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Bifurcation of Homoclinic Solutions
for Hamiltonian Systems

R. Joosten

Abstract. We consider the Hamiltonian system

Ju′(x) + Mu(x)−∇uF (x, u(x)) = λu(x).

Using variational methods obtained by Stuart on the one hand and by Giacomoni and Jean-
jean on the other, we get bifurcation results for homoclinic solutions by imposing conditions
on the function F . We study both the case where F is defined globally with respect to u
and the case where F is defined locally only.
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1. Introduction

1.1 Presentation of the problem. The paper continues our study from [10] of
homoclinic solutions of first order Hamiltonian systems

Ju′(x) +∇sH(λ, x, u(x)) = 0

where J is a 2N × 2N real matrix such that

J = −JT = −J−1

and the Hamiltonian H : R× R× R2N → R is defined by

H(λ, x, s) = 1
2 (M − λI)s · s− F (x, s)

where dot denotes the usual scalar product in R2N , M is a 2N × 2N real symmetric
matrix such that σ(JM) ∩ iR = ∅ and the function F : R × R2N → R is such that
F (x, 0) ≡ 0 and lim|s|→0

F (x,s)
|s|2 = 0.

The Hamiltonian system can be written in the form

Ju′(x) + Mu(x)−∇sF (x, u(x)) = λu(x).
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We use the notations f(x, s) := ∇sF (x, s) and f ′(x, s) := ∇sf(x, s).
In [10] we have obtained existence results for homoclinic solutions and we refer

the reader to the introduction of that paper for a discussion of our approach and the
setting we have chosen. Now, our goal is to obtain bifurcation results for homoclinic
solutions for a subset of such systems by imposing conditions on the function F . By a
homoclinic solution we mean a solution u(x) such that limx→±∞ u(x) = 0. Stuart has
already worked on this question (see [13]). He seems to be the only other author to
introduce the real parameter λ in the Hamiltonian system and to have got bifurcation
results for Hamiltonian systems of this type by variational methods. But we get more
general bifurcation results. Indeed, F may have different behaviours in s at 0 and at
infinity which is not the case in [13]. This generates important complications in the
proofs.

Since lim|s|→0
F (x,s)
|s|2 = 0, we have ∇sF (x, 0) = 0 and the system admits the axis

of trivial solutions {(λ, 0) : λ ∈ R}. To obtain non-trivial homoclinic solutions, we
seek solutions

(λ, u) ∈ R×H1(R,R2N ) \ {0}.
Indeed, the space H1(R) has the basic property lim|x|→∞ u(x) = 0 for all u ∈ H1(R).
We recall that the space H1(R,R2N ) will be identified to [H1(R)]2N .

1.2 Our bifurcation theorems. Before stating the first theorem, let us introduce
some notions developped in [13]. We will define the operator S and its spectral gap.

We consider [L2(R)]2N = L2(R,R2N ) with the scalar product

(u, v)[L2]2N =
2N∑

i=1

∫

R
ui(x)vi(x) dx.

This scalar product will often be denoted by (·, ·). Let

S : [H1(R)]2N ⊂ [L2(R)]2N → [L2(R)]2N , Su = Ju′ + Mu.

Knowing that JT = J−1 = −J and MT = M , it is easy to show that S is self-adjoint
(see [9: Lemma 1]). As S is self-adjoint, its spectrum σ(S) lies on the real line. By
[13: Corollary 10.2] we have inf σ(S) = −∞ and sup σ(S) = ∞ (S is unbounded). It
is possible to show that S has no eigenvalues.

Again by [13: Corollary 10.2] the hypothesis σ(JM) ∩ iR = ∅ is equivalent to
0 6∈ σ(S). We get as easy corollary of this result the equivalence

λ ∈ σ(S) ⇐⇒ σ(J(M − λI)) ∩ iR 6= ∅

(see [9: Lemma 2]).
We denote by ρ(S) = R \ σ(S) the regular values of S. As ρ(S) is open, there

exists a maximal open interval (a, b) in ρ(S) containing 0 with −∞ < a < 0 < b < ∞
and a and b being part of the spectrum. This interval is called a spectral gap. The
upper bound b will be a bifurcation point under appropriate hypotheses on F .
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We introduce the following hypotheses on F :

(F1) F is of Carathéodory type (in the C2 sense), i.e. F (·, s) : R→ R is measur-
able for all s ∈ R2N and, for a.e. x ∈ R, F (x, ·) ∈ C2(R2N ,R), F (x, 0) = 0,
f(x, 0) = 0 and |f ′(x, s)| ≤ a1|s|r1−1 + a2|s|r2−1 (s ∈ R2N ) where a1, a2 > 0
and r2 ≥ r1 > 1.

(F2) F (x, ·) is convex on R2N for a.e. x ∈ R.

(F3) F (x, s) ≥ 0 for a.e. x ∈ R and all s ∈ R2N .

(F4) |f(x, s)| ≤ C1F (x, s)t1 + C2F (x, s)t2 for a.e. x ∈ R and all s ∈ R2N where
C1, C2 > 0 and t1, t2 ∈ [ 12 , 1).

(F5) pF (x, s) ≤ f(x, s) · s for a.e. x ∈ R and all s ∈ R2N where p > 2.

(F6) f(x, s) · s ≤ qF (x, s) for a.e. x ∈ R and all s ∈ R2N where q > 2.

(F7) The set {x ∈ R : F (x, s) = 0 for some s 6= 0} is of measure zero.

(F8) There exists d > 0 such that the set {x ∈ R : F (x, s) 6= 0 if 0 < |s| ≤ d} is
not of measure zero.

(F9) F (x, ts) ≥ c tp̃F (x, s) for a.e. x ∈ R if t ∈ [0, ε] and |s| ≤ ∆ where c, ε, ∆ > 0
and p̃ > 2.

Remark. Hypothesis (F7) is required in most previous works on the existence
of homoclinic solutions by variational methods [2- 5, 8, 12, 14]. An exception is [10]
where existence theorems are obtained in the same context as we now use to study
bifurcation. Let us emphasize that hypothesis (F7) will not be used here. Our use of
test functions means that the much weaker condition (F8) is sufficient.

The number λ0 is said to be a bifurcation point on the left for the system

Ju′ + Mu− f(x, u) = λu (u ∈ [H1(R)]2N )

if there exists

{(λn, un)} ⊂
{

(λ, u) ∈ R× [H1(R)]2N : u 6= 0 and Ju′ + Mu− f(x, u) = λu
}

such that λn < λ0 for all n, λn → λ0 and limn→∞ ‖un‖H1 = 0. Moreover, the
bifurcation point is said to be of order γ if limn→∞

‖un‖H1

(λ0−λn)γ = 0.

