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Lp-Lq Estimates for the
Bochner-Riesz Operator of Complex Order
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Abstract. We describe convex sets on the ( 1
p
, 1

q
)-plane for which the well-known Bochner-

Riesz operator with the symbol (1 − |ξ|2)−α
+ (0 < Re α < n+1

2
) is bounded from Lp into

Lq.
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1. Introduction

The well known Bochner-Riesz operators Bα are widely used in various problems of
analysis (see [13: Chapter IX, Section 2]). These operators are defined via Fourier
transform by the equality

(̂Bαϕ)(ξ) = 2α(2π)−
n
2

Γ(1−α) (1− |ξ|2)−α
+ ϕ̂(ξ)

where

(1− |ξ|2)−α
+ =

{
(1− |ξ|2)−α if |ξ| < 1
0 if |ξ| > 1

and admit the integral representation

(Bαϕ)(x) =
∫

Rn

|y|−n
2 +αJn

2−α(|y|) ϕ(x− y) dy (1.1)

for Re α ≤ n+1
2 , Jν being the Bessel function. One of the most interesting problems

in the theory of operators (1.1) consists in establishing Lp-Lq estimates for them.
The first results in this area, pertaining to the case p = q, are due to E. M. Stein,
Ch. Fefferman, P. Sjölin and others (a comprehensive survey of these results and
corresponding references are given in [13: Chapter IX]). The case p 6= q is more
complicated and also very interesting. Due to the oscillation of the Bessel function
at infinity, it is possible to construct convex sets in the ( 1

p , 1
q )-plane for which Bα is
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bounded from Lp into Lq. Such sets were constructed in [2], where the author dealt
with the case 0 ≤ α ≤ n+1

2 .
The goal of the present paper is to consider operator (1.1) for complex α with 0 <

Re α < n+1
2 . At the same time, even in the case of real α we obtain stronger results

in comparison with those presented in [2]: we fill in some gaps contained in the main
theorem of [2] (see Remark 2.1). To establish the mentioned results, we develop a new
approach to Lp-Lq estimates for potential-type operators with oscillating kernels. It
is based on the investigation of mapping properties of some potentials with radial
characteristics oscillating at infinity (see Theorem 4.2). This approach can also be
applied to operators in a wide class containing, in particular, the acoustic potentials
and Strichartz-type potentials over Rn with oscillating characteristics, which are
known to be operators of essentially different nature. Such applications will be given
in other papers.

At present time, there is great interest in potential-type operators (see the books
[11, 12], the survey papers [5, 6, 10] and the bibliography therein). Nevertheless,
the investigation of mapping properties of potentials with oscillating kernels is at
the very beginning. Besides the mentioned papers dealing with the Bochner-Riesz
operator, one can point out only the papers [7, 8] (see also [6]), which are devoted to
Lp-Lq estimates for acoustic potentials and Riesz potentials with the characteristic
ei|t|, respectively.

The paper is organized as follows: In Section 2 we formulate our main result
(Theorem 2.1) and give some comments. Section 3 contains necessary preliminaries.
Section 4 can be regarded as background to the proof of Theorem 2.1. Here we prove
some statements related to Lp-Lq estimates for the operator Sα

a given by

(Sα
a ϕ)(x) =

∫

|y|≥A

a(|y|)ei|y||y|α−nϕ(x− y) dy (1.2)

for 0 < Re α < n where the function a is sufficiently smooth on (A,∞] and such that
a(∞) 6= 0. We first consider the case when a(r) ≡ 1 in (1.2) (Theorem 4.1) and then
pass to a more general situation (Theorem 4.2). We note that Theorems 4.1 and
4.2 are of special interest themselves because, as was mentioned above, they can be
applied to obtain Lp-Lq estimates for a wide class of operators. Therefore we prove
them for all α with 0 < Reα < n, although to prove Theorem 2.1 we may restrict
ourselves to the case n−1

2 < Reα < n only. Finally, Section 5 is devoted to the proof
of Theorem 2.1.

