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On a Similarity Boundary Layer Equation

B. Brighi

Abstract. The purpose of this paper is to study the autonomous third order nonlinear
differential equation f"’+ ™+ f f —m f”> = 0 on (0, 00), subject to the boundary conditions
f(0) =a € R, f/(0) =1 and f(t) — 0 as t — oo. This problem arises when looking
for similarity solutions to problems of boundary-layer theory in some contexts of fluids
mechanics, as free convection in porous medium or flow adjacent to a stretching wall. Our
goal here is to investigate by a direct approach this boundary value problem as completely
as possible, say studying existence or non-existence and uniqueness or non-uniqueness of
solutions according to the values of the real parameter m. In particular, we will emphasize
similarities and differences between the cases a = 0 and a # 0 in the boundary condition

1(0) = a.
Keywords: Third order differential equation, boundary layer, similarity solution

AMS subject classification: 34B15, 34C11, 76D10

1. Introduction

The problem we consider consists in solving the autonomous third order nonlinear
differential equation

f’"-l—mTJrlff”—mf/2 =0 on (0,00) (1.1)

subject to the boundary conditions

f(0)=a
F'o)=1
/(00) = lim f'(t) = 0.

The parameters m and a will be assumed to describe R. But since the case m = 0,
where (1.1) reduces to the so-called Blasius equation, is well-known (see [4, 10]), we
will suppose m # 0. Moreover, for a = 0 we will refer to [5], where this case is
partially investigated. As we will see, the results for a # 0 are sometimes the same
as for a = 0, but as already noted in [8, 18], this is not always the rule. For instance,
if m = —%, problem (1.1) - (1.4) has no solution for a < 0 and an infinite number of
solutions for a > 0.
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Let us now look at the situations where the boundary-layer equation (1.1) arises.
Essentially, two physically different contexts lead to problem (1.1) - (1.4) when look-
ing for similarity solutions. The first one is concerned with free convection about
a vertical flat surface embedded in a fluid-saturated porous medium, on which the
temperature is prescribed as a power function with exponent equal to m, and through
which fluid can be injected into the flow (in the case a < 0) or withdrawn from it
(in the case a > 0); the case a = 0 corresponds to an impermeable surface (see [9,
12] for a = 0 and [8] for a # 0). Again in fluids mechanics, but in the study of the
boundary-layer flow adjacent to a stretching wall with velocity involving a power-law
exponent equal to m, one obtain a slightly different version of (1.1) given by

2

9" +99" — 29" =0 (1.5)

subject to the boundary conditions ¢g(0) = b,¢'(0) = 1,¢'(c0) = 0, where b = 0
corresponds to an impermeable wall, b > 0 to suction and b < 0 to lateral injection of
the fluid through a permeable wall (see [1, 2, 18]). In this second context, the set of
relevant values of m is (—1, 00); this appears in the definition of similarity variables

. . 2
allowing to get (1.5). The way to pass from (1.5) to (1.1) is to set x = /=5 and
f(t) = kg(k~t), and for that we must have m > —1.

The particular values m = —% and m = 1 have attracted special attention in the

past and even recently. In both cases problem (1.1) - (1.4) is exactly solvable (see
[1, 11, 15, 18, 20]). For a # 0 the value m = 1 corresponds to constant wall mass
transfer rate in the first physical context (see [8]) and to lateral mass flux of constant

velocity in the second one (see [18]). In the first framework, and if m = —3, the
energy convected is constant and the local heat transfer rate along the surface of the
flat plate is equal to 0; the value m = —% can also be related to a horizontal line

embedded in a porous medium (see [9]).

Recall also that by analogy with the Falkner-Skan equation (see [10, 16, 19, 21]),
the constraint on the solution

0< f(t)<1  (t>0) (1.6)

could be considered. In the context of heated impermeable wall embedded in a porous
medium, such a condition corresponds to assume that the temperature decreases away
from the wall (see [3, 5]). But we will not consider this restriction here, as it is done
in [1, 2, 8,9, 12, 17, 18]. In most of these papers, after physical considerations,
problem (1.1) - (1.4) is essentially studied from the numerical point of view, and only
simple facts of mathematical analysis are investigated. Our goal here is to study
deeper equation (1.1) and determine as precisely as possible, for given values of the
parameter m and the initial condition a, if the boundary value problem (1.1) - (1.4)
has solutions, and if uniqueness holds or not.

At this stage, we must note that due to the scaling invariance of (1.1) we could

introduce the blow-up coordinates u = f—; and v = f}—’; After changing time, equation

(1.1) reduces to an autonomous system on a plane. Its phase portrait can give some
informations about f, that looks hard to get directly from (1.1). Especially, it is
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possible to characterize, at least for m € [0, 1], the asymptotic behaviour of solutions
and to improve the uniqueness results of Section 7. However, to use the coordinates
u and v we have to assume that f does not vanish and so exclude the cases where
f(0) = a < 0, and it seems difficult to get existence or non-existence results as
Theorems 4.1, 6.1 or 7.1. Also, it is not so clear how to relate boundedness of f and
properties of u and v. Both methods have arguments for and against, and our aim
in this paper is to exploit as much as possible equation (1.1) and perhaps to show
the limitation of this direct approach. We refer to [7] for further developments in the
way involving the blow-up coordinates u and v.

