A is non-singular, clearly, D = I. Formula (1.3)
is a special case of the “new” Lagrange identity. In equations (1.5) and (1.6) we have
D = P .

We begin our analysis with some basic notions in Section 2. The well matched
matrices and the index will be defined there. In Section 3, solvability statements for
index-1 and index-2 tractable equations are proved. The geometric solution spaces
are described in detail. A uniquely determined inherent regular ordinary differential
equation is shown to exist. The results on fundamental matrices are listed in Section 4.
Section 5 deals with adjoint equations. We show that index-1 and index-2 tractability
always appears simultaneously for the adjoint pairs. The section is accomplished with
an explicit representation of the fundamental matrix for equation (1.8). In Section 6
we illustrate the role of the smoothness assumptions.

In this paper we concentrate on the presentation of basic results concerning the
new index notion for linear differential algebraic equations that are appropriate for
a unified treatment of the adjoint pairs. Some additional discussion on this material
can be found in [2]. The proofs of theorems claimed in Section 4 are almost technical.
Some claims presented and applied in Section 5 characterize the subspaces by their
representations in different ways. For these proofs the interested reader is referred to
[2]. Generalized inverses often occur in the paper. Additional material about them
can be found, for example, in [13, 14].



786 K. Balla and R. März

2. Basic notions

We consider linear equations (1.7) with continuous matrix coefficients A,D, B : I ⊆
R→ L(Cm).

Definition 2.1. A solution of equation (1.7) is a continuous function x : I → Cm

that has a continuously differentiable product Dx and satisfies (1.7) pointwise. Let

C1
D := {x ∈ C : Dx ∈ C1}

denote the respective function space.

The first argument for considering equations (1.7) and (1.8) simultaneously and
nominating them to an adjoint pair is that a kind of Lagrange identity is valid.
Namely, for each pair of solutions x ∈ C1

D, y ∈ C1
A∗ of the homogeneous equations

(1.7), (1.8) (p = q = 0),

y∗(t)A(t)D(t)x(t) = const (t ∈ I) (2.1)

holds. Indeed, (y∗ADx)′ = (D∗(A∗y)′)∗x + y∗A(Dx)′ = (B∗y)∗x− y∗Bx = 0.

In order to obtain solvability and other statements, we assume that the leading
term in (1.7) is properly formed so that condition C1 below be satisfied.

Condition C1: The decomposition

kerA(t)⊕ im D(t) = Cm (t ∈ I) (2.2)

holds and there are functions ηi ∈ C1(I,Cm) (i = 1, . . . , m) spanning im D and
kerA pointwise so that

im D = span
{
η1, . . . , ηr

}
and kerA = span

{
ηr+1, . . . , ηm

}
.

If condition C1 is satisfied, the matrices A(t) and D(t) will be called well matched.
Thus, the well matched matrices A(t) and D(t) are of constant rank r. Due to con-
dition C1, there is a uniquely determined continuously differentiable matrix function
R : I → L(Cm) such that

[R(t)]2 = R(t), imR(t) = im D(t), kerR(t) = kerA(t) (t ∈ I).

We say shortly that the ordered pair {A,D} provides a smooth Cm-decomposition if
condition C1 is valid. The projector function R realizes this smooth decomposition.

Note. At this place it must be stressed that condition C1 is not a restriction
but an extension with respect to the former assumptions on equation (1.5). The
differential algebraic equation of standard form

Ã(t)x′(t) + B̃(t)x(t) = q(t), (2.3)

where the leading coefficient has constant rank r, can be reformulated to yield equa-
tion (1.7) with A = Ã, D = P̃ and B = B̃−ÃP̃ ′ supposed that there is a C1-projector
P with ker P̃ = ker Ã. Another problem setting is possible if Ã itself is continuously
differentiable. Namely, let R̃ be a C1-projector with im R̃ = im Ã, say R̃ = ÃÃ+.
Set A = R̃, D = Ã and B = B̃ − R̃Ã′. The condition C1 is fulfilled in both cases.

The unified treatment of the leading terms in equations (1.7) and (1.8) is sup-
ported by the next assertion.
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Lemma 2.1. The matrix pair {A, D} provides a smooth Cm-decomposition if
and only if the pair {D∗, A∗} does so. If R realizes the decomposition for the pair
{A,D}, then R∗ does so for the pair {D∗, A∗}.

Proof. Let condition C1 be true for {A,D} and R be the projector realizing the
decomposition. Since R∗2 = R∗, R∗ is also a projector;

im R∗ = kerR⊥ = kerA⊥ = im A∗

kerR∗ = im R⊥ = im D⊥ = kerD∗.

Thus, the decomposition Cm = im R∗ ⊕ kerR∗ = im A∗ ⊕ kerD∗ holds. Since R
is continuously differentiable, so is R∗. Then im R∗ and kerR∗ are C1-subspaces.
Starting with condition C1 being valid for {D∗, A∗} we apply similar arguments

Due to the next simple claim, decomposition (2.2) may be replaced by an equiv-
alent triple of conditions if needed.

Lemma 2.2. For a pair of arbitrary matrices H, J ∈ L(Cm), kerH⊕ im J = Cm

is true if and only if the relations

kerH ∩ imJ = {0}, kerHJ = kerJ, imH = im HJ

hold simultaneously.

We associate a chain of matrix functions and time-varying subspaces with equa-
tion (1.7) for utilization in this paper. The argument t is omitted everywhere.

G0 := AD, B0 := B

Qi is a projector onto kerGi, Pi := I −Qi

Wi is a projector, kerWi = im Gi

Gi+1 := Gi + BiQi, Bi+1 := BiPi

Ni := kerGi = imQi

Si := {z ∈ Cm : Biz ∈ imGi} = ker WiBi (i = 0, 1).

(2.4)

By construction,

im G0 ⊆ im G1, S0 ⊆ S1, N0 ⊆ S1,

S1 = P0S1 ⊕N0, dimN1 = dim(N0 ∩ S0).

