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Abstract. We investigate integration with respect to a finitely additive measure of inte-
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1. Introduction

The importance for Mathematical Economics of integrating correspondences with
values in infinite dimensional commodity spaces is widely recognized. This has lead
to an increasing interest in multi-valued integration of Banach-valued integrands.
However, the finitely additive case, that would be of great interest for defining perfect
competitions, according to [3], has been quite neglected so far.

In [20] we investigated integration with respect to a finitely additive measure of
integrands with compact and convex values, fulfilling suitable measurability assump-
tions, and we obtained a compactness and convexity result for the Aumann integral.
In this paper we consider integrands that are only weakly compact and convex-valued.
The range space is assumed to be a separable and reflexive Banach space.

The first problem arising in the finitely additive setting is the existence of selec-
tions; the condition assumed in [20] to overcome this difficulty immediately leads to
the compactness of the values of the integrand, so it cannot be used here. Therefore
here we define the Aumann integral by means of the Pettis integrable selections.

The Aumann integral, obtained via Pettis integrable selections, was already stud-
ied in the countably additive case in [1, 2, 25, 26] and it is also used in the paper of
Tourki and Yannelis [24] in order to compare the core and the set of walrasian Pettis
integrable allocations in a suitable economy. The allocation they obtain exhibits a
”pathological behaviour” of the Pettis integral, namely integrands with values in the
positive cone of a non-separable Banach lattice may give a zero integral. This is not
the case here due to the separability of the target space.
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For the Aumann integral we obtain, under standard measurability assumptions,
an extension of the classical theorem on existence of measurable selections holding
in a measure space [8: Theorem III.6]. Then we define scalarly the Stone extensions
for the selections, using the identification of the target space with its bidual.

Finally, with the use of Radström’s Embedding Theorem and the identification of
the Aumann and the Debreu integral for the Stone extension we achieve the closedness
and the convexity of the Aumann integral in this more general case.

We would like to thank Domenico Candeloro for his advice, suggestions and
kind help. We are also greatly indebted to Achille Basile who suggested us many
improvements as well as to Hans Weber, Patrizia Berti and Pietro Rigo who pointed
out to us some examples.

2. Definitions and notation

Let Ω be a set, Σ a σ-algebra of subsets of Ω and µ : Σ → [0, +∞) a bounded finitely
additive measure. Further, let X be a reflexive, separable Banach space. With X∗

we denote its topological dual and with X1 and X∗
1 the unit balls of X and X∗,

respectively.

Definition 2.1. A function f : Ω → X is said to be
(i) Σ-measurable if f−1(B) ∈ Σ for every Borelian set B of X;
(ii) totally measurable if there exists a sequence of simple functions (fn)n µ-

converging to f ;
(iii) Scalarly µ-measurable if x∗f is totally measurable for all x∗ ∈ X∗.

Note that the condition of Σ-measurability of f in turn implies that x∗f has
measurable level sets for every x∗ ∈ X∗. We denote by L1

µ(X) the space of totally
measurable functions f which are Bochner integrable [13: Definition III.2.17]. Ob-
serve that, if f is Σ-measurable and |f | is dominated by some g ∈ L1

µ(R+
0 ), then f is

scalarly µ-measurable.
We now introduce the Pettis integral in the finitely additive case.

Definition 2.2. Let f be a scalarly µ-measurable function such that x∗f ∈
L1

µ(R) for all x∗ ∈ X∗. If for all E ∈ Σ there exists xE ∈ X such that x∗(xE) =∫
E

x∗f dµ, then f is said to be Pettis integrable.

We denote by P (µ,X) the space of all Pettis integrable functions f : Ω → X
and we introduce in this space the usual norm

|f |P = sup
x∗∈X∗

1

∫

Ω

|x∗f | dµ.

Further, we denote by cb(X) (resp. ck(X)) the family of non-empty, bounded, convex,
closed (resp. compact) subsets of X. Let h be the Hausdorff distance on cb(X),
namely h(C,D) = sup{e(C,D), e(D, C)}, where e(C, D) = sup{d(x,D) : x ∈ C}
with d(x, D) = inf{‖x− y‖ : y ∈ D}. For all C ∈ cb(X) we set |C| = h(C, {0}).

In this paper we always consider multifunctions F with values in cb(X).



