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Wiener-Type Tauberian Theorems
for

Fourier Hyperfunctions

S. Pilipović and B. Stanković

Abstract. Two Wiener-type Tauberian theorems concerning Fourier hyperfunctions are
proved and commented. It is shownt that the shift asymptotics (S-asymptotics) of a hyper-
function f is determined by the ordinary asymptotics of (f ∗ K)(x) as x → ∞, where K is
Hörmaner’s kernel. Moreover, Wiener-type theorems are used for the asympthotic analysis
of solutions to some (pseudo-)differential equations.

Keywords: Fourier hyperfunction, Tauberian theorem

AMS subject classification: 46F15

1. Introduction

Recall the celebrated Wiener Tauberian theorem [27: p. 25]: Suppose that f ∈
L∞(R), k ∈ L1(R) and F(k)(y) 6= 0 for y ∈ R, where F(k) is the Fourier transform
of k. If

lim
x→∞

∫

R
f(y)k(x− y) dy = A

∫

R
k(y) dy

for a constant A ∈ C, then for every g ∈ L1(R)

lim
x→∞

∫

R
f(y)g(x− y) dy = A

∫

R
g(y)dy.

Pitt’s form of Wiener’s theorem (cf. [21] and [26: V.10]) gives the behaviour of the
function f as x →∞, with some additional assumptions on f .

Many generalizations of these basic results have been proved in the framework
of harmonic analysis. The translation invariance and the completeness of translates
in various subspaces or subalgebras are essentialy characterized by the Wiener-type
Tauberian theorems 1) (cf. [1, 2, 5, 22]). On the other hand, Abelian and Tauberian
theorems in the framework of generalized function spaces have been applied in various
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Yugoslavia; pilipovic@sim.ns.ac.yu

1) Results in which we pass from a function to its transform are called Abelian; results in
the converse – Tauberian.
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fields of analysis, probability and mathematical physics (cf. [7, 17, 25] and references
therein). Note that generalized integral transforms have been elaborated for Schwartz
generalized function spaces [17, 20, 25] while, at present, they are studied only in
some particular spaces of ultradistributions and hyperfunctions.

The general concept of extending the given Wiener theorem is based on the
extention of a generalized function space to whom f has to belong and the analysis
of additional properties of k which will imply a Wiener-type Tauberian theorem in
a new setting (cf. [7, 10, 15]). Essential extensions in this sense were obtained in [6,
18] for distributions and in [19] for ultradistributions.

In the present paper we prove two Wiener-type Tauberian theorems in the space
of Fourier hyperfunctions Q(Dn). We refer to Sato and a number of his pupils for
the hyperfunction theory and the theory of various classes of differential operators in
this framework (cf. [9, 23]). In general, it can be said that recently hyperfunctions
play an important role in the quantum field theory extending the results of distri-
bution theory realized already by Bogoljubov and colaborators [4], where Tauberian
theorems are unavoidable (cf. [24, 28]). Here, as illustration, we mention that any
Fourier hyperfunction is of the form P (D)f , where f is a slowly increasing continuous
function and P (D) is a local operator –

h
e−

1
z

i
=

∞X

k=0

2π

k! (k + 1)!
δ(k)

(this is an ultradistribution but not distribution)

�
cos

r
d

dx

�
δ =

∞X

k=0

(−1)k

(2k)!
δ(k)

(this is a hyperfunction but not ultradistribution)

are examples of Fourier hyperfunctions. Even these simple examples show that our
Wiener-type Tauberian theorems, if hold for f , do not imply that a hyperfunction f
is a distribution or an ultradistribution (cf. Section 4).

The space of Fourier hyperfunctions contain distributions and ultradistributions
fulfilling the assumptions of Wiener-type Tauberian theorems for distributions and
ultradistributions. Our results in a natural way extend and unify previous ones.
Thus, a Fourier hyperfunction (whatever it is – distribution or ultadistribution or
just a Fourier hyperfunction) can be tested through an appropriately chosen function
k. It appears that one can take k = K, where K is a kernel called here Hörmander
kernel, introduced and exploited very much in [8: Chapters 8 - 9] in connection with
the microlocal properties of ultradistributions and hyperfunctions. Here, we will show
that this kernel is useful for the analysis of a hyperfuncion at infinity. Especially, if a
local differential operator (this is in fact a pseudodifferential operator) P (D) satisfies
an estimate from below, then we can have the asymptotic behaviour of a solution
to P (D)u = f from the asymptotic behaviour of a hyperfunction f . At the end,
we pose a question related to the heat kernel which would be of interest for further
applications.

The analiticity of k as well as the behaviour of a Fourier hyperfunction f at ∞
make our investigations different in relation to methods which we used in our previous
investigations.
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2. Notation and definitions

We denote by Dn the directional compactification of Rn,Dn = Rn∪Sn−1
∞ and supply

it with the usual topology. The sheaf Õ−δ (δ ≥ 0) on Dn + iRn is defined as follows
[11: p. 375]. For any open set U ⊂ Dn + iRn, Õ−δ(U) consists of holomorphic
functions F on U ∩ Cn, i.e. elements F of O(U ∩ Cn) which satisfy

|F (z)| ≤ CV,ε exp
(− (δ − ε)|Re z|) (z ∈ V )

for any open set V ⊂ Cn with V ⊂ U and for every ε > 0. Hence, Õ−δ|Cn = O.
Put Õ0(U) ≡ Õ(U). The derived sheaf Hn

Dn(Õ), denoted by Q, is called the
sheaf of Fourier hyperfunctions. It is a flabby sheaf on Dn. We need only the space
of global sections Q(Dn).