For given projectors Q0 and W0, we denote by D− and A− the reflexive general-
ized inverses of D and A such that

DD− = R, D−D = P0, A−A = R, AA− = I −W0.

Thus, D− and A− are uniquely determined and depend only on the choice of P0 and
W0. It is possible to choose projectors Q0 and W0 to be continuous and we will do
so. Then, D− and A− are also continuous.

Now we fix one further assumption for certain subspaces of imD.
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Condition C2: Both subspaces DS1 and DN1 are spanned by continuously
differentiable functions.

Definition 2.2. Let conditions C1 and C2 be valid. Equation (1.7) is said to be
1. an index-1 tractable differential algebraic equation if

N0(t) ∩ S0(t) = {0} (t ∈ I), (2.5)

2. an index-2 tractable differential algebraic equation if

dimN0(t) ∩ S0(t) = const > 0 (2.6)
N1(t) ∩ S1(t) = {0} (t ∈ I). (2.7)

Remark 2.1. The matrix chain used in [12] is a special case of (2.4). Thus, for
equations of form (2.3) the reformulations mentioned in the above Note provide the
same tractability-index µ (µ = 1, 2) as the former definitions (see [1, 12]).

If all matrices are sufficiently smooth for defining the differentiation index of equa-
tion (2.3), then the tractability index µ (µ = 1, 2) leads to the same differentiation
index.

The solvability assertions in the next section will show that an index-µ tractable
equation (µ = 1, 2) also has perturbation index µ without the assumption that the
coefficients or some of them be smooth. The continuity of the coefficients and a
C1-basis of certain subspaces will be sufficient.

If the coefficients A,D,B are time-invariant, it can be checked [8] that the matrix
pencil {AD,B} is regular with Kronecker index µ = 1 or µ = 2 if and only if relations
(2.5) or (2.6) and (2.7), respectively, hold.

Decomposition (2.5) is valid if and only if G1 is non-singular [9: Appendix
A/Theorem 13]. In this case, G2 = G1. In the index-2 case, G1 is singular and
has constant rank, say, r1. G2 becomes non-singular. It also follows that the index
definition is independent of the choice of Q0 and Q1 in the matrix chain (2.4).

Differential algebraic equations of index-2 are characterized by hidden constraints
and a lower degree of freedom. The index-2 tractability ensures the decomposition
N1(t) ⊕ S1(t) = Cm. In Subsections 3.1 and 3.2 we show that the subspace DS1 is
relevant to the inherent regular ordinary differential equation (3.5) or to (3.17), while
in the index-2 case, the non-empty set DN1 is responsible for the hidden constraint
(3.18). This is the reason for the refinement of condition C1 in the form of condition
C2.

Lemma 2.3. For an index-2 tractable equation the decomposition

DS1(t)⊕DN1(t)⊕ kerA(t) = Cm (t ∈ I) (2.8)

holds. The dimensions of these subspaces are r1+r−m, m−r1 and m−r, respectively.
If Q̂1(t) is the special projector onto N1(t) along S1(t) (t ∈ I), then

DP̂1D
−, DQ̂1D

−, I −R (2.9)
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are continuously differentiable projectors that realize decomposition (2.8).

Proof. Choose Q̂1(t) to be the projector onto N1(t) along S1(t). Q̂1 has a
representation Q̂1 = Q1G

−1
2 BP0. Here Q1 is an arbitrary projector onto N1 and

G2 is associated with Q1 as (2.4) dictates. By construction, Q̂1 = Q̂1Ĝ
−1
2 BP0 [9:

Lemma 14], where Ĝ2 = G1 +BP0Q̂1. Thus, Q̂1Q0 = 0; if P̂1 = I−Q̂1, then P0P̂1Q0

vanishes. Therefore, formulas (2.9) define projectors and their pairwise products
vanish, too. This results in im DP̂1 ⊆ DS1 and im DQ̂1 ⊆ DN1. Finally, because of
the relation P0Q̂1 = (I −Q0Q̂1)Q̂1 where (I −Q0Q̂1) is non-singular, P0N1 is of the
same dimension m − r1 as N1. Hence, dim DN1 = dim P0N1 = dimN1 = m − r1.
For reasons of dimensions, it follows that im DP̂1D

− = DS1 and im DQ̂1D
− = DN1.

It remains to show the continuous differentiability of the projectors. Let

Γ :=
(
Ds1, . . . , Dsr1−(m−r), Dn1. . . . , Dnm−r1 , ηr+1, . . . , ηm

)

be the matrix function composed of continuously differentiable functions that span
the subspaces DS1, DN1 and kerA, respectively. Γ is non-singular. Set

IDS = diag (Ir1+r−m, 0m−r1 , 0m−r)

IDN = diag (0r1+r−m, Im−r1 , 0m−r)

IA = diag (0r1+r−m, 0m−r1 , Im−r).

The indices show the dimensions of the unit and zero matrices. Obviously,

ΓIDSΓ−1, ΓIDNΓ−1, ΓIAΓ−1 (2.10)

are continuously differentiable projectors that are uniquely defined by the decom-
position. Thus, they coincide with DP̂1D

−, DQ̂1D
− and I − R, respectively. In

particular, DP̂1D
− and DQ̂1D

− are continuously differentiable

3. Solvability of index-1 and index-2 tractable
differential algebraic equations

3.1 Initial value problem for index-1 equations. Let us rewrite the index-1
equation (1.7) as

(AD + BQ0)︸ ︷︷ ︸
G1

{D−(Dx)′ + Q0x}+ BP0x = q.