2. The main result

Let 0 < Re α < n. Everywhere below we use the following notation: (A,B, . . . , K) is
the open polygon in R2 with the vertices at the points A, B, . . . , K and [A,B, . . . ,K]
stands for its closure. By L(A) we denote the L-characteristic of an operator A, that
is the set of all the pairs ( 1

p , 1
q ) for which A is bounded from Lp into Lq. Let

A =
(
1, 1− Re α

n

)

B =
(
1− (n−1)(n−Re α)

n(n+1) , 1− Re α
n

)
A′ =

(
Re α

n , 0
)

B′ =
(

Re α
n , (n−1)(n−Re α)

n(n+1)

)
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C =
(

3
2 − 2Re α

n−1 , 3
2 − 2Re α

n−1

)

D =
(

Re α+1
n+1 , n−Re α

n+1

)

E = (1, 0)

F =
(

1
2 , 1

2

)

G =
(
1− (n−Re α)(n−1)

n(n+3) , 1− Re α
n

)

H =
(
1− Re α

n , 1− Re α
n

)

K =
( 2(Re α+1)

n+1 − 1
2 , 1

2

)

C ′ =
(

2Re α
n−1 − 1

2 , 2Re α
n−1 − 1

2

)

G′ =
(

Re α
n , (n−Re α)(n−1)

n(n+3)

)

H ′ =
(

Re α
n , Re α

n

)

K ′ =
(

1
2 , 3

2 − 2(Re α+1)
n+1

)
.

To formulate our main result, we introduce the set

L(α, n) =




(A′, B′, B,A, E) ∪ (A,E] ∪ (A′, E) if n
2 ≤ Re α < n

(A′, G′,K ′,K, G, A,E) ∪ (A,E] ∪ (A′, E) if n−1
2 < Re α < n

2

(A′, G′, F, G,A, E) ∪ (A,E] ∪ (A′, E) if α = n−1
2

(A′, G′, F, G,A, E) ∪ (A,E] ∪ (A′, E) ∪ {F} if Re α = n−1
2 , Im α 6= 0

(A′, G′, C ′, C, G, A,E) ∪ (A,E] ∪ (A′, E) ∪ (C ′, C) if n(n−1)
2(n+1) < Re α < n−1

2

[A′,H ′,H, A,E] \ ([A′,H ′] ∪ [A,H]) if 0 < Re α ≤ n(n−1)
2(n+1)

if n ≥ 3 or if n = 2 and Im α 6= 0, and we put

L(α, n) =





(A′, B′, B, A,E) ∪ (A,E] ∪ (A′, E) if 1
2 ≤ α < 2, α 6= 1

(A′, B′, B, A,E) ∪ (A,E] ∪ (A′, E) ∪ (B′, B) if α = 1
[A′,H ′,H, A,E] \ ([A′,H ′] ∪ [A,H]) if 0 < α < 1

2

for n = 2 and Im α = 0.
The main result of the paper is contained in the following theorem (see also

Picture 1).

Theorem 2.1. Let 0 < Reα < n+1
2 . Then the imbedding

L(Bα) ⊃
{

L(α + n−1
2 , n) if Imα 6= 0

L(α + n−1
2 , n) ∪ {D} if Imα = 0

(2.1)

is valid.

Remark 2.1. We note that the main theorem from [2] (related to the case of
real α with 0 ≤ α ≤ n+1

2 ) does not answer the question on the boundedness of the
operator Bα from Lp into Lq if

( 1
p , 1

q ) ∈
{

[B′, D, G′] ∪ [B,D, G] \ ([B, G] ∪ [B′, G′] ∪ {D}) for n > 2 and 0 < α < n+1
2

(B′, B) \ {D} for n = 2 and α 6= 1.

Theorem 2.1 (which covers the case of complex α as well) gives a positive answer to
this question (for 0 < α < 1

2 only partially) if

( 1
p , 1

q ) ∈
{

(B, G,D) ∪ (B′, G′, D) for n ≥ 3 and 1
2 ≤ α < n+1

2

(D,G, K) ∪ (D,G′,K ′) for n ≥ 3 and 0 < α < 1
2 .
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Picture 1

Remark 2.2. As was proved in [2], in the case Imα = 0 the set L(Bα) does not
contain the points lying

1) on the straight line AB and above it
2) on the straight line A′B′ and to the left of it
3) above the straight line B′B.

In the case of complex α the question on the boundedness of the operator Bα in
these regions still remains open. Nevertheless, in the case of operator (1.2), which is
important for applications, we prove statements 1) and 2) for 0 < Re α < n.

