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An Extended Cauchy-Kovalevskaya Problem
and its Solution in Associated Spaces

K. Asano and W. Tutschke

Abstract. The classical Cauchy-Kovalevskaya problem with holomorphic intial functions is
uniquely solvable provided the right-hand sides of the differential equations are holomorphic
in their variables, i.e., they transform holomorphic functions into holomorphic functions.
Moreover, the solutions depend holomorphically on the space-like variables. A far-reaching
generalization of the Cauchy-Kovalevskaya Theorem is its abstract version which considers
an abstract operator equation in a scale of Banach spaces where the behaviour of complex
derivatives at the boundary is expressed by a certain mapping property of the operator under
consideration in the underlying scale. Another generalization of the Cauchy-Kovalevskaya
Theorem replaces the space of holomorphic functions by another so-called associated space
which is defined by an elliptic operator. Making use of this second approach, the present
short note solves an extended Cauchy-Kovalevskaya problem in which an initial value prob-
lem is combined with an implicit equation.
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M. Nagumo’s functional-analytic approach [4] to the Cauchy-Kovalevskaya problem

∂tu = F(t, x, u, ∂xj
u)

u(0, x) = ϕ(x)

}

is based on the equivalent integro-differential equation

u(t, x) = ϕ(x) +
∫ t

0

F(τ, x, u, ∂xj u) dτ. (1)
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A highlight of this development led to abstract versions of the Cauchy-Kovelevskaya
Theorem (cf. F. Treves [6] and L. Nirenberg [5]). Generalizing the abstract non-linear
Cauchy-Kovalevskaya Theorem, in the paper [1] the extended equation

u(t) = F (t, u(·)) +
∫ t

0

E(t, s)G(s, u(·)) ds (0 ≤ t ≤ T ) (2)

is solved in a scale of Banach spaces using the contraction-mapping principle.
On the other hand, using interior estimates for solutions of an associated equa-

tion, integro-differential equations of type (1) can be solved [9] in a suitably defined
Banach space whose elements depend on the space-like variable x and the time t
as well. This is another functional-analytic approach to initial value problems of
Cauchy-Kovalevskaya type which generalizes W. Walter’s elementary approach [10]
to the classical Cauchy-Kovalevskaya Theorem. Although associated spaces can also
be used to define suitable scales of Banach spaces (e.g., this has be done for initial
value problems with generalized analytic initial functions, cf. [7]), the present paper
does not construct the corresponding scales of Banach spaces (which would also be
possible), but it constructs a single Banach spaces whose elements depend on both
the space-like variables and the time t as well.

Combining equations (1) and (2) with each other, the present paper solves equa-
tions of the form

u(t, x) = F1(t, x, u) +
∫ t

0

F2(τ, x, u, ∂xj u) dτ. (3)

Both operators Fj are supposed to be associated to an (elliptic) operator G with time-
independent coefficients, i.e., Gu = 0 implies G(Fju) = 0 for each fixed t. Further,
both operators have to satisfy global Lipschitz conditions with respect to a suitable
norm (such as the Hölder norm):

∥∥F1(t, x, u)−F1(t, x, v)
∥∥ ≤ l0‖u− v‖

∥∥F2(t, x, u, ∂ju)−F2(t, x, v, ∂jv)
∥∥ ≤ L0‖u− v‖+

∑

j

Lj‖∂ju− ∂jv‖.

Solutions of the associated equation Gu = 0 have (for fixed t) to satisfy a first order
interior estimate, i.e., if Ω′ is a subdomain of Ω′′, then

‖∂ju‖Ω′ ≤ c1

dist (Ω′, ∂Ω′′)
‖u‖Ω′′ (4)

with a universal constant c1.
Obviously, solutions u = u(t, x) of equation (3) are fixed points of the operator

defined by the right-hand side of (3). Starting from a Banach space B (e.g., the
space of Hölder continuous functions) and an exhaustion Ωs (0 < s < s0) of a given
(bounded) domain Ω ⊂ Rn, one considers the Banach spaces Bs = B(Ωs). Introduce
the conical domain

M(η) =
{

(t, z) : z ∈ Ω and 0 ≤ t < η(s0 − s(x))
}
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where s(x) is the (uniquely determined) index such that x belongs to the boundary
of Ωs(x). Then

d(t, x) = s0 − s(x)− t

η

is a pseudo-distance measuring the distance of a point (t, x) of M(η) from the lateral
surface of M(η). Define B∗(M(η)) as the Banach space of all (continuous) functions
u = u(t, x) whose ∗-norm

‖u‖∗ = sup
M(η)

‖u‖s(x)d(t, x)

is finite. This definition implies

‖u‖s(x) ≤
‖u‖∗
d(t, x)

. (5)

Now consider the subspace BG∗ (M(η)) of those elements of B∗(M(η)) which satisfy
the associated (elliptic) equation Gu = 0 for each fixed t.

To be short, denote F1(t, x, u) by F1u. The Lipschitz condition for F1 implies

‖F1u−F1v‖s(x) ≤ l0‖u− v‖s(x) ≤ l0
‖u− v‖∗
d(t, x)

and thus
‖F1u−F1v‖∗ ≤ l0‖u− v‖∗. (6)

Since F2 depends on the derivatives ∂ju, an analogous estimate of the integral in
(3) requires an interior estimate which holds by hypothesis. Applying the interior
estimate (4) to the exhaustion of Ω where dist (Ωs′ , ∂Ωs′′) ≥ const (s′′−s′), we obtain

‖∂ju‖s′ ≤ c2

s′′ − s′
‖u‖s′′ . (7)

In order to estimate the s(x)-norm of the first order derivatives, consider s̃ = s(x) +
1
2 d(t, x). Let x̃ be any point with s(x̃) = s̃. Then

d(t, x̃) = s0 − s(x̃)− t

η
=

1
2

d(t, x)

and, consequently, (5) yields

‖u(t, ·)‖s̃ ≤ ‖u‖∗
d(t, x̃)

=
2‖u‖∗
d(t, x)

.