Let Ik 3 0 (k = 1, ..., n) be open intervals, I = I1× ...×In and Uj =
{
(Dn + iI)∩

{Im zj 6= 0}} (j = 1, ..., n). The family {Dn + iI, Uj : j = 1, ..., n} gives a relative
Leray covering for the pair {Dn + iI, (Dn + iI) \ Dn} relative to the sheaf Õ. Thus

Q(Dn) = Õ(
(Dn + iI)#Dn

)/ n∑

j=1

Õ(
(Dn + iI)#jDn

)

where
(Dn + iI)#Dn = U1 ∩ ... ∩ Un

(Dn + iI)#jDn = U1 ∩ ... ∩ Uj−1 ∩ Uj+1 ∩ ... ∩ Un.

Similarly, Q−δ (δ > 0) is defined using Õ−δ instead of Õ (cf. [11: Definition 8.2.5]).
We denote by Γ a convex cone in Rn. Open orthants in Rn are denoted by

Γσ (σ ∈ Λ), where Λ is the set of n-vectors with entries from {−1, 1}. A global section
f = [F ] ∈ Q(Dn) is defined by the defining function F ∈ Õ(

(Dn+iI)#Dn
)
, F = (Fσ),

where Fσ ∈ Õ(Dn + iIσ);Dn + iIσ is an infinitesimal wedge of type Rn + iΓσ0 with
Iσ = I ∩ Γσ (σ ∈ Λ).

Recall the topological structure of Q(Dn). Let f = [F ] ∈ Q(Dn) and F ∈
Õ(

(Dn + iI)#Dn
)
. Then by

PK,ε(F ) = sup
z∈Rn+iK

|F (z)| exp(−ε|Re z|) (ε > 0,K ⊂⊂ I \ {0})

there is defined a family of semi-norms on Õ(
(Dn + iI)#Dn

)
. The corresponding

quotient topology is the topology on Q(Dn). Note Õ(
(Dn + iI)#Dn

)
is a Fréchet

and Montel space, hence so is Q(Dn).
Let f = [F ] ∈ Q(Dn). Then it is convenient to associate to f a formal sum:

f(x) ∼=
∑

σ∈Λ

sgn(σ)Fσ(x + iΓσ0)
(
Fσ ∈ Õ(Dn + iIσ)

)
(1)

(cf. [11: Theorem 8.5.3 and Definition 8.3.1]).
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Recall, P∗ = ind limI30 ind limδ↓0 Õ−δ(Dn + iI). (In order to simplify notation,
if β ∈ P∗, we also denote by β a representative of the class β.) P∗ and Q(Dn) are
topologically dual to each other; for f ∈ Q(Dn) and ϕ ∈ P∗,

〈f, ϕ〉 =
∫

Rn

f(x)ϕ(x) dx =
∑

σ∈Λ

sgn(σ)
∫

Rn

(Fσϕ)(x + iΓσ0) dx

(see [11: Theorem 8.6.2]) where f is of form (1). We will use

Q(Dn) 3 1 =
∑

σ∈Λ

sgn(σ)1σ where 1σ =
sgn(σ)

2n
κRn+iΓσ , (2)

1 equals one on Cn and κRn+iΓσ is the characteristic function of Rn + iΓσ.

3. Wiener-type Tauberian theorems

The next proposition is given in [12] in more general situations. Here we adapt the
assertion for our purposes.

Proposition 1. If f = [F ] ∈ Q(Dn) and ϕ ∈ P∗, then f ∗ ϕ ∈ Õ(Dn + iI ′′) for
an appropriate interval I ′′ ⊂ Rn with I ′′ 3 0, i.e. f ∗ ϕ is a slowly increasing real
analytic function.

Proof. Let f = [F ] ∈ Q(Dn), F ∈ Õ(
(Dn + iI)#Dn

)
. Recall,

(f ∗ ϕ)(x) = 〈f, ϕ̌(· − x)〉 (
x ∈ Rn, ϕ̌(x) = ϕ(−x)

)
.

We can always suppose that the existence of an α > 0 such that I = (−α, α)n and

f ∼=
∑

σ∈Λ

sgn(σ)Fσ(x + iΓσ0), Iσ = I ∩ Γσ, Fσ ∈ Õ(Dn + iIσ).