3. Preliminaries

3.1 Uniform asymptotic expansion for the Bessel function Jν . Let Ω = {z ∈
C : |z| > η and | arg z| < θ}, where η > 0 and θ ∈ (0, π

2 ). Representing Jν as a linear
combination of the Hankel functions H

(1)
±ν and H

(2)
±ν (we take +ν if ν > − 1

2 and −ν
otherwise) and applying the results of [15: p. 220] or [4: p. 167], we arrive at the
equality

Jν(z) =
(πz

2

)− 1
2

[
e−iz

( N∑
m=0

C
(ν)
m,−z−m + R

(ν)
N,−(z)

)

+ eiz

( N∑
m=0

C
(ν)
m,+z−m + R

(ν)
N,+(z)

)] (3.1)

where C
(ν)
0,± = 1

2e∓
iπ(2ν+1)

4 .
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Remark 3.1. The remainder R
(ν)
N,± is analytic in Ω and R

(ν)
N,±(z) = O(|z|−N−1)

as |z| → ∞. Therefore ( d
dz )jR

(ν)
N,±(z) = O(|z|−N−1−j) as |z| → ∞ in any closed

sector Ω0 ⊂ Ω (see [9: p. 21]).

3.2 On the Lp boundedness of a certain convolution operator with oscil-
lating kernel. The following lemma is true:

Lemma 3.1 [13: p. 392]). Let ψ be a smooth function in Rn with a compact
support that vanishs in some neighborhood of the origin and let

(Gλϕ)(x) =
∫

Rn

eiλ|x−y|ψ(|x− y|)ϕ(y) dy (λ > 0).

Then ‖Gλϕ‖p ≤ Aλ
− n

p′ ‖ϕ‖p for 1 ≤ p ≤ 2(n+1)
n+3 .

4. Some auxiliary statements

Here we study mapping properties of operator (1.2). We first dwell on the case
a(|y|) ≡ 1; the corresponding operator is denoted by Sα and its kernel by kα(|y|).
The following theorem provides Lp-Lq estimates for this operator (see also Pictures
1 and 2 for the cases n−1

2 < Re α < n and 0 < Re α ≤ n−1
2 , respectively).

Theorem 4.1. Let 0 < Reα < n. Then:
I. The imbedding

L(Sα) ⊃ L(α, n) (4.1)

is valid.
II. The set L(Sα) does not contain the points lying

1) on the segment [A,H] and above it
2) on the segment [A′,H ′] and to the left of it
3) above the straight line B′B in the case n−1

2 < α < n

4) on the segment [O′, O] if α = n−1
2 .

Proof. To prove statement I, we first establish the estimate

‖Sαϕ‖q ≤ C‖ϕ‖p (ϕ ∈ S), (4.2)

the constant C not depending on ϕ, where

( 1
p , 1

q ) ∈ L(α, n) (4.3)

and S is the Schwartz class of rapidly decreasing smooth functions. We split Sαϕ
into

(Sαϕ)(x) =
∞∑

`=0

(Sα
` ϕ)(x) (x ∈ Rn)
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where

(Sα
` ϕ)(x) = 2(α−n)`

∫

|y|≥A

uα

( |y|
2`

)
ei|y|ϕ(x− y) dy

for 0 < Re α < n. The function uα supported on [A
2 , 2A] is defined by

uα(r) = rα−n
(
η(r)− η(2r)

)

where η ∈ C∞(R1
+), 0 ≤ η(r) ≤ 1, η(r) = 1 if r ≤ A and η(r) = 0 if r ≥ 2A. We have

‖Sαϕ‖q ≤
∞∑

`=0

‖Sα
` ϕ‖q. (4.4)

Picture 2

To estimate the series on the right-hand side herein, we need the following lemmas.
(For the rest of the proof of Theorem 4.1 the same letter C will be used to denote
various constants not depending on ` and not necessarily the same at each occur-
rence.)

Lemma 4.1. Let kα
l (|y|) be the kernel of Sα

` . Then the estimates

|k̂α
` (|ξ|)| ≤ C2−M`

{
1 if |ξ| ≤ 1

2

(1 + |ξ|)−M if |ξ| ≥ 2
(∀M > 0) (4.5)

|k̂α
` (|ξ|)| ≤ C2(Re α−n−1

2 )` if 1
2 < |ξ| < 2 (4.6)

hold.
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Proof. By the Bochner formula we have

k̂α
` (|ξ|) =

2(α−n
2 +1)`(2π)

n
2

|ξ|n−2
2

∫ ∞

0

ρ
n
2 uα(ρ)ei2`ρJn−2

2
(ρ|ξ|2`) dρ.