The Finitely Additive Integral of Multifunctions 853

Definition 2.3. A multifunction F : Ω → cb(X) is said to be

(i) strongly measurable if F−(C) =
{
ω ∈ Ω : F (ω)∩C 6= ∅} ∈ Σ for every closed

set C;

(ii) Effros measurable or weakly measurable if F−(A) =
{
ω ∈ Ω : F (ω) ∩ A 6=

∅} ∈ Σ for every open set A.

Obviously, if the multifunction F : Ω → cb(X) is strongly measurable, it is also
weakly measurable (since every open set is a Fσ-set) while the converse fails to be
true (for an example we refer to [22: p. 255]).

A multifunction F : Ω → cb(X) admits a Castaing representation if there exists
a sequence of Σ-measurable scalarly µ-measurable selections (σn)n such that, for all
ω ∈ Ω,

F (ω) = cl{σ1(ω), σ2(ω), . . .}
where cl A denotes the closure of A. It is well known that, in the countably additive
case, F is weakly measurable if and only if F admits a Castaing representation (when
X is a separable complete metric space and F takes closed non-empty values see, for
example, [8: Theorems III.6 and III.7]). In Corollary 3.5 we will give an analogous
result in the finitely additive case.

We denote by S1
F and S1

F,P the families of all the selections of F which are
Bochner and Pettis integrable, respectively.

We can define the Aumann integral in the following way:

Definition 2.4. If F : Ω → cb(X) is a (weakly) measurable multifunction such
that S1

F,P 6= ∅, then

(A)−
∫

E

F dµ =
{∫

E

f dµ : f ∈ S1
F,P

}
. (1)

Definition 2.5. A multifunction F : Ω → cb(X) is said to be integrably bounded
if there exists a function g ∈ L1

µ(R+
0 ) such that |F |(ω) ≤ g(ω) µ-almost everywhere.

We recall that if µ is countably additive and F is integrably bounded, since X
is separable, S1

F = S1
F,P thanks to the Pettis Theorem (see [11: p. 42]). So in the

countably additive case we obtain the classical Aumann integral.

Remark 2.6. The Aumann integral defined by (1) is convex. In fact, if f1, f2 ∈
S1

F,P , then for all α ∈ [0, 1] we have αf1 + (1 − α)f2 ∈ S1
F,P . Moreover, if F is

integrably bounded, it is also bounded:

∣∣∣∣(A)−
∫

E

F dµ

∣∣∣∣ = sup
f∈S1

F,P

∥∥∥∥(P )−
∫

E

f dµ

∥∥∥∥ = sup
f∈S1

F,P

sup
x∗∈X∗

1

∣∣∣∣
∫

E

x∗f dµ

∣∣∣∣ ≤
∫

E

g dµ.
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3. Existence of selections

Selection theorems have been given by several authors (see, for example, [8]). We
give here an existence theorem for Pettis integrable selections in the finitely additive
case.

Proposition 3.1. If the multifunction F : Ω → cb(X) is weakly measurable and
integrably bounded, then S1

F,P 6= ∅.
Proof. Thanks to the separability of X it is possible to construct analogously

to [8: Theorem III.6] a sequence of Σ-measurable functions (fp)p which is uniformly
Cauchy and such that

d
(
fp(ω), F (ω)

)
= inf

{‖fp(ω)− x‖ : x ∈ F (ω)
}

<
1
2p

(ω ∈ Ω).

Hence f = limn fn exists. Also, f is Σ-measurable and it is such that f(ω) ∈ F (ω)
since F has closed values.

Since F is integrably bounded, there exists g ∈ L1
µ(R+

0 ) dominating F , and this
implies the scalar µ-measurability and the scalar µ-integrability of f .

For every E ∈ Σ, let TE : X∗ → R+
0 be the linear functional defined by TE(x∗) =∫

E
x∗f dµ. Since g dominates F , we get

sup
x∗∈X∗

1

|TE(x∗)| ≤ sup
x∗∈X∗

1

∫

E

|x∗f | dµ ≤
∫

Ω

g dµ < ∞.

So TE is continuous, i.e. TE ∈ X∗∗. Since X is reflexive, TE ∈ X. Then f is Pettis
integrable. In this way we have proved that S1

F,P 6= ∅
Remark 3.2. In the proof of Proposition 3.1 we can observe that the mere weak

measurability ensures the existence of Σ-measurable selections, while to obtain the
existence of Pettis integrable selections we also need that F is integrably bounded.

