
Zeitschrift für Analysis und ihre Anwendungen
Journal for Analysis and its Applications

Volume 21 (2002), No. 4, 865–878

The Set of Divergent Infinite Products
in a Banach Space is σ-Porous

Simeon Reich and Alexander J. Zaslavski

Abstract. Let K be a bounded closed convex subset of a Banach space. We study several
convergence properties of infinite products of non-expansive self-mappings of K. In our
recent work we have considered several spaces of sequences of such self-mappings. Endowing
them with appropriate topologies, we have shown that the infinite products corresponding
to generic sequences converge. In the present paper we prove that the subsets consisting
of all sequences of mappings with divergent infinite products are not only of the first Baire
category, but also σ-porous.
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1. Introduction

The convergence of infinite products of operators is of interest in many areas of
Mathematics and its applications. See, for example, [1, 4 - 6, 8, 15 - 17, 22 - 27,
29] and the references mentioned therein. Given a bounded closed convex subset
K of a Banach space and a sequence A = {At}∞t=1 of self-mappings of K, we are
interested in convergence properties of the sequence of products {An · · ·A1x}∞n=1,
where x ∈ K. In the special case of a constant sequence A we are led to study
the convergence of powers of a single operator. In their classical 1976 paper [10] De
Blasi and Myjak show that the powers of a generic non-expansive self-mapping of K
do converge. Such an approach, when a certain property is investigated for a whole
space of operators and not just for a single operator, has already been successfully
applied in many areas of Analysis. We mention, for instance, the theory of dynamical
systems [11, 30], optimization [14, 28], variational analysis [2], approximation theory
[12, 13], calculus of variations [3, 9, 34] and optimal control [35, 36]. In a recent
paper [25] we extended the De Blasi and Myjak result in several directions to certain
spaces of operator sequences.

In 1989 De Blasi and Myjak [11] refined their 1976 result by using the concept
of porosity [7, 11 - 14, 31 - 33] which we now recall.
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Let (Y, d) be a complete metric space. We denote by B(y, r) the closed ball of
center y ∈ Y and radius r > 0. A subset E ⊂ Y is called porous in (Y, d) if there
exist α ∈ (0, 1) and r0 > 0 such that for each r ∈ (0, r0] and each y ∈ Y there is a
z ∈ Y for which

B(z, αr) ⊂ B(y, r) \ E.

A subset of the space Y is called σ-porous in (Y, d) if it is a countable union of porous
subsets in (Y, d).

Remark. It is known that in the above definition of porosity, the point y can
be assumed to belong to E. Also other notions of porosity have been used in the
literature [7, 31 - 33]. We use the rather strong notion which appears in [11 - 14].

Since porous sets are nowhere dense, all σ-porous sets are of the first category.
If Y is a finite-dimensional Euclidean space Rn, then σ-porous sets are of Lebesgue
measure 0. The existence of a non-σ-porous set P ⊂ Rn, which is of the first Baire
category and of Lebesgue measure 0, was established in [31]. It is easy to see that for
any σ-porous set A ⊂ Rn the set A ∪ P ⊂ Rn also belongs to the family E of all the
non-σ-porous subsets of Rn which are of the Baire first category and have Lebesgue
measure 0. Moreover, if Q ∈ E is a countable union of sets Qi ⊂ Rn (i ≥ 1), then
there is a number j ∈ N for which the set Qj is non-σ-porous. Evidently, this set Qj

also belongs to E . Therefore, one sees that the family E is quite large. Also, every
complete metric space without isolated points contains a closed nowhere dense set
which is not σ-porous [33].

To point out the difference between porous and nowhere dense sets, note that
if E ⊂ Y is nowhere dense, y ∈ Y and r > 0, then there are a point z ∈ Y and a
number s > 0 such that B(z, s) ⊂ B(y, r) \E. If, however, E is also porous, then for
small enough r we can choose s = αr, where α ∈ (0, 1) is a constant which depends
only on E.

In [11] De Blasi and Myjak show that the complement of the set of power conver-
gent non-expansive self-mappings of K is not only of the first Baire category, but also
σ-porous. Thus a natural question is whether the results of [25] can also be refined
in the spirit of [11] by using the notion of porosity. In the present paper we answer
this question in the affirmative.