We can establish now a first bifurcation theorem. Recall that the following term
p̃ occurs in hypothesis (F9).

Theorem 1. Let us consider F : R × R2N → R with hypotheses (F1) - (F6),
(F8), (F9) and let us consider the Hamiltonian system Ju′ + Mu − f(x, u) = λu.
Then:

If

(1.1) |f(x, s)| ≤ a(x)(|s|q1 +|s|q2) for a.e. x ∈ R and all s ∈ R2N where q2 ≥ q1 > 1
and a is measurable such that lim|x|→∞ a(x) = 0

(1.2) p̃ < 4,
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then b is a bifurcation point (on the left) of order γ, for any γ < 1
q−2 (1− p̃

4 ), for the
Hamiltonian system.

If
(2.1) F (x + 1, s) = F (x, s) for a.e. x ∈ R and all s ∈ R2N

(2.2) p̃ < 6
(2.3) f(x, s) · s− 2F (x, s) is convex in s for a.e. x ∈ R,

then b is a bifurcation point (on the left) of order γ, for any γ < 1
q−2 (1 − p̃−2

4 ), for
the Hamiltonian system.

If
(3.1) |f(x, s)| ≤ a(x)(|s|q1 +|s|q2) for a.e. x ∈ R and all s ∈ R2N where q2 ≥ q1 > 1

and a is measurable such that lim|x|→∞ a(x) = 0

(3.2) there exists ∆′ ∈ (0, ∆] such that min|s|=∆′ F (x, s) ≥ C
|x|α for a.e. |x| ≥ M

where α ∈ (0, 1] and M,C > 0
(3.3) p̃ < 4 + 2(1− α),

then b is a bifurcation point (on the left) of order γ, for any γ < 1
q−2 (1− p̃−2(1−α)

4 ),
for the Hamiltonian system.

We state now a bifurcation theorem following from the result of Giacomoni-
Jeanjean [7]. The convexity of F (x, ·) and hypothesis (F5) are no longer required.

Theorem 2. Let us consider F : R × R2N → R with hypotheses (F1), (F3),
(F4), (F6), (F8), (F9). Moreover, let us suppose that
(1.1) |f(x, s)| ≤ a(x)(|s|q1 +|s|q2) for a.e. x ∈ R and all s ∈ R2N where q2 ≥ q1 > 1

and a is measurable such that lim|x|→∞ a(x) = 0

(1.2) p̃ < 4
or
(2.1) F (x + 1, s) = F (x, s) for a.e. x ∈ R and all s ∈ R2N

(2.2) p̃ < 6.

Then b is a bifurcation point (on the left) for the Hamiltonian system Ju′ + Mu −
f(x, u) = λu.

Remark. In this theorem, we have no information about the order of the bifur-
cation.

Up to now, most of the hypotheses on F where global with respect to s (hypothe-
ses (F1) - (F7)). Now, we will give a bifurcation theorem where these hypotheses are
relaxed.

Instead of F , we work with a function G which is defined locally only. Let R > 0.
We consider G : R×B(0, R) → R where B(0, R) is the open ball of radius R centered
at 0. Let us introduce some hypotheses on this function. The numerotation of these
hypotheses corresponds to that of the hypotheses on F . The letter g will denote the
gradient of G.
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(G1) G is of Carathéodory type (in the C2 sense), i.e. G(·, s) : R → R is mea-
surable for all s ∈ B(0, R) and, for a.e. x ∈ R, G(x, ·) ∈ C2(B(0, R),R),
G(x, 0) = 0, g(x, 0) = 0, |g′(x, s)| ≤ a|s|r1−1 (s ∈ B(0, R)) where a > 0 and
r1 > 1.

(G3) G(x, s) ≥ 0 for a.e. x ∈ R and all s ∈ B(0, R).
(G4) |g(x, s)| ≤ C1G(x, s)t1 +C2G(x, s)t2 for a.e. x ∈ R and all s ∈ B(0, R) where

C1, C2 > 0 and t1, t2 ∈ [ 12 , 1).
(G6) g(x, s) · s ≤ qG(x, s) for a.e. x ∈ R and all s ∈ B(0, R) where q > 2.
(G8) There exists d ∈ (0, R) such that the set {x ∈ R : G(x, s) 6= 0 if 0 < |s| ≤ d}

is not of measure zero.
(G9) G(x, ts) ≥ c tp̃G(x, s) for a.e. x ∈ R if t ∈ [0, ε] and |s| ≤ ∆ where c > 0,

0 < ∆ < R, ε > 0 is such that ∆ε < R and p̃ > 2.

Remarks.

1) Since we work with s ∈ B(0, R), it would have been useless to ask |g′(x, s)| ≤
a1|s|r1−1 + a2|s|r2−1 in hypothesis (G1).

2) We remark that hypotheses (G8) and (G9) were already local for hypotheses
(F8) and (F9).

We can state now the bifurcation theorem under local conditions.

Theorem 3. Let us consider G : R×B(0, R) → R with hypotheses (G1), (G3),
(G4), (G6), (G8), (G9). Moreover, let us suppose
(1.1) |g(x, s)| ≤ a(x)|s|q1 for a.e. x ∈ R and all s ∈ B(0, R) where q1 > 1 and a is

measurable with lim|x|→∞ a(x) = 0
(1.2) p̃ < 4

or
(2.1) G(x + 1, s) = G(x, s) for a.e. x ∈ R and all s ∈ B(0, R)
(2.2) p̃ < 6.

Then b is a bifurcation point (on the left) of the Hamiltonian system

Ju′ + Mu− g(x, u) = λu (u ∈ [H1(R)]2N )

and ‖u‖∞ < R.

Remark. Since H1(R) ↪→ L∞(R), the notation g(x, u(x)) makes sense for u ∈
[H1(R)]2N such that ‖u‖H1 is small enough.

1.3 Plan of the article. In Section 2 we give examples of Hamiltonian systems
satisfying the hypotheses of the theorems. In Section 3 we transform the Hamiltonian
system into an equivalent functional equation about which there are existence results
in the monograph of Stuart [13] and in the article of Giacomoni and Jeanjean [7]. Up
to our knowledge, we are the first to apply the abstract results of [7] in a particular
case.
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We first introduce the space H = D(|S|1/2) with scalar product

〈u, v〉H = (u, v)L2 +
(|S|1/2u, |S|1/2v

)
L2 .