In [22] the following result is proven:

Proposition 3.3 [22: Proposition 11.5.5]. Let X be a separable metric space
and let F,G : Ω → ck(X) be strongly measurable multifunctions. Then the set

Ω0 =
{
ω ∈ Ω : F (ω) ∩G(ω) 6= ∅}

belongs to Σ and the multifunction F ∩G : Ω0 → ck(X) is strongly measurable.

However, one can easily show that the assumption ”X a separable metric space”
can be replaced by ”X is second countable”. Therefore, since in our setting X is
separable and reflexive, the following result holds:

Proposition 3.4. Let F,G : Ω → 2X \ {∅} be two weakly measurable multifunc-
tions such that

Ω0 =
{
ω ∈ Ω : F (ω) ∩G(ω) 6= ∅} ∈ Σ.

Then I : Ω0 → cb(X) defined by I(ω) = F (ω) ∩G(ω) is weakly measurable.

Corollary 3.5. A function F : Ω → cb(X) is weakly measurable if and only if
it admits a Castaing representation.

Proof. The proof is analogous to that of [8: Theorem III.7] and is therefore
omitted here



The Finitely Additive Integral of Multifunctions 855

Analogously to [8: Theorem III.41] the following two statements can be proved:

Proposition 3.6. Let f : Ω → X be a Σ-measurable function, F : Ω → cb(X)
a weakly measurable and integrably bounded multifunction and r : Ω → R+

0 the scalar
function defined by r(ω) = inf{‖f(ω)− x‖ : x ∈ F (ω)}. Then r is Σ-measurable.

Proposition 3.7. Let f : Ω → X be a Σ-measurable function, F : Ω → cb(X)
a weakly measurable and integrably bounded multifunction and r : Ω → R+

0 the scalar
function defined by r(ω) = inf{‖f(ω) − x‖ : x ∈ F (ω)}. Then for all ω ∈ Ω there
exists xω ∈ F (ω) such that r(ω) = ‖f(ω)− xω‖.

We introduce now the multifunction

Γf (ω) =
{

x ∈ F (ω) : ‖f(ω)− x‖ = r(ω)
}

= F (ω) ∩ (
f(ω) + r(ω)X1

)
.

By Proposition 3.7, Γf has non-empty values for every ω ∈ Ω.

Proposition 3.8. Let F : Ω → cb(X) be a weakly measurable and integrably
bounded multifunction, f a Σ-measurable function and r : Ω → R+

0 the scalar func-
tion defined by r(ω) = inf{‖f(ω) − x‖ : x ∈ F (ω)}. Then the map Γf is weakly
measurable and integrably bounded.

Proof. By Proposition 3.6, r is Σ-measurable. The multifunction B(ω) = f(ω)+
r(ω)X1 is then weakly measurable. In fact, if {un}n∈N is dense in X1, then (σn)n

is a Castaing representation of B, where σn(ω) = f(ω) + r(ω)un and every σn is Σ-
measurable. But B is then weakly measurable by Corollary 3.5. By Proposition 3.4,
Γf is weakly measurable and integrably bounded (since F is integrably bounded)

4. The Stone extensions

Let (S,G) be the Stone space associated to (Ω,Σ, µ), let τ : Σ → G be the Stone
isomorphism, Gσ the σ-algebra generated by G, and µ̄ : Gσ → R+

0 the extended
measure in the Stone sense of µ. The space (S,Gσ, µ̄) is said to be the Stone space
associated to (Ω, Σ, µ). For what concerns the terminology and results on this topic
we refer to [23].

Definition 4.1. If F : Ω → cb(X) is a simple, weakly measurable multifunction,

F =
n∑

i=1

Ci1Ei

where Ci ∈ cb(X) and Ei ∈ Σ, we define F : S → cb(X) by

F =
n∑

i=1

Ci1τ(Ei).

Using Radström’s Embedding Theorem [21: Theorem 2], the multifunction F
can be viewed as a single-valued function in a suitable Banach space B.
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Definition 4.2. A weakly measurable multifunction F : Ω → cb(X) is totally
measurable if there exists a sequence of simple and weakly measurable multifunctions
(Fn)n with values in cb(X) such that, for all α > 0,

lim
n→∞

µ
({

ω ∈ Ω : h(Fn(ω), F (ω)) > α
})

= 0

where h is the Hausdorff distance.

We denote by TM(
Ω,Σ, µ, cb(X)

)
the space of all cb(X)-valued multifunctions

that are totally measurable.