Let first |ξ| ≤ 1
2 . Applying [1: p. 92/Formula (7)], interchanging the order of

integration and integrating the inner integral by parts k times, k = [Re α] + M + 1,
we arrive at the equality

k̂α
` (|ξ|) = 2`(α−k) (2π)

n−1
2

Γ(n−1
2 )

∫ 1

−1

(1− t2)
n−3

2 dt

(i(1 + |ξ|t))k

×
∫ ∞

0

ei2`ρ(1+|ξ|t)
( d

dρ

)k

(ρn−1uα(ρ)) dρ

which yields (4.5).

Let now |ξ| > 1
2 . Making use of formula (3.1) with m = 0, we get

k̂α
` (|ξ|) = 2(α−n−1

2 )`+ n+1
2

(
C+

0

|ξ|n−1
2

Iα,`
0,+(|ξ|) + C−0 |ξ|

n−1
2 Iα,`

0,−(|ξ|)

+
C+

1

|ξ|n−1
2

Iα,`
1,+(|ξ|) +

C−1
|ξ|n−1

2

Iα,`
1,−(|ξ|)

) (4.7)

where

Iα,`
0,±(|ξ|) =

∫ ∞

0

ρ
n−1

2 uα(ρ) ei2`ρ(1±|ξ|)dρ (4.8)

Iα,`
1,±(|ξ|) =

∫ ∞

0

ρ
n−1

2 uα(ρ) ei2`ρ(1±|ξ|)R( n−2
2 )

0,± (2`ρ|ξ|) dρ. (4.9)

From here we derive (4.6). Integrating by parts M +
[|Re α − n−1

2 |] + 1 times in
(4.8) - (4.9) and making some evident estimates, we obtain (4.5) for |ξ| ≥ 2 (when

evaluating the integral containing R
( n−2

2 )
0,± , we essentially use Remark 3.1)

Lemma 4.2. Let ` ≥ 1. Then

‖Sα
` ϕ‖2 ≤ C2`(Re α−n

2 )‖ϕ‖p (ϕ ∈ S) (4.10)

where 1 ≤ p ≤ 2(n+1)
n+3 .

Proof. By the Parseval equality we have

‖Sα
` ϕ‖22 = 1

(2π)n

( ∫

|ξ|≤ 1
2

+
∫

1
2 <|ξ|<2

+
∫

|ξ|≥2

)
|k̂α

` (|ξ|)|2|ϕ̂(ξ)|2dξ

=: J1 + J2 + J3.
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With the aid of Lemma 4.1 we get

J1 ≤ C2`(Re α−n
2 )

∫

|ξ|≤ 1
2

|ϕ̂(ξ)|2dξ ≤ C2`(Re α−n
2 )‖ϕ‖p

and

J3 ≤ C2`(Re α−n
2 )

∫

|ξ|≥2

(1 + |ξ|)−[Re α−n
2 ]|ϕ̂(ξ)|2dξ ≤ C2`(Re α−n

2 )‖ϕ‖p.

To evaluate J2, we invoke the following restriction theorem for the Fourier transform:

∫

Sn−1
|ϕ̂(σ)|2dσ ≤ C‖ϕ‖2p

(
ϕ ∈ S, 1 ≤ p ≤ 2(n+1)

n+3

)
(4.11)

(see [14] for 1 ≤ p < 2(n+1)
n+3 and [13: p. 386] for p = 2(n+1)

n+3 ). From (4.6) and (4.11)
we get

J2 ≤ C

∫ 2

1
2

ρn−1|k̂α
` (ρ)|2dρ

∫

Sn−1
|ϕ̂(ρσ)|2dσ

≤ C‖ϕ‖2p
∫ 2

1
2

|k̂α
` (ρ)|2dρ

≤ C22`(Re α−n
2 )‖ϕ‖2p.

Gathering the above estimates, we arrive at (4.10)

The next lemma deals with Lp estimates for the operator Sα. We will essentially
use it to prove (4.2) in the case Reα < n−1

2 .

Lemma 4.3. Estimate (4.2) for p = q is valid in the following cases:

1) 0 < Re α < n(n−1)
2(n+1) and n

n−Re α < p < n
Re α

2) n(n−1)
2(n+1) < Re α < n(n−1)

2 and 2(n−1)
3(n−1)−4Re α < p < 2(n−1)

4Re α−n+1 .