Finally, as already said, some of the results below does not depend on the value
of a, and the proofs are the same as those given in [5]. Nevertheless, most of the
time we will give these proofs in order to be more convenient for the reader. Note
also that we give answers to some questions shelved in [5].

2. Properties of the solutions

First let us remark that if f satisfies equation (1.1) on some interval I and if we
denote by F' any anti-derivative of f on I, we get the relation

(f'e" s ) = me"F g (2.1)

from which and the fact that f’ and f” cannot vanish at the same point, we easily
deduce the following

Lemma 2.1. Letm # 0 and let f be a solution of equation (1.1) on some interval
I. Then, fortye I:

(i) In the case m < 0, if f"(to) <0, then f"(t) <0 fort > to.

(ii) In the case m >0, if f"(to) > 0, then f"(t) > 0 fort > to.

In other words, for m < 0 the function f is either convex, or convex-concave,
or concave, and for m > 0 the function f is either convex, or concave, or concave-
convex. Here, by convex and concave we mean strictly convex and strictly concave,
respectively. Moreover, we say convex-concave for a function which is convex to a
point to and concave after this point.

Lemma 2.2. If a solution f of equation (1.1) is defined in a finite interval [0,T)
only, then | f(O)[,[f" ()], 1f" ()] — o0 as t =T

Proof. We exploit an idea used in [10] for the Falkner-Skan equation. First,
notice that

Tim {1 ()] + |/(8)] + 1" (1) } = oc. (2.2

If f” were bounded for t — T, then f’ and f would also be bounded, which contradicts
(2.2). Therefore, f” is unbounded. Integrating equation (1.1) between 0 and s < T,
we get

F7(s) = £7(0) + 2 (f(s)f'(s) = F(0)f(0)) = 25 /O flm2dn  (2.3)
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and we see that f’ has to be unbounded. In view of Lemma 2.1, we deduce | f'(t)| — oo
ast —T.

Finally, suppose f were bounded for ¢t — T'. From (2.3) we get by integration

/ m+1l pr4)\2 :Mts/z
F/(t) + PELF(0)2 + M4 = B AAfOﬂm%

where A and p are constants. Since |f'(t)| — oo as t — T, the right-hand side does
also and the proof is finished if m = —%. If m # —% and if we put

w) = [ [ swPanas,

then w”(t) = f'(t)? ~ (%)Qw(t)2 (t — T). Multiplying by w’(t), integrating and
using the fact that w(t) — oo as t — T, we obtain

Jw'(1)? ~ G w(t)?

t—1T).
w'(t) ~ P w(t)? (
It follows that .
w(t) 2 ~c (T —t
Ot var-n

f'#) ~ 7%

for some constants c; and cy. Integrating, we get f(t) ~ =2 as t — T which

contradicts the original assumption that f is bounded for ¢t — T. Therefore, f is
unbounded and necessarily |f(t)] — o0 as t — T.

It remains to show |f”(t)] — oo as t — T. To this end we use the equality

m—+1

( ///emg‘lF)’: 3m2—1€ 5 Ff/f// (2.4)

(where F is any anti-derivative of f) which can be obtained after differentiating (1.1).
Thanks to Lemma 2.1, f/ and f” do not change of sign if we are sufficiently close to
T. Tt follows that " does not also, which implies |f"(t)| —» cc ast — T I

Clearly, the result of the Lemma 2.2 is still valid for a solution f of equation (1.1)
defined only in a finite interval (=T, 0].

For the rest of this section we will denote by f a solution, if it exists, of problem
(1.1) - (1.4). The following propositions give properties of f. The proofs are similar
to that of the case a = 0 (see [5]).

Proposition 2.1. If m < 0, then f > a and [ is strictly increasing on (0,00).
Moreover,
e if f(0) <0, then f is strictly concave on [0, 00)

e if f7(0) > 0, there exists to € (0,00) such that f is strictly convex on [0, to]
and strictly concave on [tg,o0).

On the other hand, if m > —1 and a < 0, then f(t) becomes positive for large t.
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Proof. Assume first f”(0) < 0. It follows from Lemma 2.1 that f” < 0 on
(0,00), so f is strictly concave on [0,00) and f’ is strictly decreasing on [0,00). But
f'(0c0) =0, thus f/ > 0 on [0,00) and f is strictly increasing. Finally, since f(0) = a,
we get f > a on (0,00).

Now, assume f”(0) > 0. There exists ¢y € (0,00) such that f” > 0 on [0,%) and
f"(to) = 0. Indeed, if not, f’ would be strictly increasing and thus, since f'(0) =1,
we could not have f’(co0) = 0. Next, Lemma 2.1 implies f” < 0 on (tp,00) and as
in the previous case, we deduce f’ > 0 on [tg, 00). Moreover, since f' > 1 on [0, ¢],
f/'>0and f > aon [0,00).