Definition 4.3 [9]. A totally measurable multifunction F : Ω → cb(X) is said
to be Debreu-integrable (briefly (D)-integrable) if there exists a sequence of simple,
weakly measurable multifunctions (Fn)n with values in cb(X) such that

(i) h(Fn, F ) µ-converges to zero
(ii) limk,n→∞

∫
Ω

h(Fk, Fn) dµ = 0.

Then, for all E ∈ Σ,
(
(D)−∫

E
Fndm

)
n

is a Cauchy sequence in (cb(X), h) and there-
fore it admits a limit in (cb(X), h). We set then

(D)−
∫

E

F dµ = lim
n→∞

(D)−
∫

E

Fndµ.

The sequence (Fn)n will be said to be defining for F . We denote by L1
(
Ω,Σ, µ, cb(X)

)
the space of all cb(X)-valued multifunctions that are (D)-integrable.

If F ∈ TM(
Ω, Σ, µ, cb(X)

)
, it is possible to construct its Stone extension F via

simple multifunctions.
By the completeness of X, F takes values in cb(X) µ̄-almost everywhere, and if F

is integrably bounded, then F also is integrably bounded. In fact, let g̃ ∈ L1
µ̄(R+

0 ) be
the Stone extension of g = |F |, that is g̃ = |F |. It is known that g̃ = |F |. Moreover,
if F ∈ L1

(
Ω,Σ, µ, cb(X)

)
, then

(D)−
∫

E

F dµ = lim
n→∞

(D)−
∫

E

Fndµ

= lim
n→∞

kn∑

i=1

Cn
i µ(E ∩ En

i )

= lim
n→∞

kn∑

i=1

Cn
i µ̄

(
τ(E) ∩ τ(En

i )
)

= lim
n→∞

(D)−
∫

τ(E)

Fndµ̄

= (D)−
∫

τ(E)

F dµ̄.

Our next scope is to define a Stone extension for a scalarly µ-measurable selection
of an integrably bounded and totally measurable multifunction F . We suppose that
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Σ is complete with respect to µ, that is Σ contains all the subsets of µ-null sets. In
this case a scalarly µ-measurable selection of F is also scalarly Σ-measurable.

Let S1 be a subset of S such that |F |(s) is real-valued for s ∈ S1. Note that, since
|F | ∈ L1

µ̄(R+
0 ), then µ̄(Sc

1) = µ̄
({

s ∈ S : |F |(s) = +∞})
= 0. Let f : Ω → X be a

scalarly µ-measurable function dominated by |F |. We will introduce a new function
φ : S1 → X that will be the Stone extension of f .

Let x∗ ∈ X∗ be fixed. The function x∗f is real-valued and we denote by x∗f
its Stone extension. For s ∈ S1, let φ(s) : X∗ → R be the functional defined
by φ(s)(x∗) = x∗f(s). φ(s) is linear and bounded thanks to the properties of scalar
Stone extension (see, for example, [23]). Therefore, φ is defined µ̄-almost everywhere.
We observe that, in effect, if f is totally measurable the extension obtained in this
way coincides µ̄-a.e. with that obtained via simple functions.

Proposition 4.4. The function φ is totally measurable (and (B)-integrable).

Proof. On S1 we have x∗φ = x∗f by definition. Thus φ is scalarly measurable
and so, thanks to the Pettis Theorem, totally measurable since X is separable and µ̄
is a measure. Since φ is dominated by |F | ∈ L1

µ̄(R+
0 ), φ is also Bochner integrable

5. Comparison of Aumann and Debreu integrals

From now on we suppose that Σ is complete with respect to µ. We recall that F is
µ̄-almost everywhere cb(X)-valued. Let S2 be the subset of all s ∈ S1 such that F (s)
is cb(X)-valued.

Teorem 5.1. Let F : Ω → cb(X) be a totally measurable and integrably bounded
multifunction. If f ∈ S1

F,P , then its Stone extension belongs to S1
F
.

Proof. By Proposition 4.4, φ ∈ L1
µ̄(X). We only have to prove that φ is a

selection of F . The multifunction Fx∗ : Ω → ck(R) defined by

Fx∗(ω) = {x∗(x) : x ∈ F (ω)} = x∗(F (ω))

is compact, convex-valued. We now prove that F x∗ = Fx∗ µ̄-almost everywhere. If
F is simple, F =

∑n
i=1 Ci1Ei , then by definition F =

∑n
i=1 Ci1τ(Ei) and so

F x∗ =
n∑

i=1

x∗(Ci)1τ(Ei)

Fx∗ =
n∑

i=1

x∗(Ci)1Ei =
n∑

i=1

x∗(Ci)1τ(Ei).