The inverse of G1 exists and scaling by G−1
1 leads to

D−(Dx)′ + Q0x + G−1
1 BP0x = G−1

1 q. (3.1)
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Multiplication by P0 and Q0 decouples equation (3.1) into

R(Dx)′ + DG−1
1 BP0x = DG−1

1 q (3.2)

Q0x + Q0G
−1
1 BP0x = Q0G

−1
1 q. (3.3)

Thus, a solution x ∈ C1
D, if it exists, may be represented as

x = P0x + Q0x = D−Dx + Q0x = (I −Q0G
−1
1 B)D−Dx + Q0G

−1
1 q

where Dx satisfies the regular ordinary differential equation

(Dx)′ −R′Dx + DG−1
1 BD−Dx = DG−1

1 q. (3.4)

The latter equation is an equivalent of (3.2) since RD = D. If the equation

u′ −R′u + DG−1
1 BD−u = DG−1

1 q (3.5)

is multiplied by (I − R), we obtain ((I − R)u)′ − (I − R)′(I − R)u = 0. Hence, any
solution u of equation (3.5) satisfies u = Ru if u(t̃) = R(t̃)u(t̃) holds at some t̃ ∈ I.
In other words, im R = im D represents a (time varying) invariant subspace for (3.5).

Definition 3.1. Equation (3.5) is called the inherent regular ordinary differential
equation of the index-1 equation (1.7).

For purposes of the next theorem we recall that the index-1 property N0 ∩ S0 =
{0} is equivalent to N0 ⊕ S0 = Cm [9: Appendix A/Theorem 13]. This allows
considering a special (canonical) projector P0c onto S0 along N0. If P0 is an arbitrary
but fixed projector along N0, a possible representation is

P0c = I −Q0G
−1
1 B (3.6)

and, clearly, P0c is continuous.

Theorem 3.1. Let equation (1.7) be index-1 tractable.
1. For each q ∈ C(I,Cm), d ∈ im D(t0), t0 ∈ I, the initial value problem

A(Dx)′ + Bx = q, D(t0)x(t0) = d (3.7)

is uniquely solvable in C1
D.

2. Equation (1.7) has perturbation index 1.
3. Exactly one solution of the homogeneous equation passes through each pair

(t0, x0), t0 ∈ I, x0 ∈ S0(t0).

Proof.
1. First we find the uniquely determined solution u ∈ C1 of the inherent regular

ordinary differential equation with the initial condition u(t0) = d. Then we construct
the function

x := P0cD
−u + Q0G

−1
1 q ∈ C. (3.8)
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Observe that Dx = DP0cD
−u = DD−u = Ru = u ∈ C1 and D(t0)x(t0) = u(t0) =

d. Now, the decoupling (3.2)-(3.3) shows that x satisfies the differential algebraic
equation.

Assume that x̃ ∈ C1
D is also a solution of problem (3.7) different from the solution

x constructed above. Then, x̂ = x̃ − x satisfies (3.7) with q = 0 and d = 0. Due to
equation (3.4), we obtain Dx̂ = 0. Thus, P0x̂ = D−Dx̂ = 0. Equation (3.3) turns
into the relation Q0x̂ = 0, i.e., x̃ = x + x̂ = x + P0x̂ + Q0x̂ = 0 in contrast to the
assumption.

2. Let I be a compact interval. Let us compare the solution xq of problem
(3.7) and the solution x ∈ C1

D of the homogeneous equation with the same initial
condition. For the corresponding solutions uq and u of the inherent regular ordinary
differential equations, the inequality

‖uq − u‖∞ ≤ K1‖DG−1
1 q‖∞

holds with some constant K1, hence,

‖xq − x‖∞ = ‖P0cD
−(uq − u) + Q0G

−1
1 q‖∞ ≤ K2‖q‖∞

holds with some constant K2.
3. x0 ∈ S(t0) means that x0 = P0c(t0)x0 = P0c(t0)D−(t0)D(t0)x0. The solution

of the homogeneous equation with the initial condition D(t0)x(t0) = D(t0)x0 is
x = P0cD

−u, therefore,

x(t0) = P0c(t0)D−(t0)u(t0) = P0c(t0)D−(t0)D(t0)x0 = x0,

and the theorem is proved

Remark 3.1. The initial condition D(t0)x(t0) = d ∈ imD(t0) can be replaced
by

D(t0)x(t0) = D(t0)x0 (x0 ∈ Cm). (3.9)

This choice has the advantage that x0 remains in Cm. In particular, the variational
equation for X := x′x0

∈ C1
D(I, L(Cm)) takes the form

A(DX)′ + BX = 0, D(t0)(X(t0)− I) = 0.

This matrix problem will be addressed in the next section. However, when the initial
condition (3.9) is set, one has to take into account that, in general, x(t0) 6= x0 has
to be expected. The coincidence x(t0) = x0 holds only if x0 is consistent, i.e., if
Q0cx0 = Q0G

−1
1 q(t0).

Remark 3.2. One might think that the inherent regular ordinary differential
equation (3.5) depends on how the projector P0 and, consequently, D− are chosen.
On the contrary, the terms DG−1

1 and DG−1
1 BD− remain invariant when changing

P0.
Indeed, let P0, P̃0 be two projectors along N0, while D− and D̃− be the respective

generalized inverses of D, G1 = AD + BQ0, G̃1 = AD + BQ̃0. Since Q̃0 = Q0Q̃0,
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G̃1 = AD +BQ0Q̃0 = G1(P0 + Q̃0) and G̃−1
1 = (P̃0 +Q0)G−1

1 hold, the terms DG̃−1
1

and DG−1
1 are identical. Further,

DG̃−1
1 BD̃− = DG̃−1

1 BD̃−DD− = DG̃−1
1 BD̃−R = DG̃−1

1 BD̃−DD−

= DG̃−1
1 BP̃0D

− = DG̃−1
1 BD− = DG−1

1 BD−

since G̃−1
1 BQ̃0 = Q̃0 holds. We can also prove the identities

Q̃0G̃
−1
1 = Q̃0(P̃0 + Q0)G−1

1 = Q0G
−1
1

P0cD̃
− = P0cD̃

−DD̃− = P0cD̃
−DD− = P0cP̃0D

− = P0cD
−.

