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Wiener-Type Tauberian Theorems
for
Fourier Hyperfunctions

S. Pilipovi¢ and B. Stankovicé

Abstract. Two Wiener-type Tauberian theorems concerning Fourier hyperfunctions are
proved and commented. It is shownt that the shift asymptotics (S-asymptotics) of a hyper-
function f is determined by the ordinary asymptotics of (f * K)(x) as x — oo, where K is
Hoérmaner’s kernel. Moreover, Wiener-type theorems are used for the asympthotic analysis
of solutions to some (pseudo-)differential equations.
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1. Introduction

Recall the celebrated Wiener Tauberian theorem [27: p. 25]: Suppose that f €
L>*(R),k € L*(R) and F(k)(y) # 0 for y € R, where F(k) is the Fourier transform
of k. If

lim [ f(y)k(z —y)dy = A/ k(y) dy
R R

r— 00

for a constant A € C, then for every g € L'(R)

lim | f(w)a(r—y)dy = 4 / o(y)dy.

T— 00

Pitt’s form of Wiener’s theorem (cf. [21] and [26: V.10]) gives the behaviour of the
function f as x — oo, with some additional assumptions on f.

Many generalizations of these basic results have been proved in the framework

of harmonic analysis. The translation invariance and the completeness of translates

in various subspaces or subalgebras are essentialy characterized by the Wiener-type

Tauberian theorems ) (cf. [1, 2, 5, 22]). On the other hand, Abelian and Tauberian
theorems in the framework of generalized function spaces have been applied in various
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D Results in which we pass from a function to its transform are called Abelian; results in
the converse — Tauberian.
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fields of analysis, probability and mathematical physics (cf. [7, 17, 25] and references
therein). Note that generalized integral transforms have been elaborated for Schwartz
generalized function spaces [17, 20, 25| while, at present, they are studied only in
some particular spaces of ultradistributions and hyperfunctions.

The general concept of extending the given Wiener theorem is based on the
extention of a generalized function space to whom f has to belong and the analysis
of additional properties of k which will imply a Wiener-type Tauberian theorem in
a new setting (cf. [7, 10, 15]). Essential extensions in this sense were obtained in |6,
18] for distributions and in [19] for ultradistributions.

In the present paper we prove two Wiener-type Tauberian theorems in the space
of Fourier hyperfunctions Q(D™). We refer to Sato and a number of his pupils for
the hyperfunction theory and the theory of various classes of differential operators in
this framework (cf. [9, 23]). In general, it can be said that recently hyperfunctions
play an important role in the quantum field theory extending the results of distri-
bution theory realized already by Bogoljubov and colaborators [4], where Tauberian
theorems are unavoidable (cf. [24, 28]). Here, as illustration, we mention that any
Fourier hyperfunction is of the form P(D)f, where f is a slowly increasing continuous
function and P(D) is a local operator —

h i X 9

1
eT: — LI 1)
! !
o F! (k+1)!
(this is an ultradistribution but not distribution)
T X (_qp
oS d 5 (=1) 5™

de = (2k)
dz —o (2k)!
(this is a hyperfunction but not ultradistribution)

are examples of Fourier hyperfunctions. Even these simple examples show that our
Wiener-type Tauberian theorems, if hold for f, do not imply that a hyperfunction f
is a distribution or an ultradistribution (cf. Section 4).

The space of Fourier hyperfunctions contain distributions and ultradistributions
fulfilling the assumptions of Wiener-type Tauberian theorems for distributions and
ultradistributions. Our results in a natural way extend and unify previous ones.
Thus, a Fourier hyperfunction (whatever it is — distribution or ultadistribution or
just a Fourier hyperfunction) can be tested through an appropriately chosen function
k. It appears that one can take k = K, where K is a kernel called here Hormander
kernel, introduced and exploited very much in [8: Chapters 8 - 9] in connection with
the microlocal properties of ultradistributions and hyperfunctions. Here, we will show
that this kernel is useful for the analysis of a hyperfuncion at infinity. Especially, if a
local differential operator (this is in fact a pseudodifferential operator) P(D) satisfies
an estimate from below, then we can have the asymptotic behaviour of a solution
to P(D)u = f from the asymptotic behaviour of a hyperfunction f. At the end,
we pose a question related to the heat kernel which would be of interest for further
applications.