Since ϕ ∈ P∗, there exist δ > 0 and α′ > 0 such that ϕ ∈ Õ−δ(Dn + iI ′) with
I ′ = (−α′, α′)n. By [11: Proposition 8.4.3],

(f ∗ ϕ)(x) =
∫

Rn

f(ξ)ϕ(x− ξ) dξ

=
∑

σ∈Λ

∫

Rn

sgn(σ)Fσ(ξ + iη0
σ)ϕ(x− ξ − η0

σ) dξ
(x ∈ Rn)

where η0
σ ∈ Iσ, η0

σ = (η0
σ1

, ..., η0
σn

) and I ′′ are determined as follows:

Take a number η0 such that 0 < η0 = α0

2 where α0 = min(α, α′). We choose η0
σ ∈

Iσ such that η0
σk

= η0 if η0
σk

> 0 and η0
σi

= −η0 if η0
σi

< 0. Clearly, η0
σ ∈ Iσ∩I ′. Now,

we take I ′′ = (−α′+η0, α′−η0)n. If z = x+ iy ∈ Rn + iI ′′ and ζ = ξ + iη0
σ (ξ ∈ Rn),

then z − ζ ∈ Rn + iI ′, because −α′ < yk − η0
σk
≤ 0 if η0

σk
> 0 and 0 < yi − η0

σi
< α′

if η0
σi

< 0.
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We can now prove that (f ∗ ϕ)(z) ∈ Õ(Dn + iI ′′). For this, let ε > 0 be chosen
so that 0 < 2ε < δ and K ′′ ⊂⊂ I ′′. Then K ′′ − η0

σ ⊂ I ′ and using the inequalities
ε|x|+ (δ − ε)|ξ − x| ≥ ε|x|+ ε|ξ − x| ≥ ε|ξ| we get

sup
z∈Rn+iK′′

∣∣∣∣e−ε|x|
∫

Rn

Fσ(ξ + iη0
σ)ϕ(x− ξ + i(y − η0

σ)) dξ

∣∣∣∣

≤ CK′′

∫

Rn

|Fσ(ξ + iη0
σ)|e−ε|x|e−(δ−ε)|ξ−x|dξ

≤ CK′′

∫

Rn

|Fσ(ξ + iη0
σ)|e−ε|ξ|dξ

≤ CK′′Cε

∫

Rn

e−ε
|ξ|
2 dξ

< ∞

(3)

where Cε = maxξ∈Rn |Fσ(ξ + iη0
σ)|e−ε

|ξ|
2 . Since (3) holds for every σ ∈ Λ, it follows

(f ∗ ϕ)(z) ∈ Õ(Dn + iI ′′)

In the sequal, we will use the notation z2 = 〈z, z〉 = z1z1 + ... + znzn for z ∈ Cn.

Proposition 2. Let ϕ ∈ P∗ and F(ϕ) = ψ. Assume that there exists δ > 0 such
that 1

ψ exp(−δ
√·2 + 1) ∈ P∗. Let M be the subspace of P∗ consisting of all finite

linear combinations of ϕ(·+ x) (x ∈ Rn). Then M is dense in P∗.
Proof. Let f ∈ Q(Dn). Note F(f) exp(−δ

√·2 + 1) ∈ Q−δ(Dn) and f ∗ ϕ ∈
Q(Dn). By Proposition 1, f ∗ ϕ ∈ Õ(Dn + iI ′′) with I ′′ 3 0. We have to prove

if (f ∗ ϕ)(x) = 〈f, ϕ̌(· − x)〉 = 0 for every x ∈ Rn, then f = 0.

By [11: Proposition 8.4.3] we have 0 = F(f ∗ ϕ) = F(f)ψ in Q(Dn). Since

0 = (F(f)ψ)
( 1

ψ
exp(−δ

√
·2 + 1)

)
= F(f)

(
ψ

1
ψ

)
exp(−δ

√
·2 + 1),

it follows
F(f) exp(−δ

√
·2 + 1) = 0 in Q(Dn).

By [11: Theorem 8.4.1] (or [12: Lemma 3.3]), the natural imbeding Q−δ(Dn) into
Q(Dn) is injective and thus

F(f) exp(−δ
√
·2 + 1) = 0 in Q−δ(Dn).

This implies F(f) = 0 in Q(Dn). By the properties of Fourier transform it follows
that f = 0 in Q(Dn)

We shall use the following notation:
h →∞ for h = (h1, ..., hn) ∈ Rn, hi →∞ (i = 1, ..., n)
αn ↓ 0 for a positive sequence which monotonically tends to zero as n →∞
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bn ↑ b for a sequence bn < b ≤ ∞ which monotonically tends to b as n →∞.
In order to form a basis of neighbourhoods of zero in P∗ we note that

P∗ = ind lim
ν→∞

Õ−δν (Dn + iIν)

where δν ↓ 0 and Iν = (−αν , αν)n with αν ↓ 0. We can take fixed sequences {δν} and
{αν}. For a fixed ν, a basis of neighbourhoods of zero in Õ−δν (Dn + iIν) is given by

Vν,Kj ,εk,ηp
=

{
β ∈ Õ−δν (Dn + iIν) : sup

z∈Rn+iKj

|β(z)| exp((δν − εk)|x|) ≤ ηp

}

for j, k, p ∈ N where Kj = [−bj , bj ]n, bj ↑ αν , εk ↓ 0, εk < δν and ηp ↓ 0 are given
sequences.