It turns out that the natural setting for our results is the class of complete
hyperbolic metric spaces which includes not only all Banach spaces, but also other
spaces of interest such as the Hilbert ball and its powers. We emphasize, however,
that all our results are new even in Banach spaces.

To define this class, let (X, ρ) be a metric space and let R denote the real line. We
say that a mapping c : R → X is a metric embedding of R into X if ρ(c(s), c(t)) =
|s − t| for all s, t ∈ R. The image of R under a metric embedding is called a metric
line. The image of a real interval [a, b] = {t ∈ R : a ≤ t ≤ b} under such a mapping
is called a metric segment. Assume that (X, ρ) contains a family M of metric lines
such that for each pair of distinct points x, y ∈ X there is a unique metric line in M
which passes through x and y. This metric line determines a unique metric segment
joining x and y. We denote this segment by [x, y]. For each 0 ≤ t ≤ 1 there is a
unique point z ∈ [x, y] such that ρ(x, z) = tρ(x, y) and ρ(z, y) = (1− t)ρ(x, y). This
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point is denoted by (1 − t)x ⊕ ty. We say that X, or more precisely (X, ρ, M), is a
hyperbolic space if

ρ
(

1
2x⊕ 1

2y, 1
2x⊕ 1

2z) ≤ 1
2ρ(y, z)

for all x, y, z ∈ X. A set K ⊂ X is called ρ-convex if [x, y] ⊂ K for all x, y ∈ K. It
is clear that all normed linear spaces are hyperbolic. A discussion of more examples
of hyperbolic spaces and in particular of the Hilbert ball can be found, for example,
in [24]. In the sequel we will repeatedly use the following fact (cf. [19: pp. 77, 104]
and [24]): If (X, ρ, M) is a hyperbolic space, then

ρ
(
(1− t)x⊕ tz, (1− t)y ⊕ tw

) ≤ (1− t)ρ(x, y) + tρ(z, w)

for all x, y, z, w ∈ X and 0 ≤ t ≤ 1.
The paper is organized as follows. Section 1 is devoted to weak ergodicity in the

sense of population biology (see [25] and the references therein). Our Theorem 1.1 is
a refinement of [25: Theorem 2.2] and also includes the 1989 result of De Blasi and
Myjak [11]. Theorem 2.1 is concerned with the convergence of infinite products to
a (unique) common fixed point. According to [25: Theorem 2.3], the complement of
the set of convergent infinite products is of the first Baire category. Here we show
that it is, in fact, σ-porous. In Section 3 we let F be a closed ρ-convex subset of K
and Q : K → F a non-expansive retraction onto it. We consider several spaces of
sequences of mappings which fix every point of F . Improving upon [25: Theorems
3.2 and 3.3], we show that the complements of the sets of sequences with convergent
infinite products are not only of the first category, but are also σ-porous. To the best
of our knowledge, our results provide the first application of the concept of porosity
to the study of infinite products.

1. Weak ergodicity

Let (X, ρ,M) be a complete hyperbolic space and let K ⊂ X be a non-empty bounded
closed ρ-convex subset of X. Denote by A the set of all continuous mappings A :
K → K. For the space A we consider the metric ρA defined by

ρA(A,B) = sup
x∈K

ρ(Ax,Bx) (A,B ∈ A). (1.1)

It is easy to see that the metric space (A, ρA) is complete. Denote by A the set of all
sequences {At}∞t=1, where each At ∈ A. Such a sequence will occasionally be denoted
by a boldface A. For the space A we consider the metric ρA defined by

ρA
({At}∞t=1, {Bt}∞t=1

)
= sup

t≥1
ρA(At, Bt)

({At}∞t=1, {Bt}∞t=1 ∈ A
)
. (1.2)

Clearly, the metric space (A, ρA) is complete.
An operator A : K → K is called non-expansive if

ρ(Ax,Ay) ≤ ρ(x, y) (x, y ∈ K). (1.3)
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Define
Ane =

{
A ∈ A : A is non-expansive

}
.

