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Non-Compact λ-Hankel Operators

R. A. Mart́ınez-Avendaño and P. Yuditskii

Abstract. A λ-Hankel operator X is a bounded operator on Hilbert space satisfying the
operator equation S∗X − XS = λX, where S is the (unilateral) forward shift and S∗ is
its adjoint. We prove that there are non-compact λ-Hankel operators for λ a complex
number of modulus less than 2, by first exhibiting a way to obtain bounded solutions to the
above equation by associating to it a Carleson measure. We then show that an interpolating
sequence can be given such that the λ-Hankel operator associated with the Carleson measure
given by the interpolating sequence is non-compact.
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1. Introduction

In [3, 4] a class of operators, called λ-Hankel operators, is defined as those operators
X satisfying the operator equation

S∗X −XS = λX (1.1)

where S is the unilateral forward shift on `2, S∗ is its adjoint (usually known as
the backward shift), and λ is a complex number. Clearly, if λ = 0, the solutions
to equation (1.1) are precisely the Hankel operators. Bounded λ-Hankel operators
can be seen to have many of the properties of Hankel operators [3, 4], but many
basic questions about them remain unanswered. For the basic facts about Hankel
operators, the reader should consult [5, 6]. For a survey of recent advances on Hankel
operators, the reader should see [7].

It is surprising that there are non-compact solutions to equation (1.1) (see below).
Many similar-looking equations can be seen to have only solutions which are compact
or solutions which are unitary multiples of Hankel operators, if they have non-zero
solutions at all. The study of solutions of an equation of the above type is motivated
by a (slightly different) question posed by Barŕıa and Halmos ]1], answered by Sun [8].
It is hoped that the study of λ-Hankel operators will increase our understanding of
Hankel operators. For example, as is shown in [4], some spectral properties of Hankel
operators are shared by λ-Hankel operators, which suggests that a more general
theory of generalizations of these types of operators may exist. Also, it would be

Both authors: Michigan State Univ., Dept. Math., East Lansing, MI 48824, USA
ruben@math.msu.edu and yuditski@math.msu.edu

ISSN 0232-2064 / $ 2.50 c© Heldermann Verlag Berlin



892 R. A. Mart́ınez-Avendaño and P. Yuditskii

interesting to see what type of function spaces one can obtain from studying the
smoothness properties of λ-Hankel operators and how they generalize the function
spaces related to Hankel operators.

If λ has modulus less than 2, non-zero compact solutions to equation (1.1) are
known to exist (see [3, 4]). For the cases where λ has modulus equal to 1, or where λ
is purely imaginary and of modulus less than 2, it was also shown in [3, 4] that there
are bounded, non-compact solutions to equation (1.1).

In this paper we will show that in fact, if λ has modulus less than 2, there exist
bounded non-compact solutions. This completely solves the question of existence of
non-compact λ-Hankel operators, since it is also known that if |λ| ≥ 2, there are no
non-zero bounded solutions to the equation above. The case |λ| > 2 is an observation
in [3, 4]. The case |λ| = 2 is due to L. Robert-Gonzalez and, independently, to A.
Feintuch and A. Markus (personal communications).

First, we introduce some definitions. We will work on the Hardy space H2, the
space of analytic functions on the unit disk D defined as

H2 =
{

f(z) =
∞∑

k=0

akzk :
∞∑

k=0

|ak|2 < ∞
}

.

The Hardy space is a Hilbert space with the inner product of two functions f(z) =∑∞
k=0 akzk and g(z) =

∑∞
k=0 bkzk defined by (f, g) =

∑∞
k=0 akbk. The norm of

f ∈ H2 is denoted by ‖f‖2. Clearly, there is a natural identification of this space
with the classical space `2 and we will think of H2 as `2 occasionally. We denote the
norm in `2 as ‖ · ‖. The canonical basis in H2 consists of the functions en(z) = zn for
n ∈ N0. The unilateral forward shift, simply called from now on the shift, is defined
as (Sf)(z) = zf(z) for every f ∈ H2. The only property of the shift that we will use
is the fact that Sen = en+1 for all n. The notation h∗ ∈ H2 defined by h∗(z) = h(z̄)
for a function h ∈ H2 will also be useful.