Let us choose for every ν ∈ N sequences bj,ν ↑ αν , εk,ν ↓ 0 (εk,ν < δν) and ηp,ν ↓ 0.
Fixing Kjν ,ν = [−bjν ,ν , bjν ,ν ]n, εkν ,ν , ηpν ,ν (ν ≥ ν0) and making the absolutely convex
linear hull of Vν,Kjν ,ν ,εkν ,ν ,ηpν ,ν (ν ≥ ν0), denoted by

Γν,Kjν ,νεkν ,ν ,ηpν ,ν (ν ≥ ν0) (4)

we obtain a neighbourhood of zero in P∗. In this way we construct a basis of neigh-
bourhoods of zero which will be used in the sequel.

Theorem 1. Let ϕ ∈ P∗, ψ = F(ϕ), f = [F ] ∈ Q(Dn), F ∈ Õ(
(Dn + iI)#Dn

)
with I = (−α, α)n (α > 0) and let c be a positive and measurable function on Rn.
Assume the following:

1. (i) limx→∞
c(x)

c(x+t) = 1 for all t ∈ Rn.
(ii) For every ε > 0 there exist constants B > 0 and B1 > 0 such that Be−ε|t| ≤

c(x)
c(x+t) ≤ B1e

ε|t| for all x, t ∈ Rn.

2. There exists ω > 0 such that 1
ψ(z)e

−ω
√

z2+1 ∈ P∗.
3. For every σ ∈ Λ, every compact set Kσ ⊂⊂ Iσ = I ∩ Γσ and for every η > 0,

there exists C > 0 such that
∣∣Fσ(x+h+iyσ)

c(h)

∣∣ ≤ Ceη|x| for all x ∈ Rn, h ∈ Rn
+ and

yσ ∈ Kσ.

4. There exists A ∈ C such that limh→∞
(f∗ϕ)(x+h)

c(h) = 〈A,ϕ〉 in Q(Dn).

Then

lim
h→∞

(f ∗ λ)(x + h)
c(h)

= 〈A, λ〉 in Q(Dn), for every λ ∈ P∗. (5)

Proof. Step 1. We shall prove the assertion with c = 1. Thus if limh→∞(f ∗
ϕ)(x + h) = 〈A′, ϕ〉 in Q(Dn) with A′ ∈ C, we have to prove that

lim
h→∞

(f ∗ λ)(x + h) = 〈A′, λ〉 in Q(Dn), for every λ ∈ P∗. (6)

We use the notation of Proposition 2. Let λ ∈ P∗, λ ∈ Õ−δ(Dn + iI ′) with I ′ =
(−α′, α′)n. Assume that ν0 ∈ N is chosen so that δν0 ≤ δ and αν0 < α′. (Here we
use the notation given before the theorem.) By Proposition 2, for given λ ∈ P∗ there
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exist ρ ∈ M and γ ∈ P∗ such that λ = ρ + γ and γ ∈ Γν,Kjν ,ν ,εkν ,ν ,ηpν ,ν
(cf. (4))

which implies

sup
z∈Rn+iKjν ,ν

|γ(z)| exp
(
(δν − εkν ,ν)|x|) ≤ ηpν ,ν (ν ≥ ν0). (7)

By (1) and (2) we have
(
(f −A′) ∗ (λ− ρ)

)
(z + h)

=
∑

σ∈Λ

∫

Rn

(
sgn(σ)Fσ(ξ + h + iη0

σ)−A′σ
)
γ(z − ξ − iη0

σ) dξ

for z ∈ Rn + iI ′′ where I ′′ and η0
σ are settled down in Proposition 1 and A′σ =

A1σ (σ ∈ Λ).
Assumption 4 and Proposition 2 imply that for the proof of (6) it is enough to

show that for every σ ∈ Λ, µ > 0, ε > 0 and K ⊂⊂ I ′′ there exist h0 > 0, ρ ∈ M, γ ∈
P∗ such that λ = ρ + γ and

J(h) = sup
z∈Rn+iK

e−ε|x|
∣∣∣∣
∫

Rn

(
Fσ(ξ + h + iη0

σ)−A′σ
)
γ(z − ξ − iη0

σ) dξ

∣∣∣∣ < µ

for hi ≥ h0 (i = 1, ..., n). Let σ ∈ Λ, µ > 0, ε > 0 and K ⊂⊂ I ′′ be fixed. Choose
ν0 > 0 and η > 0, a compact set Kjν0 ,ν0 and εkν0 ,ν0 > 0 such that

Kjν0 ,ν0 ⊃ K − η0
σ, εkν0 ,ν0 + η < ε, 2εkν0 ,ν0 + η < δν0 .

Then choose ηpν0 ,ν0 > 0 such that ηpν0 ,ν0 < µ
DD1

where

D = sup
h∈Rn

+,σ∈Λ
e−η|ξ|(|Fσ(ξ + h + iη0

σ)|+ |A′σ|
)
, D1 =

∫

Rn

e−εkν0 ,ν0 |ξ| dξ.

Note that D < ∞ (this follows from condition 3). We have

ε|x|+ (δν0 − εkν0 ,ν0)|x− ξ| ≥ (η + εkν0 ,ν0)(|x|+ |x− ξ|)
≥ (η + εkν0 ,ν0)|ξ|.

(8)

Take ρ ∈ M such that

sup
z∈Rn+iKjν0 ,ν0

∣∣γ(z) exp
(
(δν0 − εkν0 ,ν0)|x|

)∣∣ ≤ ηpν0 ,ν0 .