If m > —1 and f is negative on [0, c0), then using the results above, we get

F(t) = mf'(8)? = () f(8) <0

for ¢ large enough. So f’ is concave at infinity, which contradicts f’ > 0 and condition
(1.4) 1

Proposition 2.2. If m > 0, then f”(0) < 0. Moreover,

e cither f > a, f is strictly increasing and strictly concave on [0, 00)

e or there exists ty € (0,00) such that f is strictly concave on [0,tg] and f is
positive, strictly decreasing and strictly convex on [tg, 00).

Proof. First, if f”(0) > 0, it follows from Lemma 2.1 that f” > 0 on (0, c0).
Hence f’ is strictly increasing and we cannot have f/(0) = 1 and f’(c0) = 0 together.
So, f"(0) < 0.

Let us assume that f” does not vanish on (0,00). Then f” < 0 and f is strictly
concave on [0,00). Hence, f’ is strictly decreasing and, from (1.3), f* > 0 follows.
Consequently, f is strictly increasing and f > a on (0, c0).

Let us now assume that f” vanishes somewhere and denote by ¢y the point of
(0,00) such that f” < 0 on [0,t9) and f"”(tp) = 0. Thanks to Lemma 2.1, f” > 0
on (tp,00). Therefore, f’ is strictly increasing on [tg, 00) and, due to (1.4), f' < 0
on [tg,00). So, f is strictly convex and strictly decreasing on [tp,00). It remains to
prove f > 0. For that, suppose there exists t; > to such that f(¢;) < 0. Since f is
strictly decreasing on [tg,00), f < 0 on (t1,00). Therefore,

)y =mf () = 2RO ) >0 (E>t)

and f’ is convex on [t1,00). But, this contradicts condition (1.4) and f’(¢1) < 0. So,
f >0 on [t(),OO) [

Remark 2.1. For m > 0 and a < 0, we do not know a priori if a concave
solution of problem (1.1) - (1.4) becomes positive for large ¢. Nevertheless, this is
true and will be deduced from Section 7 since for m > 0 we will construct a concave
solution positive at infinity and prove that there is at most one concave solution.

Proposition 2.3. For all m € R,

lim f”(t) = 0 (2.5)

t—o0
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and there exists a sequence t, T oo such that

lim " (t) = lim f(t2)f" () = 0 (2.

n—oo

Proof. Since f/(o0o0) = 0, there exists a sequence x,, | oo satisfying f”(z,) —
0 (one can take z, such that f”(x,) = f'(n+ 1) — f'(n)). On the other hand,
multiplying equation (1.1) by f” and integrating by parts, we obtain

%f//<t)2 . %f”<0)2 . %f/(t)g % — m—l—l / f // (27)

for all t. But since f remains positive or negative for large ¢, the function ¢t —
fo s)f"(s)?*ds has a limit as t — oo, and we deduce from (2.7) that lim; o f”(¢)?
exists. Then (2.5) holds. Furthermore, choosing (t,,) such that f(t,) = f"(n+1) —
f"(n) and using (1.1) and (1.4) we get (2.6)

Remark 2.2. If m > 0, then f is bounded on (0,00). In fact, if f is concave-
convex, this is clear. Now, if f is concave and unbounded, then f(co) = oo and there
exists t; such that

P = - (). (2.5)
Since f” is increasing on [t1,00), we deduce from (1.4) that f”(c0) = 0, and by
integrating (2.8) between s > ¢; and oo we obtain —f”(s) > f/(s) for all s > t;.
Integrating again we get — f'(t)+f'(t1) > f(t)— f(t1) for all t > ¢; and a contradiction
with condition (1.4).

We will see that for some m < 0 there are unbounded solutions of problem (1.1)
~(1.4).

3. Non-existence results for m < —1

Very often, the case m < —1 in equation (1.1) is not considered in physical papers
(see Section 1). Nevertheless, it may be noted that in [22] one find a simple proof
that problem (1.1) - (1.4) with @ = 0 has no solutions for m < —1 (see also [5]).
To be as exhaustive as possible, mathematically speaking, we propose the following
(unfortunately, incomplete) generalization of that result from [22].

Theorem 3.1. Let m < —1 in problem (1.1) — (1.4).

(i) Ifa> — \/%, then the problem has no solution.
(i) Ifa < —

\/% and f is a solution of the problem, then necessarily f < 0.

Proof. Let us assume that f is a solution of problem (1.1) - (1.4). Using Propo-
sition 2.1, there exists g > 0 such that f”(¢) < 0 for ¢t > tg. On the other hand, if
f(t1) > 0 for some point t;, because f is increasing, f”/(t) < 0 for ¢t > max(to,t1)
which contradicts (2.5) and the negativity of f”(t) for large ¢. Consequently, f < 0
and necessarily a < 0. Moreover, f is bounded, and integrating equation (1.1) be-
tween s and oo we obtain

Cf(s) — mEL Y (s) f(s) = Bmt1 / £ (m)?dn <.
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Integrating now on [O t] we get 1—f/(t)— = (f(¢)? —a®) <0 (¢t > 0) which implies
0< -2 )2 < f/(t) —1—2a? (¢t >0)and a < —\/%. This completes the
proof i

Remark 3.1. Theorem 3.1 shows that, for m = —1 and for every a € R, there
is no solution of problem (1.1) - (1.4). For m < —1 we do not know, if solutions of
problem (1.1) - (1.4) exist for —a large enough.