A finite positive measure µ on the unit disk D is called a Carleson measure if for
0 < h < 1 and for every set of the form

Ωh =
{

z = reiθ ∈ D : 1− h ≤ r < 1 and θ0 ≤ θ ≤ θ0 + h
}

,

where θ0 ∈ [0, 2π], there is a constant A (independent of h and of θ0) such that
µ(Ωh) ≤ Ah. The sets Ωh are called Carleson sets (centered at θ0).

A classical theorem of Carleson (a proof can be found in Duren’s book [2: pp.
157 – 162]) is the following

Theorem 1.1 (Carleson). Let µ be a finite measure on D. Then µ is a Carleson
measure if and only if there exists a constant C such that

( ∫

D
|f(z)|2dµ(z)

)1/2

≤ C‖f‖2

for all f ∈ H2.
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We will also need the concept of an interpolating sequence. A sequence {zk}∞k=0

in D is called an interpolating sequence if the operator T2 : H2 −→ `2 defined as

T2(f) =
{
(1− |zk|2) 1

2 f(zk)
}∞

k=0

is bounded and surjective. A sequence {zk}∞k=0 in D is called uniformly separated if
there exists δ > 0 such that

∞∏

j=0,j 6=k

∣∣∣ zk − zj

1− zjzk

∣∣∣ ≥ δ (k ∈ N0).

A theorem of Shapiro and Shields (see Duren’s book [2: p. 149]) states that a se-
quence is uniformly separated if and only if it is an interpolating sequence. There are
simple conditions which guarantee that interpolating sequences exist in abundance,
for example, {zk}∞k=0 is a uniformly separated sequence if there exists a constant
c < 1 with

1− |zk+1| ≤ c (1− |zk|) (1.2)

for k ∈ N0 (see Duren’s book [2: p. 155] for references).

2. Construction of bounded λ-Hankel operators

In this section we will see how a Carleson measure defines a bounded λ-Hankel
operator. From now on let us assume that |λ| < 2.

Let R := {z ∈ D : |z + λ| < 1} and let µ be a Carleson measure on D supported
on R ⊂ D, with the extra property that µ(· − λ) is also a Carleson measure on D
supported in R + λ ⊂ D. That is, we can think of µ as a Carleson measure on the
disk D and also on the disk D− λ.

For integers m ≥ 0 and n ≥ 0 define an operator X by

(Xem, en) =
∫

R

zm(z + λ)ndµ(z). (2.1)

Clearly, the right-hand side of this equation is well defined. Therefore, X is a densely-
defined operator (on polynomials).

We can now show the following

Theorem 2.1. Let |λ| < 2 and let X be the densely defined operator given by
equation (2.1) where µ is a Carleson measure on D supported on R and µ(· − λ) is a
Carleson measure on D supported on R+λ. Then X is a bounded λ-Hankel operator.

Proof. Assume for a moment that equation (2.1) defines a bounded operator.
Then, to show that it is a λ-Hankel operator, it is enough to show that (S∗X −
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XS)em = λXem for m ≥ 0. But this holds since
(
(S∗X −XS)em, en

)
= (Xem, en+1)− (Xem+1, en)

=
∫

R

zm(z + λ)n+1dµ(z)−
∫

R

zm+1(z + λ)ndµ(z)

=
∫

R

(
zm(z + λ)n+1 − zm+1(z + λ)n

)
dµ(z)

=
∫

R

λzm(z + λ)ndµ(z)

= (λXem, en)

holds for every n ≥ 0.
Let us show now that the operator defined by equation (2.1) is bounded. Let

f(z) =
∑N

k=0 akzk and g(z) =
∑M

j=0 bjz
j be polynomials. Then

(Xf, g∗) =
N∑

k=0

M∑

j=0

akbj(Xek, ej)

=
N∑

k=0

M∑

j=0

akbj

∫

R

zk(z + λ)jdµ(z)

=
∫

R

( N∑

k=0

akzk

)( M∑

j=0

bj(z + λ)j

)
dµ(z)

=
∫

R

f(z)g(z + λ) dµ(z).