Then, by (7) and (8), we get (z ∈ Rn + iK)

e−ε|x|
∣∣∣∣
∫

Rn

(
Fσ(ξ + h + iη0

σ)−A′σ
)
γ(x + iy − ξ − iη0

σ) dξ

∣∣∣∣

≤ ηpν0 ,ν0

∫

Rn

(|Fσ(ξ + h + iη0
σ)|+ |A′σ|

)
exp

(− ε|x| − (δν0 − εkν0 ,ν0)|x− ξ|)dξ

≤ ηpν0 ,ν0

∫

Rn

(|Fσ(ξ + h + iη0
σ)|+ |A′σ|

)
exp

(− (η + εkν0 ,ν0)|ξ|
)
dξ

≤ ηpν0 ,ν0DD1

< µ.
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Step 2. We introduce

e(z) =
∫

Rn

c(t)e−(t−z)2dt (z ∈ Cn).

This is an entire function, and by assumption 1/(ii) there exists a strip Ic0 = {z ∈
Cn : |y| ≤ c0} (c0 > 0) so that e(z) 6= 0 for z ∈ Ic0 . Let us prove this assertion. For
this we will use

cos
( n∑

i=1

2tiyi

)
=

n∏

i=1

cos(2|tiyi|) +
n∑

j=1

Mj sin(2tjyj)

where Mj are linear combinations of products of cos(2tiyi) or sin(2tiyi) (i 6= j, j =
1, ..., n) and that for every p ∈ (0, 1) there exists q > 0 such that

n∑

j=1

∣∣∣∣
∫

Rn

e−t2+y2+|t|Mj sin(2yjtj) dt

∣∣∣∣

≤ 2n−1
n∑

j=1

∫

Rn

e−t2+y2+|t|| sin(2yjtj)| dt

≤ p

(|y| ≤ q).

Let |y| ≤ q. We get

|e(z)| ≥ |Re(e(z))|

=
∣∣∣∣
∫

Rn

c(x + t)e−t2+y2
cos

( n∑

i=1

2tiyi

)
dt

∣∣∣∣

≥
∫

Rn

c(x + t)e−t2+y2
cos(2|y1|t1) · · · cos(2|yn|tn) dt

−
n∑

j=1

∫

Rn

c(x + t)e−t2+y2 |Mj sin(2tjyj)| dt

≥ 1
B1

c(x)
∫

t∈Π

e−t2+y2−|t|dt− 1
B

c(x)
∫

t∈Rn\Π
e−t2+y2+|t|dt

− 2n−1

B
c(x)

n∑

j=1

∫

Rn

e−t2+y2+|t|| sin(2tjyj)| dt

= c(x)
{

A(|y|)−A1(|y|)−2n−1p

B

}

where
Π =

{
t : |ti| ≤ π

8|yi| (i = 1, ..., n)
}

,

and the observation that A(|y|) > 0, A(|y|) grows as |y| → 0, while A1(|y|) → 0 as
|y| → 0. Thus, by choosing p sufficiently small and then by taking sufficiently small
c0 ≤ q, it follows that 1

e is an analitic function in the strip Ic0 and

|e(x + iy)| ≥ Cc(x) (x ∈ Rn, |y| < c0)
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where C = A(c0)−A1(c0)− 2n−1p
B . Shrincking I if necessary we can hereafter assume

that c0 is chosen so that I ⊂ Ic0 . Notice that condition 1/(ii) implies for every ε > 0
the existence of constants B2 > 0 and B3 > 0 so that

B2e
−ε|x| ≤ e(x + iy) ≤ B3e

ε|x| (x ∈ Rn, y ∈ I).

Thus e, 1
e ∈ Õ(Dn + iI). Moreover, the given estimates for e imply for every ε > 0

the existence of a constant C > 0 such that

∣∣∣ c(h)
e(x + h + iy)

∣∣∣ ≤ Ceε|x| (x ∈ Rn, h ∈ Rn
+, y ∈ I). (9)

We need also

lim
x→∞

e(x + iy)
c(x)

=
∫

Rn

exp(−(t− iy)2) dt = π
n
2 (y ∈ I). (10)

Note, the Cauchy formula implies that the integral in (10) does not depend on y ∈ I.
Let us prove (10). Indeed, letting y ∈ I for this, we have

lim
x→∞

e(x + iy)
c(x)

= lim
x→∞

∫

Rn

exp(−(t− x− iy)2)
c(t)
c(x)

dt

= lim
x→∞

∫

Rn

exp(−(t− iy)2)
c(x + t)

c(x)
dt

=
∫

Rn

exp(−(t− iy)2) lim
x→∞

c(x + t)
c(x)

dt

=
∫

Rn

exp(−(t− iy)2) dt

=
∫

Rn

e−t2dt

= π
n
2 .