4. The case m € (-1, -1/3)

For values m € (—1,—3) existence and non-existence results for problem (1.1) -
(1.4) again depend on a. In [8], a study of this case, using asymptotic expansions
and numerical results, seems to indicate that solutions exist for m > mg(a) where
mo(a) = —1 if a < 0 and

1
mo(a): -3 asa—>0
-1 asa— >

if a > 0. See also [18], and [5, 17] for the case a = 0. In what follows we will prove

in a simple way non-existence when a < 0 and existence result for m € [—1 5 —%) and

a > 0. Obviously, this is very incomplete, because we have no existence results for
a < 0, and no idea about the critical value mg(a).

Theorem 4.1. For m € (—1,—3] and a < 0, problem (1.1) — (1.4) has no
solution.

Proof. Let us assume, contrary, that there is a solution f of problem (1.1) -
(1.4). Thanks to Proposition 2.1, there exists some s > 0 such that f(s) = 0 and
f(t) > 0 for t > s. Now, considering the sequence (¢,,) defined by (2.6), multiplying
equation (1.1) by f and integrating between s and ¢,, for n large enough, we get

2m—|—1/ f(n

= f(t) " (tn) = 5.1/ (ta)? + 5/ (5)* + 252 ' (t0) f(t0)?
Zf(n)f (n)_§f<n) 3f'(s)?

which gives a contradiction as n — oo (recall that f/ > 0)

Theorem 4.2. For m € [—3,—%) and a > 0, problem (1.1) — (1.4) has an

infinite number of solutions. Moreover, these solutions are unbounded.
Proof. Let us introduce the initial value problem
P LR —mf =0
f0)=a
f'(0) =
£10) = p

(Pm,a,u)
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and let f,, be its solution defined on [0,7),). Assume that f, vanishes somewhere
and denote by ¢; > 0 the point such that f,(t1) = 0 and f/, > 0 on [0,¢;). Since f},
and f;/ cannot vanish at the same point, f; (1) < 0. Moreover, f, > 0 on [0,%1).
Multiplying the differential equation in problem (P,.q,,) by f. and integrating it
between 0 and t;, we derive

t1
h@ﬂﬂ@ﬁ—au+%—m§ﬂ%=@m+i{/ fu(m) fi(m)dn > 0 (4.1)
0
and therefore pu < % — mT“a. Consider now a u > % — mT“a. Then f) cannot

vanish. On the other hand, integrating the differential equation in problem (P, q..)
we get

4+ 22 fuf < p+ 2Ha. (4.2)

Hence, in view of Lemma 2.1 and since f,, > 1 as long as f,] > 0, there is some g
such that f//(t) < 0 for t > to. It follows 7}, = oo and f,(t) = 1> 0ast — oco. If
[ >0, then f,(t)f,(t) — 0o as t — oo and (4.2) implies that f)/(t) — —oo and f},
must become negative, which is a contradiction. Therefore, [ = 0 and f,, is a solution
of problem (1.1) - (1.4). Coming back to (4.1) we easily get a contradiction if f, is
assumed to be bounded i

Remark 4.1. For m € [—%,—%) and a > \/%H we have 2—1(1 — mTHa < 0, and
if u et — mTJ“la, 0], then the solution f,, of problem (P,,q,,) is concave (i.e. it

2a
satisfies constraint (1.6)).

Remark 4.2. Let m € (—1,—3) and let f be a solution of problem (1.1) - (1.4).
Integrating equation (1.1) on [0, t], we get

P00~ 10) + 2 (7050 - o) = 2252 [ {2,

Since f’ > 0 and f(t) > 0 for large ¢, we obtain for such a ¢

t
0< =2 [ < 170) - £7(0)+ 24

for such a ¢t. This implies f' € L?(0,00) and, since m # —1, f(t)f'(t) has a limit
¢ > 0ast — oco. But, if ¢ > 0 we easily get a contradiction with the fact that
f € L?(0,00) (see [5: Theorem 4.2]). Finally, f'(t)f(t) — 0 as t — oo and f”(0) =

_mg—la _ 37712-1-1 fOOO f,(n)an~
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5. The special case m = - 1/3

Let us denote by f, the solution of problem (P_1 , ) and by 0,7),) with0 < T, < oo

its right maximal interval of existence. Integrating twice the differential equation
herein we get

Fl4+5fuf, =n+3a (5.1)
@)+ 5 fu®)? = (+ 3a)t+ 1+ 3a®. (5.2)

The last equation is of Riccati type and give the explicit solution

a cosh %t + ksinh %t

f-e(t) =k

a sinh ’%t + Kk cosh ’%t

of problem (P_1 , _a) where k = va* + 6. This solution is given for a = 0 in [5, 20]
and for the general case in [18]. It is defined on [0, 00) and satisfies condition (1.4).
But we have more:

Theorem 5.1. For all p > —% the solution f,, of problem (P—é,a,u) is defined
on [0,00) and satisfies lim;_.oc f,(t) = 0, i.e. problem (1.1) — (1.4) has for m = —3%
an infinite number of solutions.