Proof. Since the kernel of the operator Sα
0 is compactly supported and bounded,

we have
L(Sα

0 ) = [O′, O, E]. (4.12)

Noting that
(Sα

` ϕ)(x) = 2α`
(
G2`ϕ(2`y)

)(
x
2`

)
(` ≥ 1)

and applying Lemma 3.1, we get

‖Sα
` ϕ‖p ≤ C2`(Re α− n

p′ )‖ϕ‖p (` ≥ 1) (4.13)

where 1 ≤ p ≤ 2(n+1)
n+3 .

Applying (4.13) to each summand on the right-hand side of (4.4), except for the
first one, in view of (4.12) we obtain the statement of Lemma 4.3 in the case 1).
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Consider the case 2). Letting p = 2(n+1)
n+3 in (4.13) we have

‖Sα
` ϕ‖ 2(n+1)

n+3
≤ C2`(Re α−n(n−1)

2(n+1) )‖ϕ‖ 2(n+1)
n+3

. (4.14)

Moreover,
‖Sα

` ϕ‖2 ≤ C2`(Re α−n−1
2 )‖ϕ‖2 (4.15)

by Lemma 3.1. Interpolating between (4.14) and (4.15), we obtain

‖Sα
` ϕ‖p ≤ C2`(Re α+ n−1

2p −3 n−1
4 )‖ϕ‖p

( 2(n+1)
n+3 ≤ p ≤ 2

)
. (4.16)

From (4.4), (4.12) and (4.16) we derive the statement of the lemma in the case 2)

Lemma 4.4. In a neighbourhood of the unit sphere the symbol k̂α(|ξ|) of the
operator Sα can be represented as

k̂α(|ξ|) ={
Cα(1− |ξ|+ i0)

n−1
2 −α + u(|ξ|) if α− n+1

2 6∈ −N
(1− |ξ|)n−1

2 −α(C ′α + C ′′α ln(1− |ξ|+ i0)) + v(|ξ|) if α− n+1
2 ∈ −N

where u(|ξ|)(v(|ξ|)) = o
(∣∣1− |ξ|

∣∣n−1
2 −α)

as |ξ| → 1 and

Cα =
1

(2π)n
ei π

2 (α−n−1
2 )Γ

(
α− n−1

2

)

C ′α =

(
ψ(n+1

2 − α) + iπ
2

)
e−i π

2 (α−n−1
2 )

(2π)n(n−1
2 − α)!

C ′′α =
−e−i π

2 (α−n−1
2 )

(2π)n(n−1
2 − α)!

.

Moreover, k̂α(|ξ|) is bounded outside of the mentioned neighborhood.

The statement of this lemma can be derived from Lemma 3.1 and [3: Lemma 2].

Returning in Theorem 4.1 to the proof of (4.2) under assumption (4.3), we note
that kα(| · |) ∈ Lq if 0 ≤ 1

q < 1− Re α
n , and that the statement of the Sobolev theorem

is valid for the operator Sα. From this fact, by convexity and duality arguments we
derive (4.2) for all points

( 1
p , 1

q ) ∈ [A′, A, E] \ ({A′} ∪ {A}). (4.17)

Proceeding, we first consider the case n
2 ≤ Re α < n for n ≥ 2. Taking into account

estimate (4.10) and the evident estimate

‖Sα
` ϕ‖∞ ≤ C2`(Re α−n)‖ϕ‖1,
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by virtue of the Riesz-Thorin theorem we get

‖Sα
` ϕ‖q ≤ C2`(t(Re α−n

2 )+(1−t)(Re α−n))‖ϕ‖p (4.18)

where 1
p = 1 − t

p′0
with p0 ∈ [

1, 2(n+1)
n+3

]
and 1

q = t
2 , t ∈ [0, 1]. The exponent

σ = tn
2 + Re α − n is negative if t < 2(n−Re α)

n , which implies 1
p > 1 − (n−Re α)(n−1)

n(n+1)

and 1
q < 1− Re α

n . Applying (4.18) to each summand on the right-hand side of (4.4),
except for the first one, in view of (4.12) we obtain (4.2) if

( 1
p , 1

q ) ∈ (B, E]. (4.19)

Interpolating between the points of the sets (B, E] and [A′, A, E] \ ({A′} ∪ {A}), by
duality we arrive at (4.2) under assumption (4.3).