In the latter one we used that P0c is defined geometrically and thus, that it is inde-
pendent of P0 (P̃0). Hence, in addition to the uniqueness of the solution to problem
(3.7), we conclude that each term in splitting (3.8) is independent of the choice of P0

(Q0).

3.2 Initial value problem for index-2 equations. In the index-2 case we scale
equation (1.7) by Ĝ−1

2 . Noting that A = ADD− and Q̂1 = Q̂1Ĝ
−1
2 BP0, the identities

Ĝ−1
2 AD = P̂1P0, Ĝ−1

2 A = P̂1P0D
−, Ĝ−1

2 B = Ĝ−1
2 BP0P̂1 + Q̂1 + Q0

emerge from construction. The scaled equation reads

P̂1P0D
−(Dx)′ + Q0x + Q̂1x + Ĝ−1

2 BP0P̂1x = Ĝ−1
2 q. (3.10)

If multiplied by Q̂1, P0P̂1 and Q0P̂1, equation (3.10) decouples into three parts:

Q̂1x = Q̂1Ĝ
−1
2 q (3.11)

P0P̂1D
−(Dx)′ + P0P̂1Ĝ

−1
2 BP0P̂1x = P0P̂1Ĝ

−1
2 q (3.12)

−Q0Q̂1D
−(Dx)′ + Q0x + Q0P̂1Ĝ

−1
2 BP0P̂1x = Q0P̂1Ĝ

−1
2 q. (3.13)

An additional multiplication of both (3.11) and (3.12) by D yields the couple

DQ̂1x = DQ̂1Ĝ
−1
2 q (3.14)

(DP̂1x)′ − (DP̂1D
−)′Dx + DP̂1Ĝ

−1
2 BD−DP̂1x = DP̂1Ĝ

−1
2 q. (3.15)

Consequently, each solution x ∈ C1
D of equation (1.7) has to satisfy (3.13) - (3.15).

Recalling Lemma 2.3 we state that DQ̂1Ĝ
−1
2 q = DQ̂1x = DQ̂1D

−Dx ∈ C1. Hence,

Q0Q̂1D
−(Dx)′ = Q0Q̂1D

−[(DP̂1x)′ + (DQ̂1Ĝ
−1
2 q)′]

= Q0Q̂1D
−DQ̂1D

−(DP̂1x)′ + Q0Q̂1D
−(DQ̂1Ĝ

−1
2 q)′

= −Q0Q̂1D
−(DQ̂1D

−)′DP̂1x + Q0Q̂1D
−(DQ̂1Ĝ

−1
2 q)′.
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Inserting this expression into equation (3.13) leads to

Q0x =−Q0P̂1Ĝ
−1
2 BD−DP̂1x−Q0Q̂1D

−(DQ̂1D
−)′DP̂1x

+ Q0Q̂1D
−(DQ̂1Ĝ

−1
2 q)′ + Q0P̂1Ĝ

−1
2 q.

By combination of the above expressions each solution x ∈ C1
D of equation (1.7) may

be represented as

x = D−DP̂1x + D−DQ̂1x + Q0x

= KD−DP̂1x + D−DQ̂1Ĝ
−1
2 q + Q0P̂1Ĝ

−1
2 q + Q0Q̂1D

−(DQ̂1Ĝ
−1
2 q)′

(3.16)

where the component DP̂1x satisfies the regular ordinary differential equation

(DP̂1x)′ − (DP̂1D
−)′DP̂1x + DP̂1Ĝ

−1
2 BD−DP̂1x

= DP̂1Ĝ
−1
2 q + (DP̂1D

−)′DQ̂1Ĝ
−1
2 q

and
K := I −Q0P̂1Ĝ

−1
2 BP0 −Q0Q̂1D

−(DQ̂1D
−)′D

is a non-singular matrix function; K−1 = I +Q0P̂1Ĝ
−1
2 BP0 +Q0Q̂1D

−(DQ̂1D
−)′D.

The solution representation gives the idea what is the so-called inherent regular or-
dinary differential equation of (1.7) like.

Definition 3.2. The equation

u′ − (DP̂1D
−)′u + DP̂1Ĝ

−1
2 BD−u = DP̂1Ĝ

−1
2 q + (DP̂1D

−)′DQ̂1Ĝ
−1
2 q (3.17)

is called the inherent regular ordinary differential equation of the index-2 equation
(1.7).

Multiplying equation (3.17) by (I −DP̂1D
−) we can check that DS1 = im DP̂1

is an invariant subspace of the inherent regular ordinary differential equation (3.17).
Remark 3.2 has shown the geometric origin of the inherent regular ordinary dif-

ferential equation for index-1 equations. The next remark will do the same for the
index-2 case.

Remark 3.3. Direct computations show that none of the terms DQ̂1D
−, DP̂1D

−,
DQ̂1Ĝ

−1
2 , DP̂1Ĝ

−1
2 or DP̂1Ĝ

−1
2 BD− depends on the choice of P0. Thus, the inherent

regular ordinary differential equation does not depend on the choice of P0.
Let P0 be fixed. It turns out that the expression Q1G

−1
2 is independent of the

choice of P1 (Q1), too. Combining with the above, DQ1G
−1
2 becomes independent

of the specific choices of both P0 and P1 and so does the function space C1
DQ1G−1

2
:=

{x ∈ C : DQ1G
−1
2 x ∈ C1}. They appear in the hidden constraint equation and in

the solvability theorem.

Looking for the hidden constraint we multiply equation (1.7) by DQ̂1D
−A−:

(DQ̂1x)′ − (DQ̂1D
−)′Dx + DQ̂1D

−A−Bx = DQ̂1D
−A−q.
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Taking equation (3.14) into account, we obtain the hidden constraint equation

(DQ̂1G
−1
2 q)′ − (DQ̂1D

−)′Dx + DQ̂1D
−A−Bx = DQ̂1D

−A−q. (3.18)

We stress that equation (3.18) is independent of the specific choice of projectors P0

(Q0) and W0. Indeed, due to equations (3.14) and (3.15), Dx = DP̂1x + DQ̂1x is
independent and A−(Bx−q) = −R(Dx)′ = Ã−(Bx−q) also holds if AÃ− = I−W̃0.