It is clear that Ane is a closed subset of A. Further, define

Ane =
{{At}∞t=1 ∈ A : At ∈ Ane

}
.

Clearly, Ane is a closed subset of A. For each A ∈ A, let Â = {Ât}∞t=1 ∈ A be the
constant sequence, where Ât = A (t ≥ 1). Set

d(K) = sup
x,y∈K

ρ(x, y). (1.4)

Further, for each x ∈ K and each E ⊂ K, set

ρ(x,E) = inf
y∈E

ρ(x, y). (1.5)

A sequence {At}∞t=1 ∈ Ane is called regular if for any ε > 0 there exists a
number N ∈ N such that, for each x, y ∈ K, each integer T ≥ N and each mapping
h : {1, . . . , T} → {1, 2, . . .},

ρ
(
Ah(T ) · · ·Ah(1)x,Ah(T ) · · ·Ah(1)y

) ≤ ε.

A mapping A ∈ Ane is called regular if the sequence Â = {At}∞t=1, where At =
A (t ≥ 1), is regular. It is easy to verify that if A ∈ Ane is regular, then there exists
a unique xA ∈ K such that AxA = xA and Anx → xA as n →∞, uniformly on K.

Denote by F the set of all regular elements of Ane. We already know by [25:
Theorem 2.2] that the complement of F is of the first Baire category. In our first
theorem (Theorem 1.1 below) we show that, in fact, it is σ-porous. This theorem
also includes the 1989 result of De Blasi and Myjak [11].

We denote, for each n ∈ N, by Fn the set of all sequences {At}∞t=1 ∈ Ane which
have the following property:

There exists an integer N ∈ N such that, for each x, y ∈ K, each integer T ≥ N
and each mapping h : {1, . . . , T} → {1, 2, . . .},

ρ
(
Ah(T ) · · ·Ah(1)x,Ah(T ) · · ·Ah(1)y

) ≤ 1
n

.

It is not difficult to see that F = ∩∞n=1Fn.

Denote by F (0) the set of all A ∈ Ane such that Â ∈ F , and for each n ∈ N
denote by F (0)

n the set of all A ∈ Ane such that Â ∈ Fn. Clearly, F (0) = ∩∞n=1F (0)
n .

Theorem 1.1.

(i) The set Ane \ F is σ-porous in Ane.

(ii) The set Ane \ F (0) is σ-porous in Ane.
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Proof. To establish this theorem, it is sufficient to show that A \ Fn is porous
in Ane and that Ane \ F (0)

n is porous in Ane for each n ∈ N. To this end, let n ∈ N,
fix θ ∈ K and choose α ∈ (0, 1) such that

α < (1− α)
(
d(K) + 1

)−1(8n)−1. (1.6)

Assume that {At}∞t=1 ∈ Ane and r ∈ (0, 1]. Set

γ = (1− α)r
(
2d(K) + 2

)−1 (1.7)

and choose 2 < N ∈ N such that

Nαr > 2 d(K) + 1. (1.8)

For each t ∈ N, define

Aγtx = (1− γ)Ax⊕ γθ (x ∈ K). (1.9)

It is clear that {Aγt}∞t=1 ∈ Ane. Note that if At = A (t ≥ 1) with A ∈ Ane, then
Aγt = Aγ (t ≥ 1) where

Aγx = (1− γ)Ax⊕ γθ (x ∈ K). (1.10)

Clearly,
ρA

({Aγt}∞t=1, {At}∞t=1

) ≤ γ d(K). (1.11)

Now assume that {Bt}∞t=1 ∈ Ane and that

ρA
({Aγt}∞t=1, {Bt}∞t=1

) ≤ αr. (1.12)

Then (1.11), (1.12) and (1.7) imply

ρ
({At}∞t=1, {Bt}∞t=1

) ≤ αr + γ d(K) ≤ αr +
(1− α)r

2
=

(1 + α)r
2

< r. (1.13)

We will show that, for each x, y ∈ K, each integer T ≥ N , and each mapping
h : {1, . . . , T} → {1, 2, . . .},

ρ
(
Bh(T ) · · ·Bh(1)x,Bh(T ) · · ·Bh(1)y

) ≤ 1
n

. (1.14)