But clearly, we also have
∣∣∣∣
∫

R

f(z)g(z + λ) dµ(z)
∣∣∣∣ ≤

∫

R

∣∣f(z)g(z + λ)
∣∣dµ(z)

≤
( ∫

R

|f(z)|2dµ(z)
)1/2( ∫

R

|g(z + λ)|2dµ(z)
)1/2

.

Putting these two last equations together we get

|(Xf, g∗)| ≤
( ∫

R

|f(z)|2dµ(z)
)1/2( ∫

R

|g(z + λ)|2dµ(z)
)1/2

.

But since µ(·) and µ(· − λ) are both Carleson measures, we can apply Carleson’s
theorem (after a simple change of variables on the second integral) to get |(Xf, g∗)| ≤
C1C2‖f‖2‖g‖2 for some constants C1 > 0 and C2 > 0. Since ‖g∗‖2 = ‖g‖2, we have
|(Xf, g∗)| ≤ C‖f‖2‖g∗‖2 for arbitrary polynomials f and g and a constant C > 0.
Therefore X is bounded
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3. Measures resulting in non-compact operators

In this section we will use an interpolating sequence to construct a measure whose
associated λ-Hankel operator will not be compact. Assume from now on that λ 6= 0
(the case λ = 0 is well-known [6]).

Define L ⊂ R as L = {z ∈ D : |z| = |z + λ|}. The set L is just the straight
line joining the intersection points of ∂D and ∂D − λ, and clearly L is contained
in R. Let z∞ be one of the two intersection points of ∂D and ∂D − λ. Clearly,
|z∞| = |z∞ + λ| = 1 and z∞ ∈ ∂L. Let us choose a uniformly separated sequence
{zk}∞k=0 in L such that zk → z∞ as k → ∞. This is clearly possible. In fact, let us
choose the sequence such that it satisfies condition (1.2). Clearly, |zk+1| > |zk| for
all k.

The statement of the following proposition seems to be folklore and the type
of argument in the proof is used frequently in theorems about Carleson measures
coming from interpolating sequences. We include a proof here for completeness.

Proposition 3.1. Let z∞ and {zk}∞k=0 defined as above. Define a sequence µk

as µk = |z∞ − zk| = |(z∞ + λ) − (zk + λ)| for k ∈ N0, and define a measure µ
on D, supported on the set {zk}∞k=0, as µ(zk) = µk. Then µ is a Carleson measure
supported on the set {zk}∞k=0 and µ(·−λ) is a Carleson measure supported on the set
{zk + λ}∞k=0.

Proof. A geometrical argument shows that, if |zk| < |zk+1| and zk, zk+1 ∈ L,
then |z∞ − zk+1|

|z∞ − zk| ≤ 1− |zk+1|
1− |zk| .

Alternatively, one can show by Calculus techniques that the real-valued function

f(t) =
|z∞ − ((1− t)zk + tz∞)|

1− |(1− t)zk + tz∞|

is decreasing for t ∈ [0, 1]; the result then follows by noticing that zk+1 = (1− t0)zk +
t0z∞ for some t0 ∈ (0, 1). Therefore, since {zk}∞k=0 satisfies condition (1.2),

|z∞ − zk+1| ≤ c|z∞ − zk| (3.1)

and thus, for all k, |z∞ − zk| ≤ ck|z∞ − z0|. Therefore

∞∑

k=0

µk =
∞∑

k=0

|z∞ − zk| ≤ |z∞ − z0|
1− c

< ∞.

This proves that the measure µ is finite.
To see that µ is a Carleson measure, let 0 < h < 1 and let Ωh be the corresponding

Carleson set centered at θ0. It suffices to consider h small enough, and we do so. If θ0

is such that Ωh ∩{zk}k≥0 = ∅, then µ(Ωh) = 0 and there is nothing to prove. If θ0 is
such that Ωh ∩{zk}k≥0 6= ∅, then clearly Ωh ∩L is a connected (non-empty) segment
(recall we are assuming h is small), and thus there must exist natural numbers k0 and
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k1 (where we allow the case k1 = ∞) such that zk ∈ Ωh for all k ∈ [k0, k1) and zk /∈ Ωh

for k /∈ [k0, k1). From equation (3.1) we obtain that |z∞ − zk| ≤ ck−k0 |z∞ − zk0 | for
k ≥ k0. Then

µ(Ωh) =
k1−1∑

k=k0

µk ≤
∞∑

k=k0

µk ≤
∞∑

k=k0

ck−k0 |z∞ − zk0 | =
|z∞ − zk0 |

1− c
.