Step 3. Let y0
σ ∈ Iσ and f1 = π

n
2 f . Note that f1

e ∈ Q(Dn). We will prove that,
for every γ ∈ P∗,

lim
h→∞

(f ∗ γ)(x + h)
c(h)

= lim
h→∞

(f1

e
∗ γ

)
(x + h) (11)

lim
h→∞

(f1

e
∗ γ

)
(x + h) = 〈A, γ〉 (12)

in Q(Dn). This will complete the proof of Theorem 1. For this rewrite (11) as

lim
h→∞

(f(·+ h)
e(·+ h)

(e(·+ h)
c(h)

− π
n
2

)
∗ γ

)
(x) = 0 in Q(Dn). (13)
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We will prove (13) similarly as (6). It is sufficient to prove that, for every σ ∈ Λ and
ε > 0, limh→∞Hσγ(h) = 0 (γ ∈ P∗) where

Hσγ(h) = sup
z∈Rn+iK

e−ε|x|

∫

Rn

Fσ(ξ + h + iη0
σ)

( 1
c(h)

− π
n
2

e(ξ + h + iη0
σ)

)
γ(z − ξ − iη0

σ) dξ.

We have

Hσγ(h) = sup
z∈Rn+iK

e−ε|x|
∫

Rn

Fσ(ξ + h + iη0
σ)

c(h)
c(h)

e(ξ + h + iy0
σ)

×
( ∫

Rn

e−(t−iη0
σ)2

(c(t + ξ + h)
c(h)

− 1
)
dt

)
γ(z − ξ − iη0

σ) dξ

= sup
z∈Rn+iK

e−ε|x|
∫

Rn

e−(t−iη0
σ)2

×
( ∫

Rn

Fσ(ξ + h + iη0
σ)

c(h)
c(h)

e(ξ + h + iy0
σ)

(c(t + ξ + h)
c(h)

− 1
)

× γ(z − ξ − iη0
σ) dξ

)
dt.

The order of integration is changed on the basis of estimates which are to follow. For
these estimates we use assumption 1/(ii) (with εkν0 ,ν0 instead of ε in the exponent),
(9) (again with εkν0 ,ν0 instead of ε in the exponent) and the assumptions on δν0 and
εkν0 ,ν0

ε ≥ η + 2εkν0 ,ν0 , δν0 − εkν0 ,ν0 ≥ η + 2εkν0 ,ν0 .

We get
∣∣∣ exp (−ε|x| − (t− iη0

σ)2)
Fσ(ξ + h + iη0

σ)
c(h)

∣∣∣

×
∣∣∣ c(h)
e(ξ + h + iy0

σ)

(c(t + ξ + h)
c(h)

− 1
)
γ(z − ξ − iη0

σ)
∣∣∣

≤ E exp
(
− ε|x| − t2 + η|ξ|+ εkν0 ,ν0(|t|+ |ξ|)− (δν0 − εkν0 ,ν0)|x− ξ|

)

≤ . . . and by (8)

≤ E exp
(− t2 + εkν0 ,ν0 |t| − εkν0 ,ν0 |ξ|

)

where E is a suitable positive constant. Then the Lebuesgues theorem implies that
limh→∞Hσγ(h) = 0.

Now we prove (12). We will show that, for every σ ∈ Λ, F̃σ = Fσ

e satisfies
assumption 3 with c = 1. Let Kσ ⊂⊂ Iσ and yσ ∈ Kσ (σ ∈ Λ). Then, for h ∈ Rn

+,

|F̃σ(x + h + iyσ)| =
∣∣∣Fσ

e
(x + h + iyσ)

∣∣∣

≤
∣∣∣ F̃σ(x + h + iyσ)

c(h)

∣∣∣
∣∣∣ c(h)
e(x + h + iyσ)

∣∣∣
(x ∈ Rn).
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By assumption 3 of the theorem and by (9), we obtain

|F̃σ(x + h + iyσ)| ≤ C ′e(η+ε)|x| (x ∈ Rn)

for every η > 0 and ε > 0 and a suitable constant C ′ > 0. This completes the proof
of Theorem 1

In the next theorem we will suppose a stronger assumption than assumption 3
and that the limit in assumption 4 exists in C.

Theorem 2. Let ϕ ∈ P∗, ψ = F(ϕ) and f = [F ] ∈ Q, F ∈ Õ(
(Dn + iI)#Dn

)
with I = (−α, α)n for α > 0. Let c and ψ satisfy assumptions 1 and 2 of Theorem
1. Further, assume the following:

3. For every Kσ ⊂⊂ Iσ (σ ∈ Λ) there exists N > 0 such that, for every yσ ∈ Kσ,
|Fσ(x+h+iyσ)

c(h) | ≤ N for all x ∈ Rn and h ∈ Rn
+.

4. There exists A ∈ C such that limx→∞
(f∗ϕ)(x)

c(x) = 〈A,ϕ〉 in C.

Then

lim
x→∞

(f ∗ λ)(x)
c(x)

= 〈A, λ〉 in C, for every λ ∈ P∗. (14)

Proof. The structure of the proof of Theorem 2 is the same as for Theorem 1.
We have only to take care that the limits are not in Q but in C. In the first step we
take c = 1. We use the fact that

lim
x→∞

(f ∗ λ)(x)− 〈A′, λ〉 = 0 in C, for every λ ∈ P∗

is equivalent to

lim
x→∞

(
(f −A′)(x) ∗ (λ− ρ)

)
(x) = 0 in C, for every ρ ∈ M and λ ∈ P∗.