Proof. Let p > —%. Assume first 4 < 0. Then, from Lemma 2.1, f; < 0 and
(5.1) shows that f/ cannot vanish. It follows T, = oo and f/ (¢) has a limit [ > 0
as t — oo. Suppose | > 0. Then f,(t)f,(t) — oo as t — oo and (5.1) implies
fu(t) — —oc and f;, must become negative, which is a contradiction. Therefore,
[ =0.

Assume now g > 0. Since f, > 1 as long as f,/ > 0, we deduce from (5.1) that
f, has a zero at some point tg > 0. It then follows from Lemma 2.1 that f;(t) <0
for t > ty and we can conclude as previously i

Remark 5.1. If y < —%, then (5.2) shows that f, cannot satisfies condition
(1.4).

Remark 5.2. It follows from Theorem 5.1 that for m = —% one has the following
possibilities:
e If a > 0, then problem (1.1) - (1.4) has an infinite number of concave solutions
(i.e. such that (1.6) holds), which are f, for u € [-%,0].
e If a = 0, then problem (1.1) - (1.4) has one and only one concave solution.
e If a < 0, then problem (1.1) - (1.4) has no concave solution.

Remark 5.3. It follows from (5.2) that, if 4 > —%, then f, is unbounded. Thus
problem (1.1) - (1.4) has only one bounded solution, which is f_

a .,
3
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6. Existence, uniqueness and non-uniqueness results
for m € (-1/3, 0)

For m € (—%,0) and a = 0, a proof of the existence of a concave and bounded
solution is given in [5]. In this section, we obtain in Theorem 6.1 a similar result for
a # 0, that we prove by using the solution corresponding to a = 0. A direct approach
(in this case, as in the case m > 0) could be obtained, even if some difficulties should
appear, especially when a < 0, by adapting the proof of [5], but the method we use
in Theorems 6.1 and 7.1 is actually easier, and consists in to remark that, if g is a
solution of equation (1.1), then it is so for the function t — kg(kt +tg), for all k > 0
and all ¢,.

On the other hand, in [5] it was conjectured that there is one and only one concave
solution of problem (1.1) - (1.4) (as for m > 0), but this is not true as shown in [14].
The concave solutions of problem (1.1) - (1.4) exhibited in [14] are unbounded, and
in fact uniqueness holds for bounded solutions, at least when a > 0.

Theorem 6.1. Let a € R. If m € (—%,0), then problem (1.1) — (1.4) has a
bounded solution f, which is positive at infinity, increasing and satisfying

a<f(t)</a?+ 755 (t=0). (6.1)

Moreover, if a > 0, such a solution is unique.

Proof. Existence: Let us denote by g the solution of problem (1.1) - (1.4),
constructed in [5] and corresponding to a = 0, i.e. such that g(0) = 0.

The case a > 0: Since for all £ > 0 and all ¢¢ the function
fit— kg(kt+to) (6.2)

satisfies equation (1.1), let us try to choose k and ¢y in order to get a solution of
problem (1.1) - (1.4) with a # 0. First, note that the function

t2
h:t%% (6.3)

is well defined on [0, c0) and satisfies A(0) = 0 and h(t) — oo as t — oo. Thus, there
exists a point to > 0 such that h(tg) = a®. Then choosing

k= gé‘o) (6.4)

it is easy to see that, for @ > 0, the function f defined by (6.2) with these values of
k and ty is a solution of problem (1.1) - (1.4). Moreover, f as g is concave.

The case a < 0: Let us consider again the function h defined by (6.3). To
apply the previous method, we have to look at g(t) for negative values of ¢. Denote
by (=T, 00) the maximal existence interval of g. It is easy to see that if ¢’ does not
vanish, then T' = oo. In fact, if T' < oo, then from Lemma 2.2, g(t) — —o0, ¢'(t) — o0
and ¢”(t) — —oo as t — —T. But in this case equation (1.1) gives ¢"’(t) — —o0
which is a contradiction.
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e If ¢’ vanishes somewhere, let t; < 0 be such that ¢’(t;) = 0 and ¢’ > 0 on
(t1,0). Then h is defined on (¢1,0] and h(t) — oo as t — t;.

e Assume now that ¢’ > 0. If h is bounded on (—o0,0), then there is a ¢ > 0

such that g(sg > ¢ for all t < 0. Integration gives — (1t) + ﬁ > c(t — s) for all
s <t < 0 and, since g(s) < 0 for s < 0, g(t) > ¢(t — s) for all s <t < 0. This
is a contradiction by passing to the limit as s — —oo. Hence, h is unbounded on
(—00,0).

Therefore, in any case, h is unbounded and there exists ty < 0 such that h(ty) =

a?. Now, if we choose k as in (6.4), the function f defined by (6.2) is a solution of
problem (1.1) - (1.4).

Next, f(t) > 0 for t > —%, and since g is bounded, this is so for f. Moreover, to
derive (6.1) we multiply equation (1.1) by ¢ and integrate by parts to get

EF(E) ML ) (D) — F(8) + 1 — mELF()® — a?)
6.5
=3m*/nf() 65

Now, using boundedness and concavity of f for large ¢, one deduce lim;_, . tf'(t) f(¢)
= lim; o tf"(t) = 0 and, passing to the limit as t — oo in (6.5), we get

1— 2EL(f(00)? —a?) = 3mtd /000 sf'(s)%ds > 0. (6.6)

To conclude, it is enough to remark that f is increasing.