Returning to (3.16), we observe that

Πcan 2 := KD−DP̂1 = KP0P̂1 (3.19)

is again a projector with kerΠcan 2 = kerD−DP̂1 = N1 ⊕N0 = P0N1 ⊕N0 and

DΠcan 2 = DP̂1, im DΠcan 2 = DS1.

In the next theorem we prove that the geometric space Sind 2 containing all solutions
of the homogeneous equation is exactly the image of Πcan 2, i. e., Sind 2 = im Πcan 2.
For the index-1 tractable equations we proved that Sind 1 := S0 is the respective
geometric solution space and Πcan 1 := P0c = (I − Q0G

−1
1 BP0)P0 projects onto

Sind 1. For an index-2 equation the geometric solution space is of lower dimension;
Sind 2 ⊂ Sind 1.

Theorem 3.2. Let equation (1.7) be index-2 tractable.

1. For each q ∈ C1
DQ1G−1

2
, d ∈ D(t0)S1(t0), t0 ∈ I, the initial value problem

A(Dx)′ + Bx = q, D(t0)P̂1(t0)x(t0) = d (3.20)

is uniquely solvable in C1
D.

2. Equation (1.7) has perturbation index 2.

3. Exactly one solution of the homogeneous equation passes through each pair
(t0, x0), t0 ∈ I, x0 ∈ Sind 2(t0).

Proof.

1. First we solve the initial value problem for the inherent regular ordinary
differential equation (3.17) with the initial condition u(t0) = d. DS1 is an invariant
subspace for this equation; u = DP̂1D

−u . With this u the continuous function

x := KD−u + D−DQ̂1Ĝ
−1
2 q + Q0P̂1Ĝ

−1
2 q + Q0Q̂1D

−(DQ̂1Ĝ
−1
2 q)′ (3.21)

satisfies equation (1.7), since Dx = Ru + DQ1G
−1
2 q ∈ C1. Further,

D(t0)P̂1(t0)x(t0) = D(t0)P̂1(t0)[D(t0)]−D(t0)x(t0)

= D(t0)P̂1(t0)[D(t0)]−u(t0)

= d.
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Assume that x̃ ∈ C1
D is also a solution of problem (3.20) different from (3.21). Then

x̂ = x̃ − x satisfies equation (3.20) with q = 0 and d = 0. Equation (3.16) yields
x̂ = KD−DP̂1x̂. The solution DP̂1x̂ of the regular ordinary differential equation
vanishes identically, i. e., x̂ = 0, in contrast to the assumption. Note that, in problem
formulation (3.20), the sign ˆ cannot be removed.

2. Let I be a compact interval. Let us compare the solutions x and xq of
the homogeneous and the inhomogeneous equations supplied with the same initial
condition, i.e., D(t0)P1(t0)(x(t0) − xq(t0)) = 0. With some constants K1,K2 the
inequality

‖uq − u‖∞ ≤ K1‖DP̂1Ĝ
−1
2 q + (DP̂1D

−)′DQ̂1Ĝ
−1
2 q‖∞ ≤ K2‖q‖∞

is valid for the pair of inherent regular differential equations, therefore there is a
constant K3 such that ‖xq − x‖∞ ≤ K3

(‖q‖∞ + ‖(DQ1G
−1
2 q)′‖∞

)
.

3. If x0 ∈ Sind 2(t0), then x0 = Πcan 2(t0)x0. The homogeneous equation with the
initial condition D(t0)P̂1(t0)x(t0) = D(t0)P̂1(t0)x0 has the solution x = KD−u =
KD−DP̂1D

−u. Since

x(t0) = Πcan 2(t0)[D(t0)]−u(t0)

= Πcan 2(t0)[D(t0)]−D(t0)P̂1(t0)x0 = Πcan 2(t0)x0 = x0

this proves the claim

Remark 3.4. The initial condition D(t0)P̂1(t0)x(t0) = d, d ∈ D(t0)S1(t0) can
be replaced by

D(t0)P̂1(t0)x(t0) = D(t0)P̂1(t0)x0 (x0 ∈ Cm).

Consequently, the variational problem for X := x′x0
is simply A(DX)′ + BX = 0,

D(t0)P̂1(t0)(X(t0)− I) = 0.

Remark 3.5. Formally, the case of index-1 tractability might be considered as
index-2 tractability with dimN0 ∩ S0 = {0}. Thus, N1 = {0}, P1 = I, G2 = G1. In
this case, statements 1 and 3 of Theorem 3.2 confirm the results and expressions of
Theorem 3.1 once more. In particular, the inherent ordinary differential equations
(3.17) and (3.5) coincide and so do the geometric solution spaces Sind 2 and Sind 1.

3.3 Canonical projectors. We obtained the rather complicated expression (3.19)
for the projector onto the geometrical solution space Sind 2 of an index-2 equation.
The next lemma shows how to simplify it by a proper construction.

Lemma 3.1. For the index-2 tractable equation (1.7) there is a “canonical” pro-
jector Q0c onto N0 such that Πcan 2 = P0cP1c.

Proof. Let us construct chain (2.4) starting with an arbitrary Q0 and the cor-
responding reflexive generalized inverse D− of D. One can check that

Q0c := Q0P̂1Ĝ
−1
2 B + Q0Q̂1D

−(DQ̂1D
−)′D (3.22)
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is a projector and im Q0c = N0 holds. Chain (2.4) can be built up starting with Q0c,
too. Let us mark the elements of the new chain as well as the related generalized
inverse of D by the index c. We claim that Q0c is the canonical projector appearing
in the statement. In other words, the expression

A :=
{
Q0cP1cG

−1
2c BP0c + Q0cQ1cD

−
c (DQ1cD

−
c )′D

}
P0cP1c

is well-defined and vanishes. The verification requires a sophisticated combination of
matrix relations (see [2])

For an index-1 equation the projector P0c defined by formula (3.6) and the pro-
jector P0c = I − Q0c obtained by formula (3.22) coincide; it is a projector onto S0.
For index–2 equations one cannot claim that imP0c = S0 in general.