We have

(f −A′) ∗ (λ− ρ) =
∑

σ∈Λ

∫

Rn

(
sgn(σ)Fσ(ξ + iη0

σ)−A′σ
)
γ(x− ξ − iη0

σ) dξ

for every x ∈ Rn, where γ = λ− ρ. (A′σ is the same as in Theorem 1.) Proposition 1
implies that the functions

gσ(γ, x) =
∫

Rn

(
sgn(σ)Fσ(ξ + iη0

σ)−A′σ
)
γ(x− ξ − iη0

σ) dξ (x ∈ Rn, σ ∈ Λ)

are slowly increasing. By Carleman’s theorem (cf. [11: Lemma 8.4.7]),

(
(f −A′) ∗ (λ− ρ)

)
(x) =

∑

σ∈Λ

gσ(γ, x) (x ∈ Rn).
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We shall show that for every µ > 0 and σ ∈ Λ there exist x0 > 0, ρ ∈ M and γ ∈ P∗,
λ = ρ + γ such that

|gσ(γ, x)| ≤ µ (xi ≥ x0, i = 1, ..., n). (15)

Take ρ ∈ M such that γ satisfies (7) with the same notation and assumptions on
Kjν0 ,ν0 and εkν0 ,ν0 > 0. Now chose ηpν0 ,ν0 < µ

D′ , where

D′ = (N + |A′σ|)
∫

Rn

exp
(− (δν0 − εkν0 ,ν0)|t|

)
dt.

The proof of (15) is to follow. For every σ ∈ Λ we have
∫

Rn

exp
(− (δν0 − εkν0 ,ν0)|t|

)(|Fσ(x− t + iη0
σ)|+ |A′σ|

)

× sup
t∈Rn

∣∣ exp
(
(δν0 − εkν0 ,ν0)|t|

)
γ(t− iy0

σ)
∣∣dt

≤ ηp,nm(N + |A′σ|)
∫

Rn

exp
(− (δν0 − εkν0 ,ν0)|t|

)
dt

< µ

for xi ≥ x0 (i = 1, ..., n). Let e be the function defined in Step 2 of the proof of
Theorem 1 and f1 = π

n
2 f . We shall prove that, for every γ ∈ P∗,

lim
x→∞

(f ∗ γ)(x)
c(x)

= lim
x→∞

(f1

e
∗ γ

)
(x) (16)

lim
x→∞

(f1

e
∗ γ

)
(x) = 〈A, γ〉 in C. (17)

First, we prove (16). The properties of e imply that (16) can be rewritten as

lim
x→∞

(
f(·+ x)

( 1
c(x)

− π
n
2

e(·+ x)

)
∗ γ

)
(0) = 0. (18)

Let γ ∈ Õ−δ(Dn + iI ′). In order to prove (18), we shall prove that, for every
η0

σ ∈ Iσ (σ ∈ Λ),

lim
x→∞

Gσ(x) = lim
x→∞

∫

Rn

Fσ(x + ξ + iη0
σ)

( 1
c(x)

− π
n
2

e(x + ξ + iη0
σ)

)
γ(−ξ − iη0

σ) dξ

= 0.

We have

Gσ(x) =
∫

Rn

∫

Rn

e−(t−iη0
σ)2 Fσ(x + ξ + iη0

σ)
c(x)

c(x)
e(x + ξ + iη0

σ)

×
(c(x + ξ + t)

c(x)
− 1

)
γ(−ξ − iη0

σ) dξdt.
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Now, as in the previous theorem, using assumptions 1 and 3 and (9), one can show
that limx→∞Gσ(x) = 0 for σ ∈ Λ.

Let us prove (17) by showing that F̃ = F
e satisfies assumption 3 with c = 1.

With this, the first part of the proof implies (17). We have

|F̃ (x + iyσ)| =
∣∣∣Fσ(x + iyσ)

e(x + iyσ)

∣∣∣

=
∣∣∣∣
∫

Rn

e−(t−x−iyσ)2 Fσ(x + iyσ)
c(t)

dt

∣∣∣∣

≤ CKσ

∫

Rn

e−(t−iyσ)2 Fσ(x + iyσ)
c(x)

c(x)
c(t + x)

dt.

(yσ ∈ Kσ).

Assumptions 1 and 3 imply the boundedness of the last integral. Now (14) follows
from (16) and (17)

4. Applications

1. Recall [3], a function L is called slowly varying if it is a positive measurable
function on (t0,∞) (t0 ≥ 0) such that limx→∞

L(xt)
L(x) = 1 (t > t0). If n = 1, then

assumption 1/(ii) follows from assumption 1/(i). This follows from [3: Theorems
1.4.1 and 1.5.6] (with the change of variables x = ln u, u > 0). In fact, in this case
c(x) = eαxL(ex) (x > x0) (cf. [17]). The function

c(x) = (x2
1 + 1)p1L1(ex1) · · · (x2

n + 1)pnLn(exn)

for x = (x1, ..., xn) ∈ Rn, where Li (i = 1, ..., n) are slowly varying functions and
p = (p1, ..., pn) ∈ Rn, satisfies assumption 1 of Theorems 1 and 2.