Uniqueness: We assume here a > 0. First of all, if f is a solution of problem
(1.1) - (1. ) then f is increasing and we can define a function v = v(y) such that
v(f(t)) = f'(t) for all t > 0. If f is bounded and f(occ) = A, then v is defined on
[a, A), positive and

so much so that we get
o = L+ ) fm (y € [a, V). (6.7)

In addition, v(a) = f'(0) = 1 and v(A) := lim,_, ) v(y) = lim;_. f'(t) = 0. Suppose
there are two bounded solutions f; of problem (1.1) - (1.4) and set A\; = f;(c0) (i =
1,2). They give for equation (6.7) two solutions v; defined on [a, \;) such that v;(a) =
1 and v;(A;) = 0. Let us assume that A\; < Ay and prove that v; < vy on [a, \1).
Suppose v1(y) > wva(y) for some y € (a,\1). Since vi(a) = va(a) and v1(A1) =
0 < vy(A1), then v; — v9 has a positive maximum at a point € (a,A;). Hence
vi(x) > va(x), vi(x) = vh(z) and v{(x) < v{(z). But, on the other hand,

V(@) = (@) = (2 — 52ky) (04 (2) + 25205 () (65)
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and

(vi(z) + )i (2) = (vi(z)vy(z) + 5 -z (x)) Zi—gg

= (f{(s) + L 1 (5) () £ (6.9)

for s such that z = f;(s). Since f; is bounded, by integrating equation (1.1) we get

U(t) + L f (8) (1) = — Bt / F(n)2dn < 0

for all ¢ > 0. This together with f; > 0 imply f{’ < 0 and, in view of (6.8) - (6.9),
vY(x) — v§(x) > 0 which is a contradiction. Therefore, v; < vy on [a, A1). It follows

/Ooof{<n)2dn:/:l v1(y)dy§/:1 Uz(y)dy§/a/\2v2(y)dy:/ooofé(n)2d

and since f]'(0)+ 2 a = —32EL (59 £1(n)2dn we get f{'(0) > f5(0). But, if f{'(0) >
5/(0), we get v](a) > vh(a) which contradicts the fact that v; < vy on [a,A\1). So,
17(0) = f4(0) and f; = fo. This completes the proof B

Remark 6.1. One can see in the previous proof that if there are two distinct
solutions f; and f; of problem (1.1) - (1.4) when a < 0, then necessarily both
are convex-concave and the point x where v]j(x) = v4(x) is negative and satisfies
v} (x) > 0. This means that, if there is a bounded concave solution of problem (1.1)
- (1.4), then there is no other bounded solution.

Remark 6.2. For a > 0, the solution f of problem (1.1) - (1.4) constructed in
Theorem 6.1 is strictly concave on [0, 00), and thus sf’(s) < f(s) —a for s > 0 which
implies [~ sf’(s)%ds < 3(f(o0) — a)?. Therefore (6.6) gives the relation

(2m +1)f(c0)* — (3m + 1)af (o) + ma® —2 > 0

from which and (6.1) we derive the estimate

3m+1)a+ m+1)2a24+4(4m-+2
Gt hot 2P 0mE) - p(o0) <\ fa2 + A (6.10)

Note that these bounds have some optimality, in the sense that both are equal to

va?+6 for m = —%.

Theorem 6.2. Ifm € (—%,0), then problem (1.1) — (1.4) has an infinite number
of unbounded solutions.

Proof (following an idea of [14]). Let us consider problem (P, 4 ) and again let
fu. be its solution defined on [0,7),). Integrating the differential equation in (Py,q,,)
between 0 and ¢t < T, we get

S + TP (6 £ (8) = o L Smetd / £ (6.11)
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For the rest of this proof we will assume p > —mT“a. Then

Fi@®) + 252 0 fu) >0 (t€[0,T},)) (6.12)

from which f/, > 0 follows. Indeed, since f,,(0) =1, f;(t1) < 0 for ¢; the first point
where f,, vanishes, which contradicts (6.12). In view of Lemma 2.1, f, (t) — [ € [0, o0]
as t — T),. Suppose [ # 0. Then there exists s such that f, > 0 on [s,7},). Indeed,
either 7, = oo and it is clear, or 7, < oo and f,(t) — oo as t — T,. Next,
multiplying the differential equation in (P, q,.) by f, and integrating by parts, we
obtain

t
3 fi (2 = 5 f1 ()2 = B L) + 5 fu(s)® = =25 [ fu(n)fy ()*dn

S

for all ¢ € (s,7),). Since m < 0, [ is finite and 7}, = oo by virtue of Lemma 2.2.
Moreover, we assumed [ # 0 and thus f,(t) ~ It for t — co. Coming back to (6.11),
we obtain f7/(t) ~ —2FL12t + 320 = ml®t (t — oo) which contradicts f}, () ~ I
for ¢ — oco. Finally, I = 0 and f, is a solution of problem (1.1) - (1.4) which is
necessarily unbounded in accordance with (6.11) i

Remark 6.3. Fora > 0 and p € [, 0], the solution f,, of problem (P, 4,,.)
is concave (i.e. it satisfies constraint (1.6)).