This space coincides with the fractional Sobolev space [H1/2(R)]2N and their norms
are equivalent. We introduce the self-adjoint operators A,L ∈ B(H) such that

(
(S − λI)u, v

)
L2 = 〈(A− λL)u, v〉H

for u ∈ [H1(R)]2N and v ∈ H. Setting

σ(A,L) =
{

λ ∈ R
∣∣∣ A− λL : H → H is not an isomorphism

}

we have that σ(A,L) coincides with the spectrum of S and the spectral gaps coincide
as well.

We introduce the functional

ϕ : H → R, ϕ(u) =
∫

F (x, u(x)) dx (u ∈ H)

and have lim‖u‖→0
ϕ(u)
‖u‖2 = 0 and that ϕ is of class C2. Further, we introduce the

operator
N : H → H, 〈N(u), v〉H = ϕ′(u)v (u, v ∈ H).

This operator is bounded, of class C1 and weakly sequentially continuous. We get

(f(x, u), v)L2 = 〈N(u), v〉H (u, v ∈ H).

Altogether
(
Ju′ + Mu− λu− f(x, u), v

)
L2 = 〈(A− λL)u−N(u), v〉H

for all u ∈ [H1(R)]2N and v ∈ H. The functional equation (A − λL)u − N(u) = 0
is equivalent to the Hamiltonian system. Indeed, λ0 is a bifurcation point of the
functional equation if and only if it is a bifurcation point of the Hamiltonian system.

In Section 4 we state two bifurcation theorems contained in [13] and [7]. Under
certain hypotheses on A, L and ϕ, the first theorem states that b is a bifurcation
point of a certain order for the functional equation (A − λL)u − N(u) = 0. In [7]
we considered the functional φ defined on a ball around 0 instead of the functional
ϕ. The operator N given by 〈N(u), v〉 = φ′(u)v (u, v ∈ H) is defined on a ball
only. Under weaker hypotheses on A,L and φ, the second theorem states that b is a
bifurcation point for the functional equation (A− λL)u−N(u) = 0.

In Section 5 we give sufficient conditions for satisfying the hypotheses of the
two theorems of Section 4. In Section 6, using what we have done in Section 5 we
prove Theorems 1 and 2. In Section 7 we prove the bifurcation theorem under local
conditions (Theorem 3). Starting from the function G defined locally, we construct
a function F defined globally, satisfying the hypotheses of Theorem 2 such that F
and G coincide for s close to 0. The bifurcation theorem under local conditions is an
easy consequence of Theorem 2.
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2. Examples

Let us give examples to illustrate the bifurcation theorems. We consider J =
(

0
I
−I
o

)

and M =
(

0
B

B
0

)
where BT = B, det B 6= 0 and

F (x, s) = a1(x)|s|p1 + a2(x)|s|p2

with 2 < p1 ≤ p2 where a1, a2 ∈ L∞(R,R) and a1, a2 ≥ 0 for a.e. x ∈ R and a1+a2 6≡
0. Clearly, J = −JT = −J−1 and M = MT . As JM =

(−B
0

0
B

)
is symmetric, there

are only real eigenvalues. We get b = min{|λ| : λ ∈ σ(B)} and a = −b (see [13:
Lemma 10.12]). On the other hand, as detB 6= 0, 0 is not an eigenvalue of JM .
Thus σ(JM) ∩ iR = ∅. The function F satisfies the hypotheses of Theorem 1. The
exponents appearing herein are p̃ = q = p2, p = p1, ri = pi − 1, ti = pi−1

pi
(i = 1, 2).

Now,
- taking F (x, s) = 1

cosh x (|s| 52 + |s|3), b is a bifurcation point (since p2 < 4)
being of any order γ < 1

4 ,

- taking F (x, s) = sin2(2πx)(|s| 52 + |s|5), b is a bifurcation point (since p2 < 6)
being of any order γ < 1

12 , amd finally

- taking F (x, s) = 1

1+|x| 14
(|s| 52 + |s|5), b is a bifurcation point (since p2 < 11

2 )

being of any order γ < 1
24 .

We define the function

G(x, s) : R×B(0, 1) → R, G(x, s) = |s|3e|s|.

This function satisfies all the hypotheses of the bifurcation theorem under local con-
ditions (periodic case). Indeed, the exponents can be chosen as r1 = 2, t1 = t2 =
2
3 , q = 4, p̃ = 3. On the other hand, F (x, s) := |s|3e|s| defined on R × R2N does not
satisfy the hypotheses of the global bifurcation theorems.

3. Transforming the Hamiltonian system
into a functional equation

Now we will turn to the formalism introduced in [13]. We would like to get from the
unbounded and densely defined self-adjoint operator S to a bounded and everywhere
defined self-adjoint operator. This new operator will be defined on another Hilbert
space that will be introduced below. Our goal is to transform the Hamiltonian system
into an equivalent functional equation about which there are existence results.

3.1 Introduction of the space H. To the self-adjoint operator

S : [H1(R)]2N ⊂ [L2(R)]2N → [L2(R)]2N , Su = Ju′ + Mu

with σ(JM) ∩ iR = ∅ we can associate

|S|1/2 : D(|S|1/2) ⊂ [L2(R)]2N → [L2(R)]2N
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by means of the spectral resolution of S (see [13: p. 30]). Let us set H = D(|S|1/2).
With the scalar product 〈u, v〉H = (u, v)L2 + (|S|1/2u, |S|1/2v)L2 , H is a Hilbert
space. The induced norm ‖u‖H = 〈u, u〉1/2

H is the graph norm of |S|1/2. In this norm,
D(S) = [H1(R)]2N is dense in D(|S|1/2) = H. Sometimes, H is called the form
domain of S and (H, 〈·, ·〉) the form space (see [6]). Often we will write ‖ · ‖ instead
of ‖ · ‖H and 〈·, ·〉 instead of 〈·, ·〉H .

Using the hypotheses on J and M , it has been shown in [13: Lemma 10.3] that
the linear space H corresponds to the fractional Sobolev space [H1/2(R)]2N and
that the norm of H is equivalent to the usual norm of [H1/2(R)]2N , i.e. ‖u‖H1/2 =( ∫
R

√
1 + ξ2 |û(ξ)|2dξ

) 1
2 . Here are some important properties of this space:

1. H1(R) ↪→ H1/2(R)

2. H
1
2 (R) ↪→ Lq(R) for all q ∈ [2,∞)

3. H
1
2 (R) 6⊂ L∞(R)

4. H
1
2 (R) 6⊂ C(R) (in the sense that there exists u ∈ H

1
2 (R) non-equivalent to

a continuous function).
Assertions 1 and 2 can be found in any book about Sobolev spaces (see, for instance,
[1]). In [9] an example is given showing assertions 3 and 4.