Consequently, the two multifunctions coincide in the simple case.
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We suppose now that F is totally measurable. Let (Fn)n be a defining sequence
for F . We prove that ((Fn)x∗)n is defining for Fx∗ . Indeed,

e
(
(Fn)x∗(ω), Fx∗(ω)

)
= sup

t∈x∗Fn(ω)

d(t, Fx∗(ω))

= sup
t∈x∗Fn(ω)

inf
s∈Fx∗ (ω)

|t− s|

= sup
η∈Fn(ω)

inf
σ∈F (ω)

|x∗η − x∗σ|

≤ sup
η∈Fn(ω)

inf
σ∈F (ω)

‖η − σ‖

= e
(
Fn(ω), F (ω)

)
.

The same relation holds for the other excess, so

hR+
0

(
(Fn)x∗(ω), Fx∗(ω)

) ≤ hX

(
Fn(ω), F (ω)

)
.

Then, by definition of the Stone extension, (Fn)x∗ µ̄-converges to Fx∗ . Since (Fn)x∗ =
(Fn)x∗ for all n ∈ N and (Fn)n is defining for F , then (Fn)x∗ is defining for F x∗

and so F x∗ = Fx∗ µ̄-almost everywhere (obviously, the µ̄-null set depends on x∗).
So we have that for all x∗ ∈ X∗ there exists a µ̄-null set Nx∗ such that x∗φ ∈ Fx∗

for all ω 6∈ Nx∗ . In fact, x∗f ∈ S1
Fx∗ for all x∗ ∈ X∗, and so by [20: Theorem 5.1],

x∗φ = x∗f ∈ S1
Fx∗

. Since Fx∗ = F x∗ µ̄-almost everywhere we have obtained that

x∗φ ∈ S1
F x∗

, i.e. x∗φ(s) ∈ F x∗(s) for all s 6∈ Nx∗ .

Let D = {x∗n}n∈N be dense in X∗ and set S̃ = S2 \ ∪nNx∗n . By the countable
additivity of µ̄, we have µ̄(S̃) = µ̄(S2). Moreover, if we suppose that there exists
s ∈ S̃ such that φ(s) 6∈ F (s), a separation argument [13: p. 417/n. 10] leads to a
contradiction

Proposition 5.2. For every E ∈ Σ and every f ∈ S1
F,P one has

(P )−
∫

E

f dµ = (B)−
∫

τ(E)

φdµ̄.

Proof. It is enough to observe that, for every x∗ ∈ X∗ fixed,

x∗
(

(B)−
∫

τ(E)

φdµ̄

)
=

∫

τ(E)

x∗φdµ̄

=
∫

τ(E)

x∗f dµ̄

=
∫

E

x∗f dµ

= x∗
(

(P )−
∫

E

f dµ

)

and the statement is proved
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Remark 5.3. From the previous result we have

(A)−
∫

E

F dµ =
{

(P )−
∫

E

f dµ

∣∣∣∣ f ∈ S1
F,P

}

=
{

(B)−
∫

τ(E)

f dµ̄

∣∣∣∣ f ∈ S1
F,P

}

⊆ (A)−
∫

τ(E)

F dµ̄

(2)

The aim of this section is to prove that (2) is in fact an equality. From now
on we suppose that L1

µ(X) is complete. There are several papers concerning the
completeness of L1

µ(X) in the finitely additive case; we mention, for instance, [4, 5,
16]. We give more details and examples in the last section.

Teorem 5.4. Suppose that F : Ω → cb(X) is a totally measurable and integrably
bounded multifunction and ψ ∈ S1

F
. Then there exists a Σ-measurable, Bochner

integrable function f such that its Stone extension φ is equal to ψ µ̄-almost everywhere
and µ

({
ω ∈ Ω : d(f, F ) ≥ α

})
= 0 for all α > 0.

Proof. The proof is an adaption to the weakly sequentially compact case of that
given in [20: Theorem 5.6]

It is known that if C ∈ cb(X), then cl{C + εX1} = C + εX1 and C = ∩ε>0(C +
εX1).

Theorem 5.5. Let F : Ω → cb(X) be a totally measurable and integrably
bounded multifunction. Then for all E ∈ Σ

cl
{

(A)−
∫

E

F dµ

}
= (A)−

∫

τ(E)

F dµ̄

where τ : Σ → G, as in Section 4, is the Stone isomorphism.