To meet this goal, it is sufficient to show that for each x, y ∈ K and each mapping
r : {1, . . . , N} → {1, 2, . . .} there is an integer m ∈ {1, . . . , N} such that

ρ
(
Br(m) · · ·Br(1)x,Br(m) · · ·Br(1)y

) ≤ 1
n

. (1.15)
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Assume that x, y ∈ K and r : {1, . . . , N} → {1, 2, . . .}. We will show that there is an
m ∈ {1, . . . , N} such that (1.15) holds. Assume the contrary. Then, for each integer
i ∈ [1, N ],

ρ
(
Br(i) · · ·Br(1)x,Br(i) · · ·Br(1)y

)
>

1
n

and ρ(x, y) >
1
n

. (1.16)

Set
x0 = x,

y0 = y,

xi+1 = Br(i+1)xi

yi+1 = Br(i+1)yi

(i = 0, . . . , N − 1). (1.17)

Let i ∈ {0, . . . , N − 1}. Then, by (1.16) - (1.17),

ρ(xi, yi) >
1
n

. (1.18)

By (1.9) and (1.3) we have

ρ
(
Aγr(i+1)xi, Aγr(i+1)yi

)

= ρ
(
(1− γ)Ar(i+1)xi ⊕ γθ, (1− γ)Ar(i+1)yi ⊕ γθ

)

≤ (1− γ)ρ
(
Ar(i+1)xi, Ar(i+1)yi

)

≤ (1− γ)ρ(xi, yi).

(1.19)

It follows from (1.17), (1.19), (1.12), (1.18), (1.7) and (1.6) that

ρ(xi+1, yi+1) = ρ
(
Br(i+1)xi, Br(i+1)yi

)

≤ ρ
(
Br(i+1)xi, Aγr(i+1)xi

)

+ ρ
(
Aγr(i+1)xi, Aγr(i+1)yi

)

+ ρ
(
Aγr(i+1)yi, Br(i+1)yi

)

≤ (1− γ)ρ(xi, yi) + 2αr

= ρ(xi, yi)− γρ(xi, yi) + 2αr

≤ ρ(xi, yi)− γ

n
+ 2αr

= ρ(xi, yi) + 2αr − (2n)−1(1− α)r
(
d(K) + 1

)−1

≤ ρ(xi, yi)− 2αr.

(1.20)

Therefore, by (1.4) and (1.8),

ρ(xN , yN ) ≤ ρ(x0, y0)− 2Nαr ≤ 2d(K)−Nαr < 0

which is a contradiction. The contradiction we have reached yields the existence of
an integer m for which (1.15) is true, and the relation {Bt}∞t=1 ∈ Fn. Thus we have
shown that (see (1.13)){

{Bt}∞t=1 ∈ Ane : ρA
({Aγt}∞t=1, {Bt}∞t=1

)

≤ αr
}
⊂ {

C ∈ Ane : ρ(C,A) < r
} ∩ Fn.

If At = A (t ≥ 1) where A ∈ Ane, then Aγt = Aγ (t ≥ 1) (see (1.10)) and{
B ∈ Ane : ρ(B,Aγ) ≤ αr

} ⊂ {
C ∈ Ane : ρ(C, A) < r

} ∩ F (0)
n .

Consequently, the set Ane \ Fn is porous in Ane and the set Ane \ F (0)
n is porous in

Ane. This completes the proof of Theorem 1.1
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2. Convergence to a common fixed point

We use the notations and definitions introduced in Section 1. Also, we denote by
A∗ne the set of all sequences A = {At}∞t=1 ∈ Ane for which there exists x(A) ∈ K
such that

Atx(A) = x(A) (t ≥ 1). (2.1)

The closure of A∗ne in the metric space (Ane, ρA) will be denoted by Ā∗ne.

Theorem 2.1. Let F be the set of all A = {At}∞t=1 ∈ Ā∗ne for which the following
assertions hold:

(i) There exists x∗ ∈ K such that Atx∗ = x∗ (t ≥ 1).
(ii) For each ε > 0 there exists an N ∈ N such that, for each integer n ≥ N ,

each mapping h : {1, . . . , n} → {1, 2, . . .} and each x ∈ K,

ρ
(
Ah(n) · · ·Ah(1)x, x∗

) ≤ ε. (2.2)

Then the set Ā∗ne \ F is σ-porous in Ā∗ne.