Consider the case n
2 > Re α ≥ n−1

2 . Interpolation between (4.15) and (4.13) with
p = 2(n+1)

n+3 yields

‖Sα
` ϕ‖q ≤ C2`(t(n( 1

p0
− 1

2 )+Re α−n+1
2 )+(1−t)(Re α−n))‖ϕ‖p (` ≥ 1) (4.20)

where 1
p = t

p0
+ 1− t and 1

q = t
p0

with p0 = 2(n+1)
n+3 . Now applying (4.20) and (4.12)

to the right-hand side of (4.4), we obtain (4.2) if the point ( 1
p , 1

q ) satisfies the relation

( 1
p , 1

q ) ∈ (G,E]. (4.21)

Making use of (4.18) with t = 1 and (4.15), after interpolation we get

‖Sα
` ϕ‖2 ≤ C2`(t(Re α−n−1

2 )+(1−t)(Re α−n
2 ))‖ϕ‖p (4.22)

where 1
p = t

2 + (1−t)(n+3)
2(n+1) . Further application of (4.22) to the right-hand side of

(4.4) yields (4.2) if
( 1

p , 1
q ) ∈ (K, E]. (4.23)

By virtue of (4.17), (4.21) and (4.23) and convexity and duality arguments we obtain
(4.2) in the case n

2 > Re α > n−1
2 if (4.3) is fulfilled.

In the case Re α = n−1
2 and Imα 6= 0, in accordance with Lemma 4.4, the symbol

k̂α(|ξ|) of Sα is a 2-multiplier, which implies that Sα is bounded in L2.

Let us consider the situation in which 0 < Re α < n−1
2 . In the case n(n−1)

2(n+1) <

Re α < n−1
2 the application of Lemma 4.3 (statement 3)) yields (4.2) if

( 1
p , 1

q ) ∈ (C ′, C). (4.24)

Moreover, as in the case n−1
2 < Re α < n

2 , we also have (4.2) if (4.21) is fulfilled. From
(4.17), (4.21) and (4.24), by convexity and duality we derive (4.2) under assumption
(4.3) in the case under consideration.
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Let finally 0 < Re α ≤ n(n−1)
2(n+1) . Then (4.2) holds if

( 1
p , 1

q ) ∈ (H ′,H) (4.25)

in view of Lemma 4.3 (statement 2)). By virtue of (4.17) and (4.25) and by usual
convexity and duality arguments we also arrive at (4.2) for ( 1

p , 1
q ) satisfying (4.3).

Direct analysis of the proof of the main result from [2] shows the validity of (4.2)
in the case n = 2 and 1

3 < α ≤ 1.

Thus we have proved (4.2) under assumption (4.3). Therefore the operator Sα

can be extended by continuity to a bounded operator acting from Lp into Lq under
assumption (4.3). As is easily verified, this extension coincides with the right-hand
side of (1.2) (with a(r) ≡ 1). Statement I of Theorem 4.1 has been proved completely.

Let us prove statement II of Theorem 4.1, item 1). Consider the characteristic
function χ 1

10
of the ball |y| < 1

10 . Clearly, χ 1
10
∈ Lp for 1 ≤ p ≤ ∞. It suffices to

prove that Sαχ 1
10
6∈ L n

n−Re α
. We have

(Sαχ 1
10

)(x) =
∫

|t|< 1
10

ei|x−t|

|x− t|n−α
dt−

∫

|t|< 1
10

(1− χ(|x− t|))ei|x−t|

|x− t|n−α
dt, (4.26)

χ being the characteristic function of the unit ball. Evidently, the second summand
on the right-hand side herein belongs to L n

n−Re α
. We will prove that for the function

J defined by

J(x) =
∫

|t|< 1
10

ei|x−t|

|x− t|n−α
dt

we have J /∈ L n
n−Re α

and thus come to the desired conclusion. For |x| → ∞ we have

|J(x)| ≥
∣∣∣∣
∫

|t|< 1
10

dt

|x− t|n−α

∣∣∣∣−
∫

|t|< 1
10

|t| dt

|x− t|n−Re α
.