Remark 6.4. One can show (see [14]), for unbounded solutions f of problem
(1.1) - (1.4) exhibited in the proof of Theorem 6.2, f'(t) f(t) — oo as t — oo (compare
with Remark 4.2).

7. Existence and uniqueness results for m > 0

The first result of this section says that, for m > 0, there is one and only concave
solution of problem (1.1) - (1.4).

Theorem 7.1. Leta # 0. If m > 0, then problem (1.1) — (1.4) has one and only
one concave solution f, which is positive at infinity and such that

a< f(t) <y/a?+ (7.1)

for allt > 0.

Proof. Ezistence: Let us denote again by g the solution of problem (1.1) - (1.4),
constructed in [5] and corresponding to a = 0.

The case a > 0: The proof is exactly the same as that of Theorem 6.1.

The case a < 0: As in Theorem 6.1, denote by (=T, 00) the maximal existence
interval of the function g and consider the function A defined by (6.2). In view of
Lemma 2.1, g is concave, ¢’ > 0 and h is defined on (=T, 00). Our goal is to prove
that h is unbounded on (—7,0).
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If T'= oo, then we can reproduce exactly the reasoning in the proof of Theorem
6.1. Suppose now 7' < co. Thanks to Lemma 2.2, ¢(t), ¢"(t) — —oo and ¢'(t) — o
as t — —T. Then, using (2.4) and the fact that ¢"’(0) = m > 0 we see that ¢’ > 0
on (—T,0). Hence, if we set 5 = nf—Tl, we get —gg”’ + B3¢g’% > 0 from where we deduce
that the function ¢ = ¢/(—g)~” is positive and increasing on (—7,0). Thus, ¢ is
bounded as t — —T and h(t)~! = (t)|g(t)|’~2 — 0 as t — —T, since g(t) — —oo
ast — —T and § < 2. Hence, h is unbounded on (—7,0).

Therefore, in any case, h is unbounded and we gat, as in Theorem 6.1, that
problem (1.1) - (1.4) has a solution f positive at infinity and satisfying estimate
(7.1). Moreover, f as g is concave.

Uniqueness: Let f; and fy be two concave solutions of problem (1.1) - (1.4). Let

us assume f1”(0) > f2”(0) and introduce the function k = f; — fo. One has k(0) = 0,

k' (0) = 0 and k”(0) > 0. Since k'(c0) = 0, there is a point ¢y > 0 such that &’ > 0
on (0,tp], k" (tp) = 0 and

K" (to) < 0. (7.2)

Moreover, k(tp) > 0. Now, using the equality f1”(to) = f2"(to), we can write

K" (to) = f1" (to) — f2"" (to) = mk'(to)(f1 (to) + f2'(t0)) — 25+ fr" (to) k(to)

which gives k" (t9) > 0 and a contradiction with (7.2) B

Remark 7.1. For m = 1, the function g is given by g(¢t) =1 —e~* (see [5, 11,
20]) and the function f defined by (6.2) can be computed; we get

ft)=a+(c—a)(l—e ) (7.3)

with ¢ = 3(a + v/a®> +4). This explicit form was first given in [15] (see also [18]).
Note that we can recover (7.3) directly by the method used in [5] to get the function
g. On the other hand, f is the unique concave solution of problem (1.1) - (1.4).

Remark 7.2. The function f constructed in Theorem 7.1 is strictly concave on
[0,00), and thus estimate (6.10) still holds. Since f is positive at infinity, the lower
bound in (6.10) can be replaced by 0 when this one is negative. In fact, this is the

case form > 0 and a < —,/ % Note also that for a > 0 the lower and upper bounds

tend to @ as m — oo.

Remark 7.3. The upper bound in (7.1) is still valid for a concave-convex solu-
tion f of problem (1.1) - (1.4) when m > 0. To see that, it is enough to write relation
(6.5) for t = t1, where t; > 0 is the point such that f’(¢1) = 0, i.e. where f achieves
its maximum. The lower bound has to be replaced by min(a,0).

We would like to finish this section by dealing with uniqueness for problem (1.1)
- (1.4). We saw in the previous parts that in several cases this problem has more
than one solution. In [5], uniqueness is obtained for m € [0, 5]. The proof consists to
remark that if a concave-convex solution f of problem (1.1) - (1.4) exists, then f"’
has to vanish, and to get a contradiction by considering f””/ and using the fact that
f"and f” do not vanish after the point where f’” vanishes.
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In order to improve this result, say to obtain that uniqueness holds for m € [0, 1)
(as numerical attempts seem to indicate, see [6]), the idea is to look at higher deriva-
tives of solutions. The method consists again to exclude concave-convex solutions.
But to conclude, we a priori need to know that for all k the derivative f(*) of a
possible concave-convex solution f does not vanish in some interval (t;,00). As we
will see, this is true if f(¢) tends to some A > 0 as t — oo. Unfortunately, we are
unable to prove this property when f(t) — 0 as t — oo (recall that f(oo) > 0; see
Proposition 2.2).