3.2 The linear part. In this subsection we will transform the linear part of our
Hamiltonian system. Using the Riesz lemma, it is shown in [13: p. 31] that there
exists a unique operator A ∈ B(H, H) such that (Su, v)L2 = 〈Au, v〉H for all u ∈
[H1(R)]2N and v ∈ H. A is self-adjoint and one can show that 0 6∈ σ(A) [13: p. 32].

On the other hand, there exists a unique operator L ∈ B(H,H) such that
(u, v)L2 = 〈Lu, v〉H for all u, v ∈ H. Clearly, L is self-adjoint and strictly positive,
i.e. 〈Lu, u〉 > 0 for all u ∈ H \ {0}.

Combining these results, we get
(
(S − λI)u, v

)
L2 = 〈(A− λL)u, v〉H

for all u ∈ [H1(R)]2N and v ∈ H. As ‖v‖L2 ≤ ‖v‖H for all v ∈ H, ‖(A− λL)u‖H ≤
‖(S − λI)u‖L2 for all u ∈ [H1(R)]2N (see [13: p. 33]). Denoting

ρ(A,L) =
{

λ ∈ R
∣∣∣ A− λL : H → H is an isomorphism

}

σ(A,L) = R \ ρ(A,L)

we have σ(S) = σ(A,L) and consequently (a, b) is also a spectral gap of σ(A,L). At
[13: page 33] it has been proved that ρ(A,L) ⊂ ρ(S). In [9: Proposition 4] we proved
the reverse inclusion ρ(S) ⊂ ρ(A,L).

3.3 The nonlinear part. Let us study now the nonlinear part of the Hamiltonian
system. We define

ϕ : H → R, ϕ(u) =
∫

F (x, u(x)) dx

and have the following properties:
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Proposition 1. Suppose that F satisfies hypothesis (F1). Then:

1. ϕ is well-defined.

2. lim‖u‖→0
ϕ(u)
‖u‖2 = 0.

3. ϕ ∈ C2(H,R).

4. u ∈ H implies f(·, u(·)) ∈ [L2(R)]2N .

5. ϕ′(u)v =
∫
R f(x, u(x)) · v(x) dx for all u, v ∈ H.

Proof. The proof is quite long and can be found in [9: Sections 6.3 and 6.4]. It
uses results about Nemyckii operators

By the Riesz lemma, there exists a unique operator N : H → H such that
〈N(u), v〉H = ϕ′(u)v for all u, v ∈ H. Usually, we write N = ∇ϕ. This operator has
the following properties:

Proposition 2. Suppose that F satisfies hypothesis (F1). Then:

1. N is bounded.

2. N ∈ C1(H, H).

3. N : H → H is weakly sequentially continuous.

Proof. The proof can be found in [9]

Remark. N : H → H is said to be weakly sequentially continuous if un ⇀ u
implies N(un) ⇀ N(u), where ⇀ denotes the weak convergence in H.

3.4 Relation between the Hamiltonian system and the functional equation.
Combining the preceeding results, we have

(
Ju′ + Mu− λu− f(x, u), v)L2 =

〈
(A− λL)u−N(u), v

〉
H

for all u ∈ [H1(R)]2N and all v ∈ H. Let us define the concept of bifurcation for the
functional equation. The number λ0 is said to be a bifurcation point on the left for
the equation (A− λL)u−N(u) = 0 (u ∈ H) if there exists

{(λn, un)} ⊂
{

(λ, u) ∈ R×H : u 6= 0 and (A− λL)u−N(u) = 0
}

such that λn < λ0 for all n, λn → λ0 and limn→∞ ‖un‖H = 0. Moreover, the bifur-
cation point is said to be of order γ if limn→∞

‖un‖H

(λ0−λn)γ = 0. Using the continuous
embedding [H1(R)]2N ↪→ H, if λ0 is a bifurcation point of order γ of the Hamilto-
nian system, then λ0 is also a bifurcation point of the same order of the functional
equation.

In fact, the opposite is true in our situation as stated in the following
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Proposition 3. Suppose F satisfies hypothesis (F1). If λ0 ∈ R is a bifurcation
point (on the left) of order γ ≥ 0 of the equation

(A− λL)u−N(u) = 0 (u ∈ H),

then λ0 is also a bifurcation point (on the left) of the same order of the equation

Ju′ + Mu− f(x, u) = λu (u ∈ [H1(R)]2N ).

Remark. This result is not trivial: the definition of bifurcation point depends
on the norm.

It is thus sufficient to consider the bifurcation points of the functional equation
(A− λL)u−N(u) = 0. This equation has been treated in [7, 13].

4. The bifurcation results

In this section we will present the bifurcation results for the functional equation
contained in [7, 13]

4.1 The hypothesis from [13]. The author of [13] considered a Hilbert space
(H, 〈·, ·〉) and introduced operators A,L and a functional ϕ by means of the following
hypotheses:

(H1) A ∈ B(H, H), A = A∗ and 0 6∈ σ(A).

(H2) L ∈ B(H,H), L = L∗ and 〈Lu, u〉 > 0 for all u ∈ H \ {0}.
(H3) ϕ ∈ C2(H,R), lim‖u‖→0

ϕ(u)
‖u‖2 = 0 and ϕ is convex.

Supposing A,L : H → H and ϕ : H → R are given, a functional J : R ×H → R is
defined by

J(λ, u) = 1
2 〈(A− λL)u, u〉 − ϕ(u).

When hypotheses (H1) - (H3) are satisfied, J ∈ C2(R × H,R) and the equation
∇uJ(λ, u) = 0 is equivalent to the equation Au − λLu −N(u) = 0 where N = ∇ϕ.
Furthermore, supposing ϕ ∈ C1(H,R), the following hypotheses are introduced:

(H4) There exist C, D > 0 such that ‖N(u)‖ ≤ C + Dϕ(u) for all u ∈ H.

(H5) There exist ε, K > 0 such that ‖N(u)‖ ≤ Kϕ(u)1/2 for all u ∈ H such that
ϕ(u) < ε.

(P) There exist q ≥ p > 2 such that qϕ(u) ≥ ϕ′(u)u ≥ pϕ(u) ≥ 0 for all u ∈ H.

Supposing hypothesis (H1) is satisfied, H can be written as an orthogonal sum
of closed subspaces H = V ⊕W such that A(V ) ⊂ V , 〈Av, v〉 ≥ β‖v‖2 for all v ∈ V
and 〈Aw, w〉 ≤ −α‖w‖2 for all w ∈ W with α, β > 0. The projection of H onto V is
denoted by P : H → H.
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When hypotheses (H1) and (H2) are true, an interval (a, b) is introduced by

a =

{
sup

{
〈Aw,w〉
〈Lw,w〉 : w ∈ W \ {0}

}
if W 6= {0}

−∞ if W = {0}

b =

{
inf

{
〈Av,v〉
〈Lv,v〉 : v ∈ V \ {0}

}
if V 6= {0}

∞ if V = {0}.
By [13: Lemma 2.1], a < 0 < b and (a, b) ⊂ ρ(A,L). Moreover, when PL = LP ,
{a, b} ∩ ρ(A, L) = ∅. Thus, if P and L commute, (a, b) is the maximal spectral gap
of σ(A,L) containing 0.