If k1 = ∞, since the length of any straight line inside Ωh is at most 4h, it then follows
that |z∞ − zk0 | ≤ 4h. Therefore, µ(Ωh) ≤ 4

1−ch, i.e. µ is a Carleson measure.

If k1 < ∞, then there exists a constant d, depending on λ only, such that |z∞ −
zk0 | ≤ dh. Indeed, analogously to what we did at the beginning of this proof, notice
that the real-valued function

f(t) =
|z∞ − ((1− t)z0 + tz∞)|

1− |(1− t)z0 + tz∞|

is bounded by d for t ∈ [0, 1]; Therefore |z∞−zk0 |
1−|zk0 |

≤ d. Since clearly 1− |zk0 | ≤ h, it

follows that |z∞ − zk0 | ≤ dh. Therefore, µ(Ω) ≤ d
1−ch, i.e. µ is a Carleson measure.

To prove that µ(· − λ) is a Carleson measure on D supported on {zk + λ}∞k=0, we
just need to notice that the argument given above applies word by word to µ(· − λ)
and {zk + λ}∞k=0, since |z∞ + λ| = 1, µk = |(z∞ + λ)− (zk + λ)| and |zk| = |zk + λ|

Let X as in Theorem 2.1. If f and g are in H2, and since X is bounded, one can
use an argument similar to the one in the proof of Theorem 2.1 to prove that

(Xf, g∗) =
∫

R

f(z)g(z + λ) dµ(z).

If µ is the measure given by Proposition 3.1, the integral becomes a sum and the
above equation becomes

(Xf, g∗) =
∞∑

k=0

f(zk)g(zk + λ)µk. (3.2)

We can now prove the main theorem.

Theorem 3.2. Let |λ| < 2 and let X be the bounded λ-Hankel operator given
by the Carleson measure µ, as in (2.1), where µ is the Carleson measure defined in
Proposition 3.1. Then X is a bounded non-compact λ-Hankel operator.

Proof. That X is bounded follows from Proposition 3.1. To check non-compact-
ness requires the following construction. Since {zk}∞k=0 is uniformly separated, it
follows by the Shapiro-Shields Theorem that it is an interpolating sequence. That is,
the mapping T2 : H2 −→ `2 given by

T2(f) =
{
(1− |zk|2)1/2f(zk)

}
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is bounded and surjective. This implies by the open mapping theorem that there
exists a constant c1 > 0 such that, for every sequence {xk} ∈ `2, there is a function
h ∈ H2 with T2h = {xk} and ‖h‖2 ≤ c1‖{xk}‖. Therefore, for n ≥ 0, given the `2

sequence
{
(1− |zk|2)1/2 δn,k√

µn

}∞
k=0

there exists a function fn ∈ H2 with

fn(zk) =
{

0 if k 6= n
1√
µn

if k = n (3.3)

and

‖fn‖2 ≤ c1

∥∥∥∥
{

(1− |zk|2)1/2 δn,k√
µn

}∥∥∥∥ .

That is, ‖fn‖2 ≤ c1

( 1−|zn|2
µn

)1/2, and since 1−|zn|2
µn

= 1−|zn|
|z∞−zn| (1 + |zn|) ≤ 1 · 2 = 2, it

follows that
‖fn‖2 ≤

√
2c1 (3.4)

for all n. Analogously, since {zk+λ}∞k=0 is uniformly separated, there exists a constant
c2 > 0 such that, for each n, m ∈ N0 with n 6= m, given the `2 sequence

{
(1− |zk|2)1/2

(
δn,k√

µn
− δm,k√

µm

)}∞

k=0

,

there exists a function gn,m ∈ H2 with

gn,m(zk + λ) =





0 if k 6= n,m
1√
µn

if k = n

− 1√
µm

if k = m
(3.5)

and with

‖gn,m‖2 ≤ c2

∥∥∥∥
{

(1− |zk|2)1/2

(
δn,k√

µn
− δm,k√

µm

)}∥∥∥∥ .