2. Let ϕδ = F−1(exp(−δ
√·2 + 1)). Since exp(−δ

√·2 + 1) ∈ P∗ (δ > 0), it follows
that ϕδ ∈ P∗. One can simply show that ψ = ϕδ satisfies assumption 2 of Theorems
1 and 2. Another important function which satisfies assumption 2 in Theorems 1 and
2 is the Fourier transformation of the function K introduced by Hörmander (cf. [8:
Section 8.4]):

K(z) = 1
(2π)n

∫

Rn

ei〈z,ξ〉

I(ξ)
dξ

(
z ∈ Ω = {z ∈ Cn : |Im z| < 1})

where I(ξ) =
∫
|ω|=1

e−〈ω,ξ〉dω. Recall, I(ξ) = I0(〈ξ, ξ〉1/2) (ξ ∈ Rn) where

I0(ρ) =
2π

n−1
2

Γ(n−1
2 )

∫ 1

−1

(1− t2)
n−1

2 −1e−tρdt (ρ ∈ C)

is an entire function which satisfies the estimate

|I0(ρ)| ≤ C(1 + |ρ|)−n−1
2 e|Re ρ| (ρ ∈ C) (19)
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(cf. [8: Lemma 8.4.9]).
We shall prove that K ∈ P∗. By [8: Lemma 8.4.10], K is analytic in every open

connected set Ω satisfying Ω ⊂ Ω̃ = {z ∈ Cn : 〈z, z〉 6∈ (−∞,−1]}. One can simply
prove that the strip Ω = {z ∈ Cn : |yk| < 1

2
√

n
(k = 1, ..., n)} is a subset of Ω̃.

Let Γ be a closed cone such that if z ∈ Γ \ {0}, then |xk| > |yk| (k = 1, ..., n). If
z ∈ Γ \ {0}, then 〈z, z〉 6∈ (−∞, 0]. By [7: Lemma 8.4.10], there exists c > 0 such
that K(z) = O(e−c|z|) (z ∈ Γ, |z| → ∞). Hence,

|K(z)| ≤ CK,εe
−(c−ε)|Re z| (z ∈ Rn + iK)

for every compact set K ⊂ {y ∈ Rn : |yk| < 1
2
√

n
(k = 1, ..., n)} and every ε > 0.

Consequently, K ∈ P∗.
We denote by ψ the Fourier transform of K, i.e. ψ = F(K), and let ω > 1. Then

1
ψ(ζ) = I(ζ) (ζ ∈ C) is an entire function. Let ζ = ξ + iη with |η| < 1. Then

|I(ζ)| =
∣∣∣∣
∫

|ω|=1

e−〈ω,ξ+iη〉dξ

∣∣∣∣ = I(ξ) = I0(ξ).

Now, by (19),

|I(ζ)| ≤ |I(ξ)| ≤ |I0(|ζ|)| ≤ C(1 + |ζ|)−n−1
2 e|ξ|+1 (ξ ∈ Rn, |η| < 1).

This implies I(ζ) exp(−ω
√

ζ2 + 1) ∈ P∗ for w > 1.

3. The S-asymptotics of Fourier hyperfunctions can be defined in the following way:
Suppose that c is a positive function defined on Rn and f ∈ Q(Dn). It is said that f
has the S-asymptotics related to c with the limit u ∈ Q(Dn) if

lim
x→∞

〈f(t + x)
c(x)

, ϕ(t)
〉

= 〈u, ϕ〉 in C, for every ϕ ∈ P∗.

Theorem 2 asserts that if f, ϕ̌ and c satisfy the assumptions of Theorem 2 and if

lim
x→∞

〈f(·+ x)
c(x)

, ϕ̌
〉

= 〈A, ϕ̌〉 in C,

then f has the S-asymptotics related to c with the limit A. Thus if c = 1 and f ∈ Q
satisfies (f ∗ K)(x) → A as x → ∞, then f has the S-asymptotics at ∞ (equals to
A).

By Theorem 1 one can easily show that hyperfunctions quoted in the introduc-
tion have the S-asymptotics zero with respect to c = 1. This simply shows that
a hyperfunction with the S-asymptotics behaviour with respect to c = 1 is not a
distribution or an ultradistribution, in general.

4. Let P (D) =
∑

α∈Nn
0

aα
∂α

∂xα be a microlocal operator with constant coefficients,

which means lim|α|→∞
√
|aα|α! = 0, acting as a sheaf homomorphism on the sheaf

of Fourier hyperfunctions (cf. [11: Proposition 8.4.8]). The question is whether the
S-asymptotic behaviour of P (D)f determines the S-asymptotics of f . Since

P (D)f ∗ K = f ∗ (P (D)K),

we have the following assertion:
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Assume that

|P (ζ)| ≥ C exp(−δ
√

ζ2 + 1) for some C > 0 and δ > 0

in some strip Rn+i(−ε, ε)×...×(ε, ε) (ε > 0). Then P (D)K satisfies the assymption
of Theorem 1 and the behaviour of P (D)f ∗ K determines the behaviour of f in the
sense of S-asymptotics with c = 1.

5. It would be interesting to answer the following problem. Whether the Weierstrass
kernel n

√
4πt exp(−x2

4t ) can be used as an appropriate element of P∗ since it does not
satisfy assumption 2 in both theorems. This theoretical problem is of interest for the
analysis of the heat equation.
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