Due to Lemma 3.1, we may obtain a formally nicer solution representation with
D− := D−

c . In particular, we obtain the next theorem.

Theorem 3.3. For the index-µ tractable equation (µ = 1, 2) there exists a canon-
ical projector Q0c onto N0 such that

Πcan 1 = P0c projects onto Sind 1

Πcan 2 = P0cP1c projects onto Sind 2.

The reflexive generalized inverse D− of D can be chosen so that D−D = P0c holds
and the solutions of the homogeneous equation is x = D−u, where the functions u
satisfy the homogeneous inherent regular ordinary differential equations.

4. Fundamental matrices

In parallel to equation (1.7), one may consider matrix equations

A(DX)′ + BX = 0 (4.1)

with respect to matrices X : I → L(Ck,Cm) for arbitrary k, 1 ≤ k ≤ m, with
coefficients as described in Section 2. We associate some notions with equation (4.1)
and show their significance. For the technical details of the proofs we refer to [2].

Definition 4.1. A matrix function X : I → L(Ck,Cm) will be called a solution
of equation (4.1) if each of its columns is a solution of (1.7) with q = 0.

Thus, if a continuous matrix function X : I → L(Ck,Cm), for which the product
DX is continuously differentiable, satisfies equation (4.1) pointwise, then it is called
a solution of equation (4.1). The relevant function space will be denoted by C1,k

D ,

C1,k
D :=

{
X ∈ C(I, L(Ck,Cm)) : DX ∈ C1(I, L(Ck,Cm))

}
.

Definition 4.2. A solution X ∈ C1,k
D of an index-i equation (4.1) (i=1,2) will be

called a fundamental solution for equation (1.7) if imX = Sind i.

Theorem 3.1 and decomposition (2.5) ensure that m1 := dimSind 1 = r. Similarly,
Theorem 3.2 and decomposition (2.8) result in m2 := dim Sind 2 = r1−(m−r). Hence,
for an index-i equation (i = 1, 2) no fundamental matrix can exist with k < mi.
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Theorem 4.1. Let equation (1.7) be of index i (i = 1, 2). For arbitrary k ≥ mi

and P i ∈ L(Ck,Cm) the function Xi : I → L(Ck,Cm) defined as

Xi(t) = Πcan i(t)D−(t)Ui(t)D(t0)P i

is a fundamental matrix provided that im P 1 = imP0(t0) (i = 1) or imP 2 = im P̂1(t0)
(i = 2), respectively.

Here Ui (i = 1, 2) are the fundamental matrices for the inherent regular ordinary
differential equations (3.5) and (3.17) with Ui(t0) = I. The set of fundamental
matrices is described by the next assertion.

Corollary 4.1. In Theorem 4.1 the matrix P i may be replaced by Πi such that
im Πi = im Πcan i(t0) = Sind i(t0) (i = 1, 2).

To prove the statements, the representation formula can be verified directly.

Remark 4.1. Although Theorem 4.1 allows arbitrary k ≥ mi, the minimal value
k = mi would be sufficient. However, the reasonable choice is k = m. In some cases
it is much easier to construct a projector (k = m) than either a basis (k = mi) in
Sind i or vectors spanning Sind i. Frequently, the projectors are given explicitly by the
form of the equation. Statements claimed in [1] concerning transformations between
different fundamental matrices including those of different sizes remain valid.

As in [1], a kind of normalization may be applied to fundamental matrices of
“maximal size” m and a generalized reflexive inverse can be introduced for them.

Definition 4.3. A fundamental matrix Xi of maximal size m for equation (1.7)
of index i (i = 1, 2) will be called normalized at t = t0 if Πcan i(t0)(Xi(t0)− I) = 0.

Theorem 4.2. For an index-i equation (1.7) (i = 1, 2) and arbitrary t0 ∈ I there
exists a unique fundamental matrix Xi normalized at t = t0, and Xi(t0) = Πcan i(t0)
holds.

For brevity, let us denote the fundamental matrix normalized at t = t̂ by Xi(·, t̂),
while the fundamental matrix Ui of the regular ordinary differential equation (3.5)
or (3.17) normalized by Ui(t̂) = I be denoted by Ui(·, t̂). For the fundamental matrix
Xi(·, t̂) we introduce a generalized reflexive inverse X−

i (·, t̂) by

Xi(t, t̂)X−
i (t, t̂) = Πcan i(t) and X−

i (t, t̂)Xi(t, t̂) = Πcan i(t̂) (4.2)

for all t ∈ I and some fixed t̂ ∈ I.
The last statement of this section provides the group properties.

Theorem 4.3. For the normalized fundamental solutions Xi the identities

X−
i (t2, t1) = Xi(t1, t2) and Xi(t1, t3) = Xi(t1, t2)Xi(t2, t3)

hold for all t1, t2, t3 ∈ I (i = 1, 2).

The proof utilizes only the representations of the fundamental matrices and the
group properties of the normalized fundamental matrices belonging to the inherent
regular ordinary differential equations (3.5) and (3.17).
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5. Adjoint equation

Lemma 2.1 ensures that in the adjoint equation (1.8), i. e., in the equation

A∗(D∗y)′ + B∗y = −p (5.1)

with A∗ := D∗, D∗ := A∗ and B∗ := −B∗, the ordered matrix pair (A∗, D∗) gives rise
to a smooth Cm decomposition provided that the pair (A, D) does so. The projector
R∗ realizing the decomposition satisfies the relation R∗ = R∗. For equation (5.1) let
us introduce subspaces and matrices as we did for equation (1.7) by chain (2.4):

G∗0 := A∗D∗, B∗0 := B∗ = −B∗

Q∗i is a projector onto kerG∗i, P∗i := I −Q∗i
W∗i is a projector, kerW∗i = im G∗i
G∗i+1 := G∗i + B∗iQ∗i, B∗i+1 := B∗iP∗i
N∗i := kerG∗i = imQ∗i
S∗i := {z ∈ Cm : B∗iz ∈ imG∗i} = ker W∗iB∗i (i = 0, 1).