In fact, it seems that, at least for m € [0, 1], any solution f of equation (1.1)
tending to 0 at infinity satisfies

fO~3 ) ~-5 [f'O~7F  (t—o0) (7.4)

If these relations were true, by using (1.1) we could assert f*)(t) ~ (—1)F %5 as
t — oo for some constant ¢ > 0, and conclude.

In order to have partial results, let us say that a solution of equation (1.1) is
oscillating, if there is an integer k (necessarily k > 2) such that, for all n > 0, there
is a point s, > n such that f*)(s,) = 0. If f is a non-oscillating concave-convex
solution of problem (1.1) - (1.4), then it is easy to show by induction that there exists
a sequence 0 < t; T such that

fP)=0 (k>1) and (-1)'f9D >0 (1<i<k) on (tg,o0). (7.5)

The following results show that, for m € (%, 1), problem (1.1) - (1.4) may have as
concave-convex solutions only oscillating solutions tending to 0 at infinity, and thus
such that (7.4) does not hold. In fact, we would deduce uniqueness for m € [0,1)
if we were able to proof relations (7.4) for concave-convex solutions tending to 0 at
infinity.

Proposition 7.1 (see [5]). For m € [0, %], problem (1.1) — (1.4) has one and
only one solution.

Proposition 7.2. Let m > % and assume [ is a concave-convex solution of
problem (1.1) — (1.4) tending to X\ > 0 at infinity. Then f is non-oscillating.

Proof. We will use asymptotic relations at infinity of f, f’ and f”, and we
relegate to the Appendix for the proof of these facts.

Consider f, a concave-convex solution of problem (1.1) - (1.4) such that f(t) —
A >0 ast— oo. Then

F) ~ A, ()~ e T () ~ e TN (s 00) (7.6)
where ¢1,c2 > 0. Hence from equation (1.1) we get f"'(t) ~ —czem "M ag t — 00

and easily, by induction, we see that for all £ > 1 there is a constant c; > 0 such
that f)(t) ~ (—1)kcke_mT+l’\t as t — 00. Therefore, f is non-oscillating
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Proposition 7.3 Let m € (3,1). If problem (1.1) — (1.4) has a concave-convex
solution f, then f is oscillating and f(t) — 0 as t — oo.

Proof. Suppose there is a solution f of problem (1.1) - (1.4) which is concave-
convex. Suppose, moreover, f is non-oscillating. Successive differentiations of equa-
tion (1.1) lead to the formula

n

FOMD =3 " (i m — v ) fETR R (0 > 1)

k=0
where
Un,0 :% Hn,0 3
Un1 n_% ,un,l—_n‘i‘%
vk =3[(05) + (DL e =2(F5) —vk 25k <n)

n,k __ (2+1) -1
e =2 — L) -1 (2<k<n)
in such a way that

Br2 i< Bt o < Brm (7.7)

Vn,2 Vn,k Vn,n

Hn,n

Now, since == = "T” — 1% as n — oo, there exists p such that % < % Then,

using (7.7) We’get Pp kM — Vp < fppm—1Vp, <0 (0 <k <p)from where and (7.5)
we deduce fP+2)(t) > 0 for all t > ty,, ;. But this contradicts f(2P*2)(t5,,5) = 0.
Therefore, f is oscillating and, in view of Propositions 2.2 and 7.2, f(t) — 0 as

t — o0o. This completes the proof il

8. Appendix

Here we will prove relations (7.6). These results will be based on asymptotic inte-
grations of second order and linear differential equations (see [13, 16]).

If f is a solution of equation (1.1), for 7 large enough put

m+1 [t
y(t) = f()e e (8.1)
Then y satisfies the differential equation
y' —qy=0 (8.2)

where ¢ = 22t 7 4 (mi'l)QfQ. Assume now that A = f(oco) > 0. Hence

g(t) ~ (A2 (1 — o) (8.3)



On a Similarity Boundary Layer Equation 947

and it is easy to verify that the integrals

—5

[ daertas [T F s

converge. Therefore (see [13] or [16]) equation (8.2) has a fundamental system of
solutions {y1,y2} such that

i (0) ~ glt)- e L Vs

: (t — o).
ya(t) ~ q(t)F el Vards
Then, in view of (8.3) we get
_m+tl
nO~FEe
y2 (t) - Lemjl At o0

m

But, on the other hand, definition (8.1) gives f/(t) ~ y(t)e_%kt as t — oo, and
since f'(t) — 0 as t — oo, then necessarily y is proportional to y; and

Ft) ~ere ™M (t— 00) (8.4)

for some ¢; € R*. In addition, integrating equation (1.1) between ¢t and oo we get
@)+ () f(t) = =22 [%° f(s)2ds which implies

FI(1) ~ = e e " (E - o). (8.5)

This completes the proof of relations (7.6). Note also that asymptotic relations (8.4)
and (8.5) hold, with ¢; > 0, for all bounded solutions concave at infinity and, with
with ¢; < 0, for all concave-convex solutions of problem (1.1) - (1.4) tending to A > 0
at infinity; recall that we do not know whether such concave-convex solutions exist
or not.
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