Let us evaluate (from below) the first summand on the right-hand side herein:

∣∣∣∣
∫

|t|< 1
10

dt

|x− t|n−α

∣∣∣∣ = |x|Re α

∣∣∣∣
∫

|y|< 1
10|x|

eiIm α(ln |x|+ln |x′−y|)

|x′ − y|n−Re α
dy

∣∣∣∣

where x′ = x
|x| . After the change of variable y = ωx(τ), where ωx(τ) is the rotation

in Rn such that x′ = ωx(e1) with e1 = (1, 0, . . . , 0), we get

∣∣∣∣
∫

|t|< 1
10

dt

|x− t|n−α

∣∣∣∣ ≥ |x|Re α

∫

|τ |< 1
10|x|

cos(Im α ln |τ − e1|) dτ

|τ − e1|n−Re α

≥ A|x|Re α

∫

|τ |< 1
10|x|

dτ

|τ − e1|n−Re α

(4.27)



926 D. N. Karasev and V. A. Nogin

where A is close to one. Besides this,
∫

|t|< 1
10

|t|
|x− t|n−Re α

dt ≤ |x|Re α

10

∫

|τ |< 1
10|x|

dτ

|τ − e1|n−Re α
. (4.28)

From both estimates we derive that

|J(x)| ≥ |x|Re α
(
A− 1

10

) ∫

|τ |< 1
10|x|

dτ

|τ − e1|n−Re α
≥ C

|x|n−Re α
/∈ L n

n−Re α
.

Statement II/2) follows from statement II/1) by duality. To prove statement II/3) we
have to use the counter-example constructed in [2: pp. 231 - 232]. Finally, statement
II/4) follows from Lemma 4.4. This ends the proof of Theorem 4.1

Remark 4.1. We observe that for every α with 1 < Re α < n there exists a
neighbourhood Ω(α, n) of the set L(Sα) such that

Ω(α, n) ∩ [O′, O,E] ⊂ L(α− 1, n).

This is a consequence of the definition of L(α, n) and statements I and II/items 1) -
2) of Theorem 4.1.

Remark 4.2. We note that in the case of real α with 0 ≤ α < n−1
2 or n

2 ≤ α < n
the statement of Theorem 4.1 was partially proved by the authors jointly with E. E.
Urnysheva.

Passing to the case of operator (1.2), we first describe the class of characteristics
a. Let a be such that the function a∗ defined by a∗(r) = a(r−1) (r > 0) and
a∗(0) = limr→∞ a(r−1) is continuously differentiable up to the order [Reα] + 2 on
the interval [0, A−1) and a(∞) = a∗(0) 6= 0.

The next theorem describes mapping properties of the operator Sα
a . It will play

a crucial role in the proof of Theorem 2.1.

Theorem 4.2. Let 0 < Re α < n. The statements of Theorem 4.1 are also valid
for the operator Sα

a . Moreover, L(Sα
a ) = L(Sα).

Proof. Let first Re α 6∈ N. We make use of the following equality, which is
obtained by application of the Taylor formula to a∗(r) (r ∈ [0, A−1)):

a(r) =
m−1∑

k=0

(a∗)(k)(0)
k! rk

+ Rm(r−1)
(
r > A, m = [Re α] + 1

)

where

Rm(r−1) =
r−m

(m− 1)!

∫ 1

0

(1− u)m−1(a∗)(m)(ur−1) du.

Correspondingly,

(Sα
a ϕ)(x) =

m−1∑

k=0

(a∗)(k)(0)
k!

(Sα−kϕ)(x) + (Tα
mϕ)(x) (4.29)
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where

(Tα
mϕ)(x) =

∫

|y|≥A

ei|y|Rm(|y|−1)
|y|n−α

ϕ(x− y) dy.

Since the kernel of Tα
m belongs to L1 ∩ L∞, we have

L(Tα
m) = [O′, O, E]. (4.30)

Besides this, the imbedding

L(α, n) ⊂ L(α− 1, n) (1 < Re α < n) (4.31)

holds which follows directly from the definition of the set L(α, n) (see Section 2).
Now (4.1) and (4.31) imply

L(Sα−k) ⊃ L(α, n) (k = 0, 1, . . . , m− 1). (4.32)

Now the statement of Theorem 4.2 follows from (4.29), (4.30), (4.32) and Remark
4.1.

The case Re α = `, 1, 2, . . . , n− 1 can be considered similarly on the basis of the
equality

(Sα
a ϕ)(x) =

`−1∑

k=0

(a∗)(k)(0)
k!