Applying the interior estimate (7) with the pair (s(x), s̃), the latter estimate gives

‖∂ju‖s(x) ≤
4c2

d2(t, x)
‖u‖∗.
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Analogously to the abbreviation F1, denote F2(t, x, u, ∂ju) by F2u. Combining the
above estimates, and making use of the estimate d(t, x) ≤ s0, i.e. 1 ≤ s0

d(t,x) , it follows

‖F2u−F2v‖s(x) ≤
c3

d2(t, x)
‖u− v‖∗

where c3 = L0s0 + 4c2

∑
j Lj . Since

∫ t

0
1

d2(τ,x) dτ < η
d(t,x) one has

∥∥∥∥
∫ t

0

(F2u−F2v) dτ

∥∥∥∥
s(x)

≤ ηc3

d(t, x)
‖u− v‖∗

and, therefore, ∥∥∥∥
∫ t

0

(F2u−F2v) dτ

∥∥∥∥
∗
≤ ηc3‖u− v‖∗.

Together with (6) we obtain for the images

U = F1u +
∫ t

0

F2u dτ and V = F1v +
∫ t

0

F2v dτ

of u and v, respectively, the estimate

‖U − V ‖∗ ≤ (l0 + ηc3) ‖u− v‖∗
and thus the following lemma has been proved:

Lemma. The operator defined by the right-hand side of (3) is contractive in
BG∗ (M(η)) provided l0 < 1 and η < 1−l0

c3
.

Notice that similar estimates show that ‖u‖∗ < +∞ implies ‖U‖∗ < +∞.

Theorem. Suppose F1 and F2 are Lipschitz-continuous operators associated to
an (elliptic) first order operator G which satisfies a first order interior estimate.
Provided the Lipschitz constant l0 of F1 is smaller than 1, the operator equation (3)
is uniquely solvable in BG∗ (M(η)) where the height of the conical domain M(η) is
sufficiently small. The solution u = u(t, x) of equation (3) satisfies the side condition
Gu = 0 for each t.

An easy example is given by the Laplace equation Gw ≡ ∂z∂zw = 0 for complex-
valued functions in the complex z-plane (cf. [3]). Then F1w ≡ ϕ1 + ϕ2 + A1w +
B1w is associated to G provided ϕ1 and ϕ2 are holomorphic in the domain under
consideration, while A1 and B1 are arbitrary (continuous) functions depending on
the time t. If sup |A1| + sup |B1| < 1, then one has l0 < 1 for the corresponding
Lipschitz constant. 1) Moreover,

F2w ≡ C1∂zw + C2∂zw + C3∂zw + C4∂zw + A2w + B2w

1) Of course, an equation of the form w = A1w + B1w + C can be solved for w in the
case |A1 − 1| 6= |B1|. However, if |A1 − 1| − |B1| is small, then solving for w can lead to a
stronger restriction of η.
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is also associated to the Laplace operator provided C1 and C4 are holomorphic in z,
whereas C2 and C3 are supposed to be anti-holomorphic in z (note that all coefficients
may depend on t, too). Then the above theorem shows that in sufficiently small
conical domains the equation w = F1w +

∫ t

0
F2w dτ can be solved by a function

w = w(t, z) which satisfies the Laplace equation for each t.

Similarly, if G is the Laplace operator in a bounded domain in Rn, then the
theorem can be applied to desired complex-valued functions u = u(t, x) in the case
F1 = ϕ + Au + Bu and F2 =

∑
j Cj∂ju where A,B and Cj depend on t, sup |A| +

sup |B| < 1 and ∆ϕ = 0.

Concluding Remarks.

1. Concerning the compactness of the integro-differential operator on the right-
hand side of (3) see the paper [8]. While the operator is compact in some Frechét
spaces, this is not the case in the Banach space being in use here.

2. In order to exclude the existence of further solutions of equation (3) not
belonging to BG∗ (M(η)) one needs a Holmgren-type theorem which is not provived in
the present paper.

3. The initial state u(0, x) satisfies the equation

u(0, x) = F1(0, x, u(0, x)).

Its existence and uniqueness in the space of all solutions of the (time-independent)
equation Gu = 0 is contained in the above theorem.

4. As mentioned above, the present paper does not make use of an abstract
Cauchy-Kovalevskaya theorem because the contraction-mapping principle is applied
to a single Banach space. Of course, the solution of equation (3) under the side
condition Gu = 0 for each t can also be constructed using the scale method. Then
the Banach spaces Bs would form a suitable scale.

5. If F1 ≡ ϕ where Gϕ = 0, the above theorem solves the initial value prob-
lem ∂tu = F2(t, x, u, ∂ju) with the initial function ϕ. Then the theorem includes a
conservation law because the side condition Gu = 0 is satisfied for each t.

6. If F2 ≡ 0, the above theorem shows also that the implicit equation u =
F1(t, x, u) has a uniquely determined solution in BG∗ (M(η)) provided l0 < 1.
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