Proof. For each n ∈ N, denote by Fn the set of all sequences {At}∞t=1 ∈ Ā∗ne for
which there exist x(n) ∈ K and an N ∈ N such that, for each integer T ≥ N , each
mapping h : {1, . . . , T} → {1, 2, . . .} and each x ∈ K,

ρ
(
Ah(T ) · · ·Ah(1)x, x(n)

) ≤ 1
n

.

It is not difficult to see that F = ∩∞n=1Fn. Let n ∈ N. We will show that the set
Ā∗ne \ Fn is porous in Ā∗ne. For this choose an α ∈ (0, 1) such that

α < (4n)−1
(
16(d(K) + 1)

)−1
. (2.3)

Assume that {Ãt}∞t=1 ∈ Ā∗ne and r ∈ (0, 1]. There exists {At}∞t=1 ∈ A∗ne such that

ρA
({Ãt}∞t=1, {At}∞t=1

) ≤ r

4
. (2.4)

Let xA ∈ K be such that
AtxA = xA (t ≥ 1). (2.5)

Set
γ = 16−1r

(
d(K) + 1

)−1 (2.6)

and choose an 2 < N ∈ N such that

(1− γ)N
(
2d(K) + 2

)
< (4n)−1. (2.7)

For each t ∈ N define

Aγtx = (1− γ)Atx⊕ γxA (x ∈ K). (2.8)
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Clearly, {Aγt}∞t=1 ∈ A∗ne and

ρA
({Aγt}∞t=1, {At}∞t=1

) ≤ 2γ d(K). (2.9)

Assume that {Bt}∞t=1 ∈ Ane and

ρA
({Aγt}∞t=1, {Bt}∞t=1

) ≤ αr. (2.10)

Then (2.4), (2.9), (2.10), (2.6) and (2.3) imply

ρA
({Ãt}∞t=1, {Bt}∞t=1

) ≤ ρA
({Ãt}∞t=1, {At}∞t=1

)

+ ρ
({At}∞t=1, {Aγt}∞t=1

)

+ ρ
({Aγt}∞t=1, {Bt}∞t=1

)

≤ r

4
+ 2γd(K) + αr

= r(α + 4−1) +
r

4
< r

and
ρA

({Ãt}∞t=1, {Bt}∞t=1

)
< r. (2.11)

We will show that the following property holds:

(P1) For each x ∈ K, each integer T ≥ N and each mapping h : {1, . . . , T} →
{1, 2, . . .}, ρ

(
Bh(T ) · · ·Bh(1)x, xA

) ≤ 1
n .

Let y ∈ K and t ∈ N. By (2.8) and (1.3) we have

ρ(Aγty, xA) = ρ
(
(1− γ)Aty ⊕ γxA, xA

)

≤ (1− γ)ρ(Aty, xA)

≤ (1− γ)ρ(y, xA).

(2.12)

When combined with (2.10), this inequality implies

ρ(Bty, xA) ≤ ρ(Aγty, xA) + ρ(Bty,Aγty) ≤ αr + (1− γ)ρ(y, xA) (2.13)

for each t ∈ N and each y ∈ K.
Assume that x ∈ K, T ≥ N , and h : {1, . . . , T} → {1, 2, . . .}. Set

x0 = x

xi+1 = Bh(i+1)xi (i ≥ 0).
(2.14)

It follows from (2.13) that, for any integer i ∈ N0,

ρ(xi+1, xA) ≤ αr + (1− γ)ρ(xi, xA).
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Using induction we see that, for i = 1, . . . , T ,

ρ(xi, xA) ≤ (1− γ)iρ(x0, xA) + αr

( i−1∑
t=0

(1− γ)t

)
. (2.15)

By (2.14), (2.15), (1.4), (2.6), (2.3) and (2.7),

ρ
(
Bh(T ) · · ·Bh(1)x, xA

)
= ρ(xT , xA)