Proof. The right-hand side is closed. The first inclusion follows from Remark
5.3. We now prove that

(A)−
∫

τ(E)

F dµ̄ ⊆ cl
{

(A)−
∫

E

F dµ

}
.

Let ψ ∈ S1
F

and α > 0 be fixed. By Theorem 5.4 there exists f ∈ L1
µ(X) such that

the Stone extension φ of f is equal to ψ, µ̄-almost everywhere, and f ∈ S1
F+αX1

.
Let Γf be as in Proposition 3.8. This multifunction is weakly measurable, integrably
bounded and so, by Proposition 3.1, it admits Pettis integrable selections.

If g ∈ S1
Γf ,P , then g ∈ S1

F,P and µ-almost everywhere ‖f(ω)− g(ω)‖ = r(ω) ≤ α.
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Moreover,
∥∥∥∥(P )−

∫

E

g dµ− (P )−
∫

E

f dµ

∥∥∥∥

= sup
x∗∈X∗

1

∣∣∣∣x∗
(

(P )−
∫

E

g dµ

)
− x∗

(
(P )−

∫

E

f dµ

)∣∣∣∣

≤ sup
x∗∈X∗

1

∫

E

|x∗(g − f)| dµ

≤ αµ(E)X1.

Then
(B)−

∫

τ(E)

ψ dµ̄ = (B)−
∫

τ(E)

φdµ̄

= (P )−
∫

E

f dµ ∈ (A)−
∫

E

(F + αX1) dµ

⊆ cl
{

(A)−
∫

E

Fdµ + αµ(E)X1

}
.

In fact, f(ω) = f(ω)− g(ω) + g(ω) and f − g ∈ S1
αX1

. Therefore,

(P )−
∫

E

f dµ = (P )−
∫

E

(f − g) dµ + (P )−
∫

E

g dµ

∈
{

αµ(E)X1 + (A)−
∫

E

F dµ

}
.

Since cl
{
(A)−∫

E
F dm

}
belongs to cb(X), we obtain

∫

τ(E)

ψ dµ̄ ∈ cl
{

(A)−
∫

E

F dµ

}
+ αµ(E)X1.

So, by the arbitrariness of α > 0,
∫

τ(E)

ψ dµ̄ ∈ cl
{

(A)−
∫

E

F dµ

}

and the statement is proved

We are now ready to prove that the Aumann integral of F is closed. Let j :
S1

F,P → L1
µ̄(X) be the map which sends every Pettis integrable selection into its

Stone extension.

Proposition 5.6. The set j(S1
F,P ) is convex and closed in L1

µ̄(X).

Proof. The convexity follows from the fact that F is convex-valued, while the
closedness may be proved in the same way as in [20: Lemma 5.1]

We recall that the dual of L1
µ̄(X) is L∞µ̄ (X∗) (see, for example, [12]) and we

denote by σ(L1, L∞) the weak topology on L1
µ̄(X).

The following statement is well known:
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Proposition 5.7. The operator T : L1
µ̄(X) → X defined by

T (φ) =
∫

S

φ dµ̄

is continuous with respect to the
(
σ(L1, L∞), σ(X, X?)

)
-topology.

Proposition 5.8. S1
F

is weakly compact in L1
µ(X).

Proof. This follows now from [17: Theorem 3.7]

Proposition 5.9. The integral (A)−∫
F dµ is closed.

Proof. j(S1
F,P ) is closed and convex, therefore weakly closed in S1

F
which in turn

is weakly compact. Thus j(S1
F,P ) is weakly compact, as well, and so T (j(S1

F,P )) =
(A)−∫

F dµ is closed in X

Combining Theorem 5.5 and Proposition 5.9 we arrive at the following main
result.

Theorem 5.10. Suppose (Ω,Σ) is a measurable space, µ is a bounded finitely
additive measure, Σ is a µ-complete σ-algebra and L1

µ(X) is complete. If F ∈
L1

(
Ω, Σ, µ, cb(X)

)
, then

(A)−
∫

E

F dµ = (D)−
∫

E

F dµ.

Proof. We recall that if F ∈ L1
(
Ω,Σ, µ, cb(X)

)
, then

(A)−
∫

τ(E)

F dµ̄ = (D)−
∫

τ(E)

F dµ̄

(see [6]). Moreover, F ∈ L1
(
S,Gσ, µ̄, cb(X)

)
and

(D)−
∫

E

F dµ = (D)−
∫

τ(E)

F dµ̄.