That is, ‖gn,m‖2 ≤ c2

( 1−|zn|2
µn

+ 1−|zm|2
µm

)1/2, and since 1−|zn|2
µn

≤ 2 and 1−|zm|2
µm

≤ 2,
it follows that

‖gn,m‖2 ≤ 2c2 (3.6)

for all n and m with n 6= m. Now, we also have that for n 6= m

(
Xfn −Xfm, g∗n,m

)
= (Xfn, g∗n,m)− (Xfm, g∗n,m)

=
∞∑

k=0

fn(zk)gn,m(zk + λ)µk −
∞∑

k=0

fm(zk)gn,m(zk + λ)µk

=
1√
µn

1√
µn

µn − 1√
µm

(
− 1√

µm

)
µm

= 2



898 R. A. Mart́ınez-Avendaño and P. Yuditskii

where the second-to-last equality follows from (3.3) and (3.5). This implies

2 =
∣∣(Xfn −Xfm, g∗n,m

)∣∣ ≤ ‖Xfn −Xfm‖2‖g∗n,m‖2
and, since ‖gn,m‖2 = ‖g∗n,m‖2, inequality (3.6) implies 2 ≤ ‖Xfn −Xfm‖22c2, i.e.

1
c2
≤ ‖Xfn −Xfm‖2. (3.7)

Since the sequence {fj}∞j=0 is bounded (by (3.4)), there must be a subsequence {fjn
}

of {fj} which converges weakly. If X was compact, it would follow that {Xfjn
}

converges in norm. In particular, {Xfjn} is a Cauchy sequence. But this is impossible
by (3.7). Thus the bounded λ-Hankel operator X cannot be compact

Remark on the proof. In fact, there is an exact formula for fn:

fn(z) =
1√
µn

B1(z)
B′

1(zn)(z − zn)
(3.8)

where B1(z) is the Blaschke product associated with the uniformly separated sequence
{zk}. In this case fn satisfies (3.3), and inequality (3.4) holds with c1 = 1

δ1
(where

δ1 is the uniform lower bound in the definition of uniform separation).
Analogously, there is an exact formula for gn,m:

gn,m(z) =
1√
µn

B2(z)
B′

2(zn + λ)(z − zn − λ)
− 1√

µm

B2(z)
B′

2(zm + λ)(z − zm − λ)
(3.9)

where B2(z) is the Blaschke product associated with the uniformly separated sequence
{zk + λ}. In this case gn,m satisfies (3.5), and inequality (3.6) holds with c2 = 1

δ2

(where δ2 is the uniform lower bound in the definition of uniform separation).
Thus we do not need to use the Shapiro-Shields theorem to justify the existence

of the sequences of functions fn and gn,m. Nevertheless, we prefer to present the
whole construction, rather than just put fn and gn,m as in (3.8) and (3.9) and then
check (3.7) without any explanation of why this choice works (after all, such functions
exist thanks to the Shapiro-Shields theorem anyway!).

Final comments. A deep fact about Hankel operators (see [6: p. 10] is that
every bounded Hankel operator H is given by a (possible complex) Carleson measure
µ on D with

(Hem, en) =
∫

D
zmzndµ(z).

It would be interesting to know if a fact like this could be proven for λ-Hankel
operators. At present, we do not seem to have the tools to obtain such a result.

It is also known that the operator H above is compact if and only if the measure
µ is a vanishing Carleson measure. It would be interesting to see if X, the λ-Hankel
operator defined by (2.1), is compact if and only if the measure µ supported in R ⊂ D
is a vanishing Carleson measure (with respect to D and λ+D). It would be even more
interesting if indeed it was the case that all bounded λ-Hankel operators are given
by a measure as in (2.1). Since at the moment we are only interested in showing that
there are non-compact bounded λ-Hankel operators, we leave the questions above
open for future research.
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