Supposing hypotheses (H1) - (H2) are satisfied and ϕ is defined, we introduce
now for δ > 0 the

T(δ) PL = LP and there exists a sequence {un} ⊂ H such that ‖un‖ = 1,
ϕ(un) > 0 and

lim
n→∞

〈(A− bL)un, un〉
ϕ(un)δ

= lim
n→∞

‖(A− bL)un‖2
ϕ(un)δ

= 0.

Remark. This formulation only makes sense when b is finite, that means V 6=
{0}.

Before stating the bifurcation theorem, we have to introduce the notion of weak
G-compacity (see [13: p. 15]). We consider O(H) — the group of isometric isomor-
phisms of H, and a subgroup G of O(H). We denote by θ(u) = {Tu : T ∈ G} the
orbit of u generated by G.

Definition. The functional K ∈ C1(H,R) is said to be weakly G-compact if the
following is satisfied:

(1) K is G-invariant, i.e. K(Tu) = K(u) for all u ∈ H and all T ∈ G)
(2) When {un} ⊂ H is a bounded sequence such that K(un) → c 6= K(0) and

‖∇K(un)‖ → 0, then there exist subsequences {uni} ⊂ {un} and vni ∈ θ(uni) such
that vni ⇀ v in H with v 6= 0 and ∇K(v) = 0.

Lemma 1. If K ∈ C1(H,R) is G-invariant, then ‖∇K(·)‖ is also G-invariant.

Proof. See [13: p. 15]

4.2 The bifurcation result of [13]. We can state now the bifurcation theorem
contained in [13].

Theorem 4 [13: Theorem 7.2]. Let hypotheses (H1) - (H5) and (P) be satisfied.
Suppose also that condition T (δ) is satisfied for a number δ ≥ 1 and that either

(i) N : H → H is compact
or

(ii) there is a subgroup G of O(H) such that J(λ, ·) : H → R is weakly G-
compact for all λ ∈ (a, b) and ψ = 〈N(·), ·〉 − 2ϕ : H → R is weakly sequentially
lower semi-continuous.
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Set θ = 2
q−2 [1 − 1

δ ] where q is the constant in hypothesis (P). Then there is a
sequence

{(λn, un)} ⊂
{

(λ, u) ∈ R×H : u 6= 0 and Au− λLu = N(u)
}

such that λn < b for all n ∈ N, λn → b and limn→∞(b− λn)−θ/2‖un‖ = 0, i.e. b is a
bifurcation point of order θ

2 .

4.3 The hypotheses of [7]. The functional equation (A − λL)u − N(u) = 0 has
also been treated with weaker hypotheses in [7]. The bifurcation Theorem 1.1 there
implies our Theorem 2. The authors considered a Hilbert space (H, 〈·, ·〉) and two
self-adjoint operators A,L ∈ B(H,H) which satisfy the hypothesis

(A1) 〈Lu, u〉 > 0 (u ∈ H \ {0}), σ(A) ∩ R+ 6= ∅, σ(A) ∩ R− 6= ∅ and 0 6∈ σ(A).

This hypothesis is almost the same as hypotheses (H1) and (H2) introduced before –
it is only a little stronger because of the conditions σ(A)∩R+ 6= ∅ and σ(A)∩R− 6= ∅.
As before, we have the orthogonal decomposition H = V ⊕W with the projection
on V denoted P . This decomposition generates an interval (a, b) ⊂ ρ(A,L) such that
a < 0 < b. By the theory of bounded self-adjoint operators, σ(A) ∩ R+ 6= ∅ and
σ(A)∩R− 6= ∅ imply that V 6= {0} and W 6= {0} (see [7: Section 2]). Consequently,
a, b ∈ R. Further, in [7] a positive functional φ ∈ C2(Bε0 ,R) was introduced where
Bε0 = {u ∈ H : ‖u‖ ≤ ε0} which satisfies the hypothesis

(A2) lim‖u‖→0
φ(u)
‖u‖2 = 0.

Supposing hypotheses (A1) and (A2) are satisfied, there is defined the functional

J : R×Bε0 → R, J(λ, u) =
1
2
〈(A− λL)u, u〉 − φ(u).

Denoting N = ∇φ, we have as before that (λ, u) ∈ R × Bε0 is a solution of (A −
λL)u−N(u) = 0 if and only if (λ, u) is a critical point of J(λ, ·).

Remark. N = ∇φ is only defined on Bε0 . To avoid confusion with N = ∇ϕ
defined on H, we will sometimes denote NGJ = ∇φ.

The following hypothesis is further introduced :

(A3) There exists q > 2 such that 〈NGJ(u), u〉 ≤ qφ(u) for all u ∈ Bε0 .

This hypothesis implies φ(tu) ≥ tqφ(u) for all t ∈ [0, 1] and all u ∈ Bε0 (see [7:
(2.1)]). In [7] a hypothesis is used like T (δ) for δ > 0 but as it is not the same as the
one introduced before, it will be denoted by

T(δ)GJ PL = LP and there exist ε ∈ (0, ε0] and {un} ⊂ H with ‖un‖ = ε such that
φ(un) > 0 for all n ∈ N and

lim
n→∞

〈(A− bL)un, un〉
φ(un)δ

= lim
n→∞

‖(A− bL)un‖2
φ(un)δ

= 0.

Before stating the main result of [7] we can restrict the notion of weakly G-
compact functionals to functionals defined on a ball. Moreover, we need only weakly
upper G-compacity.
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Definition. Let r > 0. A functional K ∈ C1(Br,R) is said to be weakly upper
G-compact if the following holds:

(1) K is G-invariant, i.e. K(Tu) = K(u) for all u ∈ Br and all T ∈ G.

(2) If a sequence {un} ⊂ Br is such that K(un) → c > K(0) and ‖∇K(un)‖ → 0,
then there exists a subsequences {uni} ⊂ {un} and vni ∈ θ(uni) such that vni ⇀ v
in H with v 6= 0 and ∇K(v) = 0.

Remarks.

1) As T is an isometry, Tu ∈ Br when u ∈ Br. Condition (1) of the definition
makes thus sense.

2) We do not have explicitly to ask {un} to be bounded because Br is already
bounded.