≤ (1− γ)T ρ(x0, xA) + γ−1αr

≤ (1− γ)Nd(K) + γ−1αr

= (1− γ)Nd(K) + 16(d(K) + 1)α

≤ (1− γ)Nd(K) + (4n)−1

<
1
n

and
ρ
(
Bh(T ) · · ·Bh(1)x, xA

)
<

1
n

. (2.16)

Therefore property (P1) holds.
We have shown that (2.10) implies (2.11) and property (P1). If, in addition,

{Bt}∞t=1 ∈ Ā∗ne, then {Bt}∞t=1 ∈ Fn. Hence Ā∗ne\Fn is porous in Ā∗ne. This completes
the proof of Theorem 2.1

3. Convergence to a retraction

We continue to use the notations and definitions introduced in the previous sections.
Assume that F is a non-empty closed ρ-convex subset of K. Denote by A(F ) the set
of all A ∈ A such that

Ax = x (x ∈ F ) and ρ(Ay, x) ≤ ρ(y, x) (x ∈ F, y ∈ K). (3.1)

It is clear that A(F ) is a closed subset of A. Denote by A
(F )
u the set of all uniformly

continuous A ∈ A(F ) and by A
(F )
ne the set of all A ∈ A(F ) such that

ρ(Ax,Ay) ≤ ρ(x, y) (x, y ∈ K). (3.2)

Clearly, A
(F )
u and A

(F )
ne are closed subsets of A(F ). Denote by

A(F ) the set of all {At}∞t=1 ∈ A such that At ∈ A(F )

A(F )
u the set of all {At}∞t=1 ∈ A such that At ∈ A

(F )
u

A(F )
ne the set of all {At}∞t=1 ∈ A such that At ∈ A

(F )
ne .

Clearly, A(F ), A(F )
u and A(F )

ne are closed subsets of A. We consider the metric spaces
(A(F ), ρA), (A(F )

u , ρA) and (A(F )
ne , ρA). We assume that there exists Q ∈ A(F ) such

that Q(K) = F .
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A sequence {At}∞t=1 ∈ A(F ) is called normal if the following two properties hold:
(i) For each mapping h : {1, 2, . . .} → {1, 2, . . .} there exists an operator Ph :

K → F such that limt→∞Ah(T ) · · ·Ah(1)x = Phx for all x ∈ K.
(ii) For each ε > 0 there exists an N ∈ N such that, for each integer T ≥ N , each

mapping h : {1, 2, . . .} → {1, 2, . . .} and each x ∈ K, ρ
(
Ah(T ) · · ·Ah(1)x, Phx

) ≤ ε.

Denote by F the set of all normal sequences in A(F ). Let n ∈ N. Denote by Fn

the set of all {At}∞t=1 ∈ A(F ) for which there exists an N ∈ N such that, for each
x ∈ K, each integer T ≥ N and each mapping h : {1, 2, . . . , T} → {1, 2, . . .},

ρ
(
Ah(T ) · · ·Ah(1)x, F

)
<

1
n

.

It is not difficult to see that F = ∩∞n=1Fn.
We will prove the following result.

Theorem 3.1.
(i) The set A(F ) \ F is σ-porous in (A(F ), ρA).

(ii) The set A(F )
u \ F is σ-porous in (A(F )

u , ρA) if Q ∈ A
(F )
u .

(iii) The set A(F )
ne \ F is σ-porous in (A(F )

ne , ρA) if Q ∈ A
(F )
ne .

A mapping A ∈ A(F ) is called normal if the constant sequence {At}∞t=1 with
At = A (t ≥ 1) is normal. Denote by F (0) the set of all normal mappings A ∈ A(F ).

Theorem 3.2.
(i) The set A(F ) \ F (0) is σ-porous in (A(F ), ρA).

(ii) The set A
(F )
u \ F (0) is σ-porous in (A(F )

u , ρA) if Q ∈ A
(F )
u .

(iii) The set A
(F )
ne \ F (0) is σ-porous in (A(F )

ne , ρA) if Q ∈ A
(F )
ne .