(Sα−kϕ)(x) +
(a∗)(`)(0)

`!
(Sα

0 ϕ)(x) + (Tα
`+1ϕ)(x)

where

(Sα
0 ϕ)(x) =

∫

|y|≥A

χ(|y|)ei|y|

|y|n−iIm α
ϕ(x− y) dy.

We only have to note that

L(Sα
0 ) = [O′, O, E] \ ({O′} ∩ {O}). (4.33)

Indeed, since [O′, O, E]\ [O′, O] ⊂ L(Sα
0 ), equality (4.33) will follow from the evident

relation {O}, {O′} 6∈ L(Sα
0 ) and the estimate

‖Sα
0 ϕ‖p ≤ C‖ϕ‖p (ϕ ∈ S, 1 < p < ∞) (4.34)

with constant C not depending on ϕ. To prove (4.34), we split Sα
0 ϕ into

(Sα
0 ϕ)(x) =

∞∑

j=0

(Sα
0,jϕ)(x) (4.35)

where

(Sα
0,jϕ)(x) = 2j(iIm α−n)

∫

|y|≥A

uα

( |y|
2j

)
ei|y|ϕ(x− y) dy.

Evidently, L(Sα
0,0) = [O′, O, E]. Besides this, the estimate

‖Sα
0,jϕ‖p ≤ C2−

jn

p′ ‖ϕ‖p (j ≥ 1) (4.36)

is valid, which can be proved in just the same way as (4.13). Now (4.36) yields (4.34)
by (4.35)
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Remark 4.3. Together with the operator Sα
a we consider the operator

(Sα,−
a ϕ)(x) =

∫

|y|≥A

a(|y|)|y|α−ne−i|y|ϕ(x− y) dy

for 0 < Re α < n where a is assumed to possess the same properties as the charac-
teristic of Sα

a . As is easily seen,
L(Sα,−

a ) ⊃ L(α, n). (4.37)

5. Proof of the main Theorem 2.1

Representing Jn
2−α as linear combination of Hankel functions

Jn
2−α = 1

2

(
H

(1)
n
2−α + H

(2)
n
2−α

)

we get
(Bαϕ)(x) = (Mα

+ϕ)(x) + (Mα
−ϕ)(x) + (Nαϕ)(x) (5.1)

where
(Mα

+ϕ)(x) = 1
2

∫

|y|>A

|y|−n
2 +αH

(1)
n
2−α(|y|)ϕ(x− y) dy

(Mα
−ϕ)(x) = 1

2

∫

|y|>A

|y|−n
2 +αH

(2)
n
2−α(|y|)ϕ(x− y) dy

(the sense of the lower indices ′′+′′ and ′′−′′ will be seen from (5.4)) and

(Nαϕ)(x) =
∫

|y|<A

|y|−n
2 +αJn

2−α(|y|)ϕ(x− y) dy.

We make use of the integral representations

H(1)
ν (z) =

√
2
πz

ei(z−πν
2 −π

4 )

Γ(ν + 1
2 )

∫ ∞

0

e−ttν−
1
2

(
1 +

it

2z

)ν− 1
2
dt (5.2)

H(2)
ν (z) =

√
2
πz

e−i(z−πν
2 −π

4 )

Γ(ν + 1
2 )

∫ ∞

0

e−ttν−
1
2

(
1− it

2z

)ν− 1
2
dt (5.3)

(see [4: p. 165]). In view of these representations we can rewrite Mα
±ϕ as

(Mα
±ϕ)(x) = C±

∫

|y|≥A

|y|−n+1
2 +αe±i|y|m±(|y|)ϕ(x− y) dy (5.4)

where
C± = (2π)−

1
2 e±

iπ(n+1−2α)
4 Γ−1(n+1

2 − α)

m±(|y|) =
∫ ∞

0

e−tt
n−1

2 −α
(
1± it

2|y|
)n−1

2 −α
dt.

It is evident that m± satisfy the assumptions of Theorem 4.2 and Remark 4.3. Ap-
plying (4.1) and (4.37), we obtain

L(Mα
±) ⊃ L(α + n−1

2 , n). (5.5)
Moreover,

L(Nα) = [O′, O, E]. (5.6)
Now (5.5) and (5.6) yield (2.1) by (5.1) in the case Im α 6= 0. Applying the corre-
sponding result from [13: p.238] we also arrive at (2.1) in the case Im α = 0
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