3) The weak convergence vni ⇀ v implies lim infn→∞ ‖vni‖ ≥ ‖v‖ and thus
v ∈ Br. The expression ∇K(v) in condition (2) is well-defined.

4.4 The bifurcation result of [7]. Here is the main result of [7] which states the
existence of a bifurcation point:

Theorem 5 [7: Theorem 1.1]. Suppose that hypotheses (A1) - (A3) hold and
that condition T (δ)GJ is satisfied for some δ ≥ 1. Assume also the following:

(A4) There exists K > 0 such that ‖N(u)‖ ≤ Kφ(u)1−
δ
2 for all u ∈ Bε0 .

(A5) Either

(i) N is compact

or

(ii) for a subgroup G of O(H) and for λ < b close to b, J(λ, ·) is weakly upper
G-compact in Bε0 .

Then there exists a sequence {(λn, un)} ⊂ (a, b) × H of non-trivial solutions of
(A− λL)u−N(u) = 0 such that λn → b− and ‖un‖ → 0 as n →∞. In particular, b
is a bifurcation point for (A− λL)u−N(u) = 0.

5. Verification of the hypotheses

In this section we will give the conditions to check the hypotheses of Theorems 4 and
5.

5.1 Hypotheses (H1) - (H2). We recall that J and M are 2N × 2N real matrices
such that JT = J−1 = −J , MT = M and σ(JM) ∩ iR = ∅. By Subsection 3.2,
hypotheses (H1) and (H2) are already true.

Lemma 2. The operators P and L commute.

Proof. See [9: Lemma 17]
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The interval (a, b) defined by means of hypotheses (H1) and (H2) in Subsection
4.1 is the same as the spectral gap of σ(S) containing 0. Indeed, P and L commute
so that (a, b) is the maximal spectral gap σ(A,L) containing 0 (see Subsection 4.1).
We conclude by the fact that σ(S) = σ(A,L) (see Subsection 3.2). This interval is
bounded, i.e. −∞ < a < 0 < b < ∞. Indeed, [13: Corollary 10.2] tells us that
inf σ(S) = −∞ and sup σ(S) = ∞.

5.2 Hypothesis (H3). Assuming F satisfies hypothesis (F1), we get by Proposition
1 that ϕ ∈ C2(H,R) and lim‖u‖→0

ϕ(u)
‖u‖2 = 0. When F (x, ·) is convex (hypothesis

(F2)), ϕ is clearly also convex. In this case, hypothesis (H3) is satisfied.

5.3 Hypotheses (H4) - (H5) and (P). In the following lemma we will give an
estimation of ‖N(u)‖ which will be used several times in the sequel.

Lemma 3. Suppose that F satisfies hypothesis (F1). Moreover, suppose that F
satisfies the following conditions:

1. F (x, s) ≥ 0 for a.e. x ∈ R and all s ∈ R2N (hypothesis (F3)).
2. |f(x, s)| ≤ C1F (x, s)t1 + C2F (x, s)t2 for a.e. x ∈ R and all s ∈ R2N where

C1, C2 > 0 and t1, t2 ∈ [ 12 , 1) (hypothesis (F4)).

Then ‖N(u)‖ ≤ D1ϕ(u)t1 + D2ϕ(u)t2 with D1, D2 > 0.

Proof. See [9: Lemma 18]

When we suppose that F is positive and satisfies hypothesis (F4), hypotheses
(H4) - (H5) are true.

Corollary 1. Suppose that F satisfies hypotheses (F1), (F3), (F4). Then there
exists a constant C > 0 such that ‖N(u)‖ ≤ C(1 + ϕ(u)) for all u ∈ H.

Proof. As ti ∈ [ 12 , 1) and ϕ(u) ≥ 0, ϕ(u)ti ≤ 1 + ϕ(u). Thus, by Lemma 3,
‖N(u)‖ ≤ (

∑2
i=1 Di)(1 + ϕ(u))

Corollary 2. Suppose F satisfies hypothesis (F1). Moreover, suppose the fol-
lowing:

1. F (x, s) ≥ 0 a.e. on R for all s ∈ R2N .
2. |f(x, s)| ≤ C1F (x, s)t1 + C2F (x, s)t2 for a.e. x ∈ R for all s ∈ R2N where

C1, C2 > 0 and t1, t2 ∈ [ 12 , 1).

Then there exists a constant D > 0 such that ‖N(u)‖ ≤ Dϕ(u)1/2 for all u ∈ H with
ϕ(u) < 1.

Proof. By Lemma 3 we have

‖N(u)‖ ≤
2∑

i=1

Diϕ(u)ti .

Let us consider u ∈ H such that ϕ(u) < 1. Since ti ≥ 1
2 ,

2∑

i=1

Diϕ(u)ti ≤
( 2∑

i=1

Di

)
ϕ(u)1/2

and the assertion is proved
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The lemma below gives us conditions to check hypothesis (P):

Lemma 4. Suppose that F satisfies hypothesis (F1). Then:
1. If f(x, s) · s ≤ qF (x, s) a.e. on R for all s ∈ R2N with q ∈ R, then ϕ′(u)u ≤

qϕ(u) for all u ∈ H.
2. If pF (x, s) ≤ f(x, s) · s a.e. on R for all s ∈ R2N with p ∈ R, then pϕ(u) ≤

ϕ′(u)u for all u ∈ H.

Proof. The result is trivial when we use the fact that ϕ′(u)v =
∫
R f(x, u(x)) ·

v(x) dx (see Proposition 1/item 5)

Supposing F is positive, hypothesis (P) is an easy consequence of hypotheses
(F5) - (F6).

5.4 Hypothesis T (δ). Let us give sufficient conditions to check T (δ).

Lemma 5. Suppose that F satisfies hypothesis (F1). Moreover, suppose the
following:

1. F (x, s) ≥ 0 a.e. on R for all s ∈ R2N (hypothesis (F3)).
2. There exists d ≥ 0 such that the set {x ∈ R : F (x, s) 6= 0 if 0 < |s| ≤ d} is

not of measure zero (hypothesis (F8)).
3. F (x, ts) ≥ c tp̃F (x, s) for a.e. x ∈ R if t ∈ [0, ε] and |s| ≤ ∆ where c, ε, ∆ > 0

and p̃ > 2 (hypothesis(F9)).

Then condition T (δ) is satisfied for all δ < 4
p̃ . Moreover, if F (x + 1, s) = F (x, s)

a.e. on R for all s ∈ R2N , then condition T (δ) is true for all δ < 4
p̃−2 .