So, by Theorem 5.5 and Proposition 5.9, the Debreu and Aumann integrals of the
multifunction F coincide
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6. Examples

We will exhibit a series of examples of spaces (Ω, Σ, µ), where µ is only finitely
additive and Σ is a µ-complete σ-algebra with L1

µ(R) complete.
We begin with some definitions.
Two non-negative finitely additive measures µ and λ are strongly singular if there

exists a set Q ∈ Σ such that λ(Q) = µ(Ω\Q) = 0. When Σ is a σ-algebra, the strong
singularity of a pair of non-negative finitely additive measures is equivalent to their
separability (see, for example, [4: Proposition 8.4]). A non-negative finitely additive
measure µ is continuous if for every ε > 0 there exists a finite decomposition of Ω,
say (A1, . . . , An) ∈ Σ, such that µ(Ai) ≤ ε for every i = 1, . . . , n.

Example 6.1. An example of a finitely additive space (Ω,Σ, µ) with Σ µ-
complete and L1

µ(X) complete can be found in [5: Example 2.1.3.4 and Remark
4.6.8]. In this example Ω is countable and µ is superatomic in the sense of [5: Defi-
nition 5.3.4].

Example 6.2. This example is due to D. Candeloro (personal communication).
Let U be an ultrafilter on [0, 1] and µ the finitely additive ultrafilter measure defined in
P([0, 1]) (i.e., µ takes value 1 on every set of the ultrafilter U and value 0 otherwise).
Is is easy to see that a function f : [0, 1] → R is µ-integrable if and only if f is
µ-essentially bounded and ‖f‖1 = ‖f‖∞. In fact,

∫ 1

0

|f | dµ =
∫ ∞

0

µ
({

x ∈ R : |f(x)| > t
})

dt

= sup
{
t ≥ 0 : {|f | > t} ∈ U}

= inf
{
t > 0 : µ({|f | > t}) = 0

}
.

So L1
µ(R) = L∞µ (R), and it is well known that L∞µ (X) is complete (see, for example,

[7]). On the other hand, we can obtain the same result observing that µ has Radon-
Nikodym Property, i.e. for every finitely additive measure ν which is absolutely
continuous with respect to µ in the ε − δ sense there exists f ∈ L1

µ(R) such that
ν(·) =

∫
· f dµ. In fact, if ν ¿ µ, then ν(E) = 0 if µ(E) = 0 and then ν([0, 1]) = ν(B)

for every B ∈ U . Thus, if u = ν([0, 1]), then ν = uµ and dν
dµ = u. Following

[4: Theorem 7.5] we obtain the result. Here again µ is superatomic but Ω is not
countable.

Example 6.3. Let Ω = [0, 1], Q the set of rational numbers in [0, 1], and U
an ultrafilter of Borel sets containing Q and which does not contain the singletons.
Let µ be the corresponding ultrafilter finitely additive measure in B([0, 1]). As in
the previous example, L1

µ(R) is complete. We consider now
(
[0, 1],B([0, 1]), λ

)
where

λ is the Lebesgue measure. Since µ and λ are non-negative and strongly singular,
L1

µ+λ(R) is complete by [4: Propositions 8.4 and 8.6]. In this case µ is atomic but
not superatomic.

Example 6.4. If Σ is a σ-algebra and L1
µ(X) is complete, then Σ̃, as defined in

[4: Section 1.6] coincides with the completion of Σ, and L1
µ(X) = L1

µ̃
(X), where µ̃ is

the Peano-Jordan extension of µ to Σ̃.
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Finally, we give an example of a class of measures spaces which satisfy the pre-
vious hypotheses and for which µ is also continuous. It was pointed out to us by P.
Berti and P. Rigo and can be found in [15].

Example 6.5. Let F be the set of non-null integers, F = N ∪ (−N), and H the
family of sequences in F . We consider the discrete topology in F and the product
topology in H. Let B(H) be the Borel σ-algebra on H. Let µ1, µ2 : P(F ) → {0, 1}
be two finitely additive measures such that µi({n}) = 0 (i = 1, 2) for every n ∈ N
and µ1(N) = µ2(−N) = 1, and put µ = µ1+µ2

2 . From µ it is possible to construct
ν : B(H) → [0, 1] with suitable properties and such that for every n ∈ N and for
every C1, C2, . . . , Cn ⊂ F one has

ν
(
C1 × C2 × · · · × Cn × F × F × · · · ) = µ(C1) · · ·µ(Cn).

Then ν is continuous and L1
ν(R) is complete.