(5.2)

We define the reflexive inverses D−
∗ = A∗− and A−∗ = D∗− with products

A∗A∗− = R∗ = R∗, A∗−A∗ = P∗0, D∗D∗− = I −W∗0, D∗−D∗ = R∗ = R∗.

Remark 5.1. In general, the identities

D−∗ = D∗−P ∗0 , D∗− = D−∗(I −W∗0), A−∗ = (I −W ∗
0 )A∗−, A∗− = P∗0A−∗

hold. However, if we put W0 = Q∗
∗0 (W∗0 = Q∗0), then A∗− = A−∗ (D∗− = D−∗).

Now we aim at presenting the common features of equations (1.7) and (1.8). For
this purpose we point out first several auxiliary assertions connecting the character-
istic subspaces of the pair of equations. To do so we need the auxiliary matrices

Gi+1 := Gi + WiBiQi and G∗i+1 := G∗i + W∗iB∗iQ∗i (i = 0, 1).

The matrices Gi and G∗i are related to Gi and G∗i by the formulas

Gi = GiFi−1, G∗i = G∗iF∗i−1, (5.3)

where
F0 = I + D−A−BQ0

F1 = I + G−1 BP0Q1

F∗0 = I −A∗−D∗−B∗Q∗0
F∗1 = I −G−∗1B

∗P∗0Q∗1.

Here the reflexive inverses of G1 and G∗1 are defined by

G1G
−
1 = I −W1, G−1 G1 = P1, G∗1G−∗1 = I −W∗1, G−∗1G∗1 = P∗1.
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All F -s are non-singular; in order to obtain the corresponding inverses one has to
change the signs + and − for their opposite. Our basic assertion is

Ni ∩ Si = kerGi+1, N∗i ∩ S∗i = kerG∗i+1 (i = 0, 1). (5.4)

It links up the matrix chains (2.4) and (5.2) and the algebraic conditions (2.5)-(2.7)
occurring in the index definition. The connection between chains (2.4) and (5.2) is
established by the relations

kerG1 = kerG∗∗1
F0 kerG2 = kerG∗∗2

kerG∗1 = kerG∗1
F∗0 kerG∗2 = kerG∗2.

(5.5)

Each of identities (5.4) and (5.5) as well as the identities

DS1 = R(A∗N∗1)⊥, A∗S∗1 = R∗(DN1)⊥ (5.6)

can be checked by returning to the formal definition of the subspace under consid-
eration and by utilizing its features (for details see [2]). Note that the subspaces
occurring in claim (5.6) would be associated with equations (1.7) and (1.8) supposed
that the equations were equipped with an index (see Section 3). We can also state the
connection between the projectors onto these subspaces. Namely, if decomposition
(2.2) in condition C1 and relations (2.6) and (2.7) hold, then

(DP̂1D
−)∗ = A∗P̂∗1A∗−. (5.7)

The main point in the verification is to show that

(DN1 ⊕ kerR)⊥ = R∗(DN1)⊥, (A∗N∗1 ⊕ kerR∗)⊥ = R(A∗N∗1)⊥.

Now we can formulate the statement justifying the title of the paper.

Theorem 5.1. Equation (1.8) is of index 1 or of index 2 if and only if equation
(1.7) is so.

Proof. By Lemma 2.1, condition C1 holds for equations (1.7) and (1.8) simulta-
neously. If equation (1.7) satisfies the algebraic condition (2.5), then, together with
G1, G1 is non-singular, which yields N∗0 ∩S∗0 = {0}. This is exactly condition (2.5)
for the adjoint equation (1.8). The opposite direction can be proved similarly. Thus,
we are done with the index-1 case.

For the index-2 case we first check the algebraic relations (2.6) and (2.7). Let
relations (2.2), (2.6) and (2.7) be valid for equation (1.7). Then, the subspace kerG1 =
N0 ∩ S0 has constant dimension m− r1. Therefore m− r1 = dim kerG∗∗1; this yields
m−r1 = dimkerG∗1. Now, applying formula (5.4) we obtain dimN∗0∩S∗0 = m−r1,
i. e., condition (2.6) for the adjoint equation (1.8) is fulfilled. We derive

dim(N∗1 ∩ S∗1) = dimkerG∗2 = dimkerG∗2
= dimkerG2 = dim kerG2 = dim(N1 ∩ S1)

that is, condition (2.7) is transferred from (1.7) to (1.8) and vice versa.
It remains to check whether the smoothness of the subspaces DS1 and DN1 im-

plies that of A∗S∗1 and A∗N∗1. If equation (1.7) is index-2 tractable, the projectors
DP̂1D

−, DQ̂1D
− and I − R are continuously differentiable due to Lemma 2.3. Be-

cause of relation (5.7), A∗P̂∗1A∗− and A∗Q̂∗1A∗− = R∗−A∗P̂∗1A∗− are continuously
differentiable, too, and so are their image spaces A∗S∗1 and A∗N∗1. The proof in
the opposite direction is similar
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As a consequence, the adjoint equation is of the same structure and has the
same properties as the original one. We formulate the next corollary for the index-2
equations. If the index equals 1, the modification is obvious. In the statements,
C1

A∗Q∗1G−1
∗2

:= {x ∈ C : A∗Q∗1G−1
∗2 x ∈ C1}, P̂∗1 denotes the special projector

satisfying P̂∗1 = I − Q∗1G−1
∗2 B∗P∗0. Π∗can i is the canonical projector onto S∗ind i

constructed by the scheme for Πcan i. For greater transparency, the fundamental
matrix of the adjoint equation is denoted by X∗ instead of Y as done in Section 1.