Proof. The proof of this result can be found in [10]. It uses the theory of almost
periodic functions of Stepanov

In the non-periodic case, we can get a better condition T (δ) with an extra hy-
pothesis:

Lemma 6. Suppose that F satisfies hypothesis (F1). Moreover, suppose the
following:

1. F (x, s) ≥ 0 a.e. on R for all s ∈ R2N (hypothesis (F3)).
2. F (x, ts) ≥ c tp̃F (x, s) for a.e. x ∈ R if t ∈ [0, ε] and |s| ≤ ∆ where c, ε, ∆ > 0

and p̃ > 2 (hypothesis (F9)).
3. there exists ∆′ ∈ (0, ∆] such that min|s|=∆′ F (x, s) ≥ C

|x|α for a.e. |x| ≥ M

where α ∈ (0, 1] and M, C > 0.
Then condition T (δ) is satisfied for all δ < 4

p̃−2(1−α) .

Proof. The proof can be found in [9]

Remarks.
1) Hypothesis (F8) is no longer imposed explicitly since it is a consequence of

hypotheses 2 and 3.
2) For α ∈ (0, 1), this result is a real improvement with respect to Lemma 5.
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5.5 The other hypotheses. Condition 1.1 in Theorem 1 implies the compacity of
N .

Lemma 7. Suppose that F satisfies hypothesis (F1). Moreover, suppose |f(x, s)|
≤ a(x)(|s|q1 + |s|q2) for a.e. x ∈ R for all s ∈ R2N where q2 ≥ q1 > 1 and a is
measurable such that lim|x|→∞ a(x) = 0. Then N : H → H is compact.

Proof. The proof can be found in [9: Lemma 21]

For k ∈ Z we define the translation operator Tk : H → H by Tku(x) = u(x− k).
This operator is an isometry:

Lemma 8. For k ∈ Z,

1. Tk : H → H is well-defined and Tk ∈ O(H).

2. Tk(H1(R)]2N ) ⊂ [H1(R)]2N .

3. TkSu = STku for all u ∈ [H1(R)]2N .

Proof. The proof can be found in [9: Lemma 23]

Lemma 9. Suppose that F satisfies hypothesis (F1). Moreover, suppose the
following:

1. F (x, s) ≥ 0 a.e. on R for all s ∈ R2N .

2. F (x + 1, s) = F (x, s) a.e on R for all s ∈ R2N .

3. pF (x, s) ≤ f(x, s) · s ≤ qF (x, s) a.e. on R for all s ∈ R2N where p, q ∈ R.

Then J(λ, ·) : H → R is weakly G-compact for all λ ∈ R.

Proof. The proof of this result is quite long and can be found in [9: Subsection
8.5]

To check the weakly sequentially lower semi-continuity of ψ(u) = 〈N(u), u〉 −
2ϕ(u), we use the following lemma:

Lemma 10. Suppose that F satisfies hypothesis (F1) and that f(x, s)·s−2F (x, s)
is convex in s a.e. on R.Then ψ : H → R is weakly sequentially lower semi-
continuous.

Proof. The functional ψ is convex by the convexity of f(x, s) · s− 2F (x, s). We
conclude by using [15: Theorem 8.10] which states that any finite convex functional
defined on an open convex set (in a normed space) is weakly lower semi-continuous

5.6 Verification of the hypotheses of [7]. Now, we will reduce the Hamiltonian
system to the functional equation treated in [7]. The operators A and L are chosen
like before. We set ε0 = 1 and φ = ϕ|Bε0

. Assuming F satisfies hypothesis (F1),
φ ∈ C2(Bε0 ,R) by Proposition 1. Clearly, NGJ = ∇φ is the restriction to Bε0 of
N = ∇ϕ.

The following lemma gives conditions to check hypotheses (A3) and (A4).



Bifurcation of Homoclinic Solutions 1001

Lemma 11. Suppose that F satisfies hypothesis (F1) and that f(x, s) · s ≤
qF (x, s) a.e. on R for all s ∈ R2N where q > 2. Then < NGJ(u), u >≤ qφ(u)
for all u ∈ Bε0 .

Moreover, if F (x, s) ≥ 0 a.e. on R for all s ∈ R2N and |f(x, s)| ≤ C1F (x, s)t1 +
C2F (x, s)t2 for a.e. x ∈ R where C1, C2 > 0 and t1, t2 ∈ [ 12 , 1), then for δ ≥ 1 there
exists K > 0 such that ‖N(u)‖ ≤ Kφ(u)1−

δ
2 for all u ∈ Bε0 .

Proof. See [9: Lemma 35]

For the weakly upper G-compacity (where G is defined in Subsection 5.5) we do
not need hypothesis (F5):

Lemma 12. Suppose the following:

1. F (x, s) ≥ 0 a.e. on R for all s ∈ R2N .

2. F (x + 1, s) = F (x, s) a.e on R for all s ∈ R2N .

3. f(x, s) · s ≤ qF (x, s) a.e. on R for all s ∈ R2N where q ∈ R.

Then J(λ, ·) : H → R is weakly upper G-compact for all λ ∈ R.

Proof. See [9: Lemma 36]

6. The proofs of the bifurcation theorems

In this section we will give the proofs of our bifurcation Theorems 1 and 2.

Proof of Theorem 1. In Subsection 3.2 we have seen that hypotheses (H1)
and (H2) are true, in Subsection 5.2 that hypothesis (H3) is satisfied, by Corollaries
1 and 2 that Hypotheses (H4) and (H5) are satisfied, and Hypothesis (P) is satisfied
by Lemma 4.

Case (1). By Lemma 7, N is compact. Since p̃ < 4, 4
p̃ > 1 and condition T (δ)

is true for a δ > 1 by Lemma 5. Setting θ(δ) = 2
q−2 (1 − 1

δ ), Theorem 4 states that
there is a sequence

{(λn, un)} ⊂
{

(λ, u) ∈ R×H : u 6= 0 and Au− λLu = N(u)
}

such that λn < b (n ∈ N), λn → b and limn→∞(b − λn)−
θ(δ)
2 ‖un‖ = 0. This is true

for all θ(δ) such that δ < 4
p̃ , i.e for all θ < 2

q−2 (1 − p̃
4 ). Setting γ = θ

2 , we have a
bifurcation point of order γ for all γ < 1

q−2 (1− p̃
4 ) and we conclude by Proposition 3.

Case (2). By Lemma 9, J(λ, ·) is weakly G-compact for all λ ∈ R. Since p̃ < 6,
4

p̃−2 > 1 and condition T (δ) is true for a δ > 1 by Lemma 5. By Lemma 10, ψ is
weakly sequentially lower semi-continuous. Setting θ(δ) as before, Theorem 4 and
Proposition 3 imply that b is a bifurcation point of order γ = θ

2 and this is true
for all θ(δ) such that δ < 4

p̃−2 . Thus, b is a bifurcation point of order γ for all
γ < 1

q−2 (1− p̃−2
4 ).
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Case (3). By Lemma 7, N is compact. Since p̃ < 4 + 2(1 − α), 4
p̃−2(1−α) > 1.