Example 6.6. This example is due to H. Weber (personal communication). Let
λ : M→ [0, 1] be the Lebegue measure on the σ-algebra of all Lebesgue measurable
subsets of [0, 1] and µ : P([0, 1]) → [0, 1] a finitely additive extension of λ on the
power set of [0, 1] such that A is dense in the semimetric space (P([0, 1]), dµ) where
dµ is defined by dµ(A, b) = µ(A∆B). Such an extension exists by a theorem of Z.
Lipecki [19]. The measure µ is not σ-additive since λ has no σ-additive extension
on P([0, 1]), but µ is continuous since its restriction λ is continuous. (P([0, 1]), dµ)
is complete since (M, dλ) is a complete dense subspace of (P([0, 1]), dµ). Using the
following theorem one obtains that L1

µ(R) is complete.

Theorem [10]. Let ν : A → [0,+∞) be a finitely additive measure on an algebra
of subsets of Ω, ν∗ : P(Ω) → [0, +∞) the outer measure of ν, and A the closure of
A in (P(Ω), dν∗). Then L1

ν(R) is complete if and only if (A, dν∗) is complete.

References

[1] Amrani, A. and C. Castaing: Weak compactness in Pettis integration. Bull. Pol. Acad.
Sci. 45 (1997), 139 – 150.

[2] Amrani, A.: Lemme de Fatou pour l’integrale de Pettis. Publ. Mat. 42 (1998), 67 –
79.

[3] Armstrong, T. E. and M. K. Richter: The Core-Walras equivalence. J. Econ. Theory
33 (1984), 116 – 151.

[4] Basile, A. and K. P. S. Bhaskara Rao: Completeness of Lp-spaces in the finitely additive
setting and related stories. J. Math. Anal. Appl. 248 (2000), 588 – 624.

[5] Bhaskara Rao, K. P. S. and M. Bhaskara Rao: Theory of Charges. London: Acad.
Press 1983.

[6] Byrne, C. L.: Remarks on the set-valued integrals of Debreu and Aumann. J. Math.
Anal. Appl. 62 (1978), 243 – 246.

[7] Brooks, J. K., Candeloro, D. and A. Martellotti: On finitely additive measures in
nuclear spaces. Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 37 – 50.



864 A. Martellotti and A. R. Sambucini

[8] Castaing, C. and M. Valadier: Convex Analysis and Measurable Multifunctions. Lect.
Notes Mathematics 580 (1977).

[9] Debreu, G.: Integration of correspondences. In: Proc. Fifth Berkeley Symposium on
Math. Stat. & Prob., II/Part 1 (eds.: L. Le Cam et al.). Berkely: University of
California Press 1967, pp. 351 – 372.

[10] de Lucia, P. and H. Weber: Completeness of function spaces. Ricerche Mat. 39 (1990),
81 – 97.

[11] Diestel, J. and J. J. Uhl: Vector Measures (Math. Survey: Vol. 15). Rhode Island
(USA): Amer. Math. Soc. 1977.

[12] Dinculeanu, N.: Vector Measures. London: Pergamon Press 1967.

[13] Dunford, N. and J. T. Schwartz: Linear Operators. Part I: General Theory. New York:
Intersci. 1958.

[14] Feffermann, C.: Lp spaces over finitely additive measures. Pacific J. Math. 26 (1968),
265 – 271.

[15] Gangopadhyay, S.: Studies in Strategic Probability. Ph.D. Thesis 1998.

[16] Hagood, J. W.: A Radon-Nikodym theorem and Lp completeness for finitely additive
vector measure. J. Math. Anal. Appl. 113 (1986), 266 – 279.

[17] Hiai, F. and H. Umegaki: Integrals, Conditional Expectations, and Martingales of Mul-
tivalued Functions. J. Multivariate Anal. 7 (1977), 149 – 182.

[18] Isidori, M. C., Martellotti, A. and A. R. Sambucini: Integration with respect to orthog-
onally scattered measures. Math. Slovaca 48 (1999), 253 – 269.

[19] Lipecki, Z.: Extension of additive set functions with values in a topological group. Bull.
Pol. Acad. Sci. Math. 22 (1974), 19 – 27.

[20] Martellotti, A. and A. R. Sambucini: On the comparison between Aumann and Bochner
integrals. J. Math. Anal. Appl. 260 (2001), 6 – 17.

[21] Radström, H.: An embedding theorem for spaces of convex set. Proc. Amer. Math.
Soc. 3 (1952), 165 – 169.
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