Corollary 5.1. Let equation (1.7) be index-2 tractable.
1. For each p ∈ C1

A∗Q∗1G−1
∗2

, a ∈ A∗(t0)S∗1(t0), t0 ∈ I the initial value problem

for equation (1.8) (equivalently, (5.1)) with initial condition A∗(t0)P̂∗1(t0)y(t0) = a
is uniquely solvable in C1

A∗ .
2. Equation (1.8) has perturbation index 2.
3. Exactly one solution of the homogeneous equation passes through each pair

(t0, y(t0)), t0 ∈ I, y(t0) ∈ S∗ind 2(t0).

Corollary 5.2. Let equation (1.7) be of index i, i = 1 or i = 2. Then, for the
adjoint equation (1.8) and arbitrary t0 ∈ I there exists a unique fundamental matrix
X∗i normalized at t = t0, and it is of the form

X∗i(t, t0) = Π∗can i(t)A∗−(t)U∗i(t)A∗(t0)Π∗can i(t0),

where U∗i is the normalized fundamental matrix of the inherent regular ordinary
differential equation for the adjoint equation (1.8).

If formula (2.1) is applied to solutions forming fundamental matrices of equations
(1.7) and (1.8), then, for an arbitrary pair of fundamental matrices Xi and X∗i (even
of different dimensions), the Lagrange identity takes the form X∗

∗iADXi = const.
If the fundamental matrices are normalized at the same point t = t0, the value

of the above constant can be computed. Indeed,

X∗
∗i(t, t0)A(t)D(t)Xi(t, t0) ≡ X∗

∗i(t0, t0)A(t0)D(t0)Xi(t0, t0)
= Π∗∗can i(t0)A(t0)D(t0)Πcan i(t0). (5.8)

This identity allows to state relationships between the normalized fundamental ma-
trices of equations (1.7) and (1.8). For this purpose, we use the reflexive inverses
defined by formula (4.6) at t̂ = t0 and, similarly, by

X∗i(t, t0)X−
∗i(t, t0) = Π∗can i(t) and X−

∗i(t, t0)X∗i(t, t0) = Π∗can i(t0). (5.9)

We multiply (5.8) from the right by X−
i (t, t0) and take the adjoint

Π∗can iD
∗A∗X∗i = X−∗

i D∗(t0)A∗(t0)Π∗can i(t0). (5.10)

Here and further, the argument t and the pair (t, t0) are omitted.
The explicit formula will be derived only for the index-2 case, which formally

includes the index-1 case (see Remark 3.5). We multiply identity (5.10) by A∗−c D−∗
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from the left (see Subsection 3.3 for A∗−c = D−
∗c). The term A∗(t0)P̂∗1(t0) on the right-

hand side is replaced by A∗(t0)P̂∗1(t0)A∗−(t0)A∗(t0). On both sides there appear
terms for which formula (5.7) applies (with t or t0, respectively). Recalling that
A∗−c A∗ = P∗0c and P∗0cX∗2 = X∗2 hold, we arrive at the explicit expression for
X∗2. Observe that D−∗X−∗

2 = D∗−X−∗
2 is valid. The formula for X2 is the result

of analogous computations and the use of the relation A∗−∗X−∗
2 = A−X−∗

2 . This
possibility of changing A∗−∗ and D−∗ for A− and D∗− here makes clear that the
final statement is independent of special choices of P0, P∗0 and W0, W∗0.

Theorem 5.2. The fundamental matrices of the index-i equations (1.7) and (1.8)
(i = 1, 2) normalized at the same point t = t0 are connected by the formulas

X∗i(t) = A∗−c (t)D∗−(t)X−∗
i (t)D∗(t0)A∗(t0)

Xi(t) = D−
c (t)A−(t)X−∗

∗i (t)A(t0)D(t0)

provided that the reflexive inverses (4.2) and (5.9) are taken and D−
c and A∗−c are

constructed by means of P0c and P∗0c of Lemma 3.1.

6. Final remarks

In our paper we have aimed at giving a precise and detailed analysis of the extended
class of low index differential algebraic equations with not very smooth data as they
arise in lots of applications. As a complement to the present paper, [10] deals with
nonlinear equations. Integration methods are addressed in [7, 9, 10].

One might ask whether it would be possible to allow rank changes in the matrices
A(t) and D(t) and, thus, to weaken the basic condition C1. The following example
shows that rank changes indicate extra-ordinary points. Therefore, they should be
treated as such, even if they are harmless in the context of smooth problems, i. e.,
smooth coefficients and smooth solutions.

System (1.7) with m = 2,

A(t) ≡
(

1 0
0 0

)
, D(t) =

(
0 tδ

0 0

)
, B(t) ≡ I, q(t) =

(
0

γ(t)

)

for t ∈ R and δ > 0 reads (tδx2(t))′ + x1(t) = 0, x2(t) = γ(t). It is tractable with
index 2 on both subintervals I1 = (−∞, 0) and I2 = (0,∞). Due to Theorem 3.2,
for each σ > 0, the continuous function γ such that γ(t) = tσ if t > 0 and γ(t) ≡ 0
if t ≤ 0 gives rise to solutions in the sense of Definition 2.1 on I1 and I2 separately.
Namely,

x1(t) = 0,

x1(t) = −(δ + σ)tδ+σ−1,

x2(t) = 0

x2(t) = tσ
for t ∈ I1

for t ∈ I2.

If δ + σ < 1, i. e., if the coefficients are continuous only, then there is no continuous
extension of the solutions to the entire interval (−∞,∞). The differentiation index is
defined only on I1 and I2 and equals 2, separately. One cannot assign a differentiation
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index to the system on (−∞,∞). The situation is quite different if one restricts
oneself to smooth problems only, i.e., at least δ ≥ 1 and σ ≥ 1 is supposed. In this
smooth case the differentiation index is 2 on (−∞,∞) and the solution is continuously
differentiable, too.
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