Thus condition T (δ) is true for a δ > 1 by Lemma 6. Setting θ(δ) as before, Theorem
4 and Proposition 3 imply that b is a bifurcation point of order γ = θ

2 and this is
true for all θ(δ) such that δ < 4

p̃−2(1−α) . Thus, b is a bifurcation point of order γ for

all γ < 1
q−2 (1− p̃−2(1−α)

4 )

Proof of Theorem 2. This theorem is an application of [7: Theorem 1.1].
Let us show first that hypothesis (A1) is true. By Subsection 3.2, A,L ∈ B(H)

are self-adjoint, 〈Lu, u〉 > 0 for all u ∈ H \ {0} and 0 6∈ σ(A). In Subsection 5.1 we
have seen that −∞ < a < 0 < b < ∞, thus by definition of a and b, V 6= {0} and
W 6= {0}. Then 〈Au, u〉 ≥ β‖u‖2 for all u ∈ V and 〈Au, u〉 ≤ −α‖u‖2 for all u ∈ W ,
with α, β > 0 (see [13: p. 7] or [7: Section 2]). Hence sup‖u‖=1〈Au, u〉 > 0 and
inf‖u‖=1〈Au, u〉 < 0. Since A ∈ B(H) is self-adjoint, sup‖u‖=1〈Au, u〉 ∈ σ(A) and
inf‖u‖=1〈Au, u〉 ∈ σ(A) (see [11: p. 148/Theorem 4]). We have thus σ(A) ∩ R+ 6= ∅
and σ(A) ∩ R− 6= ∅.

Let us show now that condition (A2) is true. By Proposition 1, ϕ ∈ C2(H,R).
We set thus φ = ϕ|Bε0

for ε0 = 1 so that φ ∈ C2(Bε0 ,R). Since F ≥ 0 a.e., φ ≥ 0.
Again by Proposition 1, lim‖u‖→0

φ(u)
‖u‖2 = 0.

By Lemma 11, hypothesis (A3) is true.

Let us show that condition T (δ)GJ is satisfied for a δ ≥ 1. We use Lemma 5.
Case (1): By the lemma, condition T (δ) is satisfied for all δ < 4

p̃ . Since 4
p̃ > 1,

T (δ) is satisfied for a δ ≥ 1
Case (2): By the lemma, condition T (δ) is satisfied for all δ < 4

p̃−2 . Since
4

p̃−2 > 1, T (δ) is satisfied for a δ ≥ 1. Since ε0 = 1, we can chose ε = 1 so that
T (δ)GJ is satisfied for a δ ≥ 1.

By Lemma 11 again, hypothesis (A4) is true.

Let us check hypothesis (A5). In case (1), N = ∇ϕ : H → H is compact by
Lemma 7, thus NGJ = ∇φ : Bε0 → H is also compact.

In case (2), Lemma 12 implies that J(λ, ·) : H → R is weakly upper G-compact
for all λ ∈ R. Clearly, JGJ (λ, ·) : Bε0 → R is also weakly upper G-compact for all
λ ∈ R.

Now, all the hypotheses of Theorem 5 are checked and Theorem 2 is obtained as
a corollary of Theorem 5 and Proposition 3

7. Proof of bifurcation theorem under local conditions

In this section, we will prove the bifurcation theorem under local conditions (Theorem
3) using Theorem 2. Starting from the function G, we will construct a function
F : R×R2N → R satisfying the hypotheses of Theorem 2 such that F (x, ·) = G(x, ·)
for s close to 0.

7.1 Preliminary results. We need a function η to construct the extension F :
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Lemma 13. Let r0 > 0. Then there exists η ∈ C2(R,R) with 0 ≤ η ≤ 1 such
that

η(r) =
{

1 if r ≤ r0

0 if r ≥ 2r0,

η′ ≤ 0 and, for some constant C > 0, |η′(r)| ≤ Cη(r)1/2 for all r.

Proof. We set

η(r) =

{ 1 if r ≤ r0

(2− r
r0

)3
(
6( r

r0
)2 − 9( r

r0
) + 4

)
if r0 < r < 2r0

0 if r ≥ 2r0.

It is not dificult to check the conclusions of the lemma (see [9: Lemma 37])

In the next lemma we state that G is equal to a function F for s close to 0 such
that F satisfies the hypotheses of Theorem 2. We use the function η of Lemma 13.

Lemma 14. Let us consider G : R× B(0, R) → R with hypotheses (G1), (G3),
(G4), (G6), (G8), (G9). Moreover, let us suppose that
(1.1) |g(x, s)| ≤ a(x)|s|q1 for a.e. x ∈ R for all s ∈ B(0, R) where q1 > 1 and a is

measurable with lim|x|→∞ a(x) = 0.
(1.2) p̃ < 4

or
(2.1) G(x + 1, s) = G(x, s) for a.e. x ∈ R for all s ∈ B(0, R).
(2.2) p̃ < 6.

Then there exists r0 ∈ (0, R) and F : R× R2N → R such that:
(i) F (x, s) = G(x, s) for a.e. x ∈ R for all s ∈ B(0, r0).
(ii) F satisfies the hypotheses of Theorem 2.

Proof. We chose r0 > 0 such that 3r0 < R and
√

2Na
r1(r1+1) (3r0)r1+1 ≤ 1 where

a and r1 are given by hypothesis (G1). To r0 we associate the function η given by
Lemma 13. We define F : R× R2N → R by

F (x, s) =
{

η(|s|)G(x, s) if 0 ≤ |s| < 3r0

0 if |s| ≥ 3r0.

Since η(|s|) = 1 for 0 ≤ |s| < r0, F (x, s) = G(x, s) for a.e. x ∈ R, for all s ∈ B(0, r0).
It is not difficult to check that F satisfies the hypotheses of Theorem 2 (see [9: Lemma
40])

7.2 Proof of Theorem 3. Using Lemma 14, the proof of Theorem 3 is very short:

Proof of Theorem 3. By Lemma 14 and Theorem 2, b is a bifurcation point
of Ju′ + Mu− f(x, u) = λu. We have thus λn → b and ‖un‖H1 → 0. But ‖un‖L∞ ≤
C‖un‖H1 , thus for n large, ‖un‖L∞ < r0. Hence, for n large, f(x, un) = g(x, un),
thus b is also a bifurcation point of Ju′ + Mu− g(x, u) = λu
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