Proof of Theorems 3.1 and 3.2. Let n ∈ N and choose a number α ∈ (0, 1)
such that

α < 32−1(4n)−1
(
d(K) + 1

)−1
. (3.3)

Assume that {At}∞t=1 ∈ A(F ) and r ∈ (0, 1]. Set

γ = 32−1r
(
d(K) + 1

)−1 (3.4)

and choose a natural number N > 2 such that

(1− γ)N2
(
d(K) + 2

)
< (4n)−1. (3.5)

At last, for each t ∈ N define

Aγtx = (1− γ)Atx⊕ γQx (x ∈ K). (3.6)

Clearly,
{Aγt}∞t=1 ∈ A(F )
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if {At}∞t=1 ∈ A(F )
u and Q ∈ A

(F )
u , then {Aγt}∞t=1 ∈ A(F )

u

if {At}∞t=1 ∈ A(F )
ne and Q ∈ A

(F )
ne , then {Aγt}∞t=1 ∈ A(F )

ne .
Note that if At = A (t ≥ 1) with A ∈ A, then Aγtx = (1−γ)Ax⊕γQx for all x ∈ K
and t ≥ 1. Evidently,

ρA
({Aγt}∞t=1, {At}∞t=1

) ≤ γ d(K). (3.7)

Assume that {Bt}∞t=1 ∈ A(F ) and

ρA
({Aγt}∞t=1, {Bt}∞t=1

) ≤ αr. (3.8)

Relations (3.7), (3.8), (3.4) and (3.3) imply

ρA
({Bt}∞t=1, {At}∞t=1

) ≤ ρA
({At}∞t=1, {Aγt}∞t=1

)
+ ρA

({Aγt}∞t=1, {Bt}∞t=1

)

≤ αr + γ d(K)

≤ αr +
r

8
< r.

(3.9)

Let T ≥ N be an integer, x ∈ K, and h : {1, . . . , T} → {1, 2, . . .}. We will show that

ρ
(
Bh(T ) · · ·Bh(1)x, F

)
<

1
n

.

It is sufficient to show that

ρ
(
Bh(N) · · ·Bh(1)x, F

)
<

1
n

.

Let y ∈ K and t ∈ N. By (3.6) and (3.1), for each z ∈ F ,

ρ(Aγh(t)y, F ) ≤ ρ
(
Aγh(t)y, (1− γ)z ⊕ γQy

)

= ρ
(
(1− γ)Ah(t)y ⊕ γQy, (1− γ)z ⊕ γQy)

)

≤ (1− γ)ρ(Ah(t)y, z)

≤ (1− γ)ρ(y, z)

and
ρ(Aγh(t)y, F ) ≤ (1− γ)ρ(y, z)

for all z ∈ F . Therefore,

ρ(Aγh(t)y, F ) ≤ (1− γ)ρ(y, F ).

When combined with (3.8), this inequality implies

ρ(Bh(t)y, F ) ≤ ρ(Aγh(t)y, F ) + ρ(Aγh(t)y, Bh(t)y)

≤ αr + (1− γ)ρ(y, F ).
(3.10)
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By induction, using (3.10), we obtain for i = 1, . . . , N

ρ
(
Bh(i) · · ·Bh(1)x, F

) ≤ ρ(x, F )(1− γ)i + αr

i−1∑
t=0

(1− γ)t.

It follows from this inequality, (1.4), (3.4), (3.5) and (3.3) that

ρ
(
Bh(N) · · ·Bh(1)x, F

) ≤ (1− γ)Nd(K) + γ−1αr

≤ (1− γ)Nd(K) + 32
(
d(K) + 1

)
α

<
1
n

.

Thus we have shown that

ρ
(
Bh(T ) · · ·Bh(1)x, F

)
<

1
n

for each x ∈ K, each integer T ≥ N and each mapping h : {1, . . . , T} → {1, 2, . . .},
and hence

{Bt}∞t=1 ∈ Fn. (3.11)

Therefore, for each {Bt}∞t=1 satisfying (3.8), relations (3.9) and (3.11) hold. This
implies that A(F ) \Fn is porous in (A(F ), ρA). Since F = ∩∞n=1Fn, we conclude that
A(F ) \ F is σ-porous in (A(F ), ρA). It is not difficult to see that we have also proved
the remaining statements of Theorems 3.1 and 3.2
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