The analiticity of k£ as well as the behaviour of a Fourier hyperfunction f at oo
make our investigations different in relation to methods which we used in our previous
investigations.
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2. Notation and definitions

We denote by D" the directional compactification of R”, D™ = R US™ 1 and supply
it with the usual topology. The sheaf O~% (§ > 0) on D" + iR" is defined as follows
[11: p. 375]. For any open set U C D" + iR™, O~%(U) consists of holomorphic
functions F' on U N C", i.e. elements F' of O(U N C™) which satisfy

|F(2)] < Cyeexp (— (0 —¢)|Rez|) (zeV)

for any open set V C C™ with V C U and for every € > 0. Hence, 6_6|(Cn =0.

Put O°(U) = O(U). The derived sheaf HE. (O), denoted by Q, is called the
sheaf of Fourier hyperfunctions. It is a flabby sheaf on D™. We need only the space
of global sections Q(D™).

Let I, 50 (k=1,...,n) be open intervals, I = I x ... x I,, and U; = {(D" +4I)N
{Imz; #0}} (j =1,...,n). The family {D" +iI,U; : j = 1,...,n} gives a relative
Leray covering for the pair {D™ + I, (D™ + iI) \ D"} relative to the sheaf ©. Thus

Q(D") = O((D" + z'I)#]D)”)/ 3" O((D" +il)#,D")

j=1
where
(D" +i)#D" =UyNn...NU,
(D™ + iI)#j]D)" =Uin.NU;_1NUj;zN..NU,.

Similarly, Q=% (§ > 0) is defined using O~ instead of O (cf. [11: Definition 8.2.5]).

We denote by I' a convex cone in R™. Open orthants in R™ are denoted by
I'y (0 € A), where A is the set of n-vectors with entries from {—1,1}. A global section
f =1[F] € Q(D") is defined by the defining function F' € (5((ID)”+Z'I)#]D”),F = (Fy),
where F, € (5(]]])” +il,); D™ + il, is an infinitesimal wedge of type R™ + iI',0 with
I, =1NT, (0 €A).

Recall the topological structure of Q(D™). Let f = [F] € Q(D") and F €
O((D™ 4 iI)#D"). Then by

Prg(F)= sup |F(z) exp(—¢|Rez|) (e>0,K ccI\{0})
zeR"+iK

there is defined a family of semi-norms on O ((D™ 4 ¢I)#D™). The corresponding

quotient topology is the topology on Q(D"). Note O (D™ 4 iI)#D™) is a Fréchet
and Montel space, hence so is Q(D").

Let f = [F] € Q(D™). Then it is convenient to associate to f a formal sum:

fx) 2 sgn(o)Fy(x+il,0)  (F, € OD" +il,)) (1)

(cf. [11: Theorem 8.5.3 and Definition 8.3.1}).
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Recall, P, = indlim;5¢indlims O~%(D" + 4I). (In order to simplify notation,
if B € P., we also denote by [ a representative of the class 4.) P, and Q(D"™) are
topologically dual to each other; for f € Q(D™) and ¢ € P,

(fip) = f (z)dx =) sgn(o / (F,p)(x +il',0) da
og€EA

(see [11: Theorem 8.6.2]) where f is of form (1). We will use

Q") >1= Z sgn(o)1l, where 1, = S‘gzl#fi@n+iro, (2)
oceA

1 equals one on C" and krn4r, is the characteristic function of R™ 4 <I'.

3. Wiener-type Tauberian theorems

The next proposition is given in [12] in more general situations. Here we adapt the
assertion for our purposes.

Proposition 1. If f = [F] € Q(D") and ¢ € P, then fxp € O(D™ +iI") for
an appropriate interval I C R™ with I" 3 0, i.e. [ x ¢ is a slowly increasing real
analytic function.

Proof. Let f = [F] € Q(D"), F € O((D" +4I)#D"). Recall,
(fre)a) = (fro(-—2)) (xR, ¢(z) =p(~x)).
We can always suppose that the existence of an o > 0 such that I = (—a, )™ and

2> sen(o)Fo(z+il,0), I,=INT,, F,€OD"+il,).
e AN

Since ¢ € P,, there exist § > 0 and o/ > 0 such that ¢ € O~(D" + iI’) with
I' = (—d',a’)™. By [11: Proposition 8.4.3],

(o) = | 1pla—-de
—Z/ sgn(0) Fo (€ + ing)p(x — € — 1) d¢

AN

(x € R™)

where 10 € I, 12 = (n2,,...,n2 ) and I" are determined as follows:

Take a number 7° such that 0 < n® = %0 where a® = min(«, /). We choose n? €

I, such that g, =n%ifn?, > 0and ) = —n®ifnd < 0. Clearly, n2 € I,NI'". Now,
we take I = (—a/ +n°, ¢/ — ). If z = x+iy € R"+il” and ( = £+in? (£ € RM),
then z — ¢ € R" +4I’, because —o/ <y —n2, <0ifn) >0and 0 <y; —n) <o
if n?. <0.
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We can now prove that (f % ¢)(z) € O(D™ + iI"). For this, let ¢ > 0 be chosen
so that 0 < 2¢ < § and K” cC I"”. Then K" — 72 C I’ and using the inequalities
ele] 4+ (0 —e)|§ — x| = elz| + |§ — x| = ef¢] we get

sup
ZERM K"

< CK” / ‘FG<£ —+ 2'772)‘6_€|x|€_(5_5)|§_x|d§
Rn

e—clel /n Fo(§4ind)o(x — E+i(y —nd)) dé

< Crer [ IFale+ inlelag (3)

< CpnC. | e de

Rn

< o0

where C. = maxeern |F,(§ + ing)|e_5%. Since (3) holds for every o € A, it follows

(f *@)(z) € O(D" +iI") N
In the sequal, we will use the notation 22 = (2,2) = 2121 + ... + 2,2, for z € C™.

Proposition 2. Let ¢ € P, and F(p) = 1. Assume that there exists 6 > 0 such
that %exp(—éxﬁ2 +1) € P.. Let M be the subspace of P, consisting of all finite
linear combinations of (- +x) (x € R™). Then M is dense in Pi.

Proof. Let f € Q(D"). Note F(f)exp(—dv-2+1) € Q79(D") and f * p €
Q(D™). By Proposition 1, f ¢ € O(D™ + iI") with I” 5 0. We have to prove
if (f*p)(x)={(f, &(—=x)) =0 for every z € R", then f = 0.

By [11: Proposition 8.4.3] we have 0 = F(f x ¢) = F(f)y in Q(D™). Since

0= (F(fy <Eexp —0v/ -2 ) <w)exp —0v/ -2

it follows

fexp(=dv-24+1)=0 in Q(D").

By [11: Theorem 8.4.1] (or [12: Lemma 3.3]), the natural imbeding Q~°(D") into
Q(D™) is injective and thus

flexp(=dv-2+1 in Q7%(D").
This implies F(f) = 0 in Q(D™). By the properties of Fourier transform it follows
that f =0in Q(D") I
We shall use the following notation:
h — oo for h = (hy,....,h,) ER" h; w0 (i=1,...,n)

an | 0 for a positive sequence which monotonically tends to zero as n — oo
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b, T b for a sequence b,, < b < oo which monotonically tends to b as n — oc.

In order to form a basis of neighbourhoods of zero in P, we note that

P, =ind lim O~% (D" +il,)
where §, | 0 and I, = (—ay, o, )" with «,, | 0. We can take fixed sequences {J, } and
{a,}. For a fixed v, a basis of neighbourhoods of zero in O~% (D" + 41, is given by

Vot om, = {B€ O @ +iL):  sup |8(=)|exp(8, — x)lal) < 1,
z€R"+iK;

for j,k,p € N where K; = [=bj,b;]",b; T ay,er | 0,6 < 0, and 71, | 0 are given
sequences.

Let us choose for every v € Nsequences b;, T ay, e, | 0 (e, < 6,)andn,, | 0.
Fixing K, , = [=bj, v, b5, 2]" €k v M, (V 2> 1) and making the absolutely convex
linear hull of V,, (v > 1y), denoted by

jl/aV7€ku,VﬂnPua’/

FV7KjV:VEkVaV’nPV»V (V Z VO) (4)

we obtain a neighbourhood of zero in P,. In this way we construct a basis of neigh-
bourhoods of zero which will be used in the sequel.

Theorem 1. Let ¢ € P, = F(p), f = [F] € Q(D"), F € O((D" + il )#D")
with I = (—a,a)™ (a > 0) and let ¢ be a positive and measurable function on R™.
Assume the following:

1. (i) limg_ oo % =1 for allt € R™.
(ii) For every e > 0 there exist constants B > 0 and By > 0 such that Be~¢ltl <

C(céi)t) < Bief!l for all z,t € R™.

2. There exists w > 0 such that ﬁe*“ Z+l e p, .

3. For every o € A, every compact set K, CC I, =1 NT, and for every n > 0,
there exists C' > 0 such that ‘W| < ce®l for all z € R™,h € R" and
Yo € K.

4. There exists A € C such that limy,_,o, Y2t (A, o) in Q(D™).

c(h)
Then

SN+ h)
h—oo C(h)

= (A, \) in Q(D"), for every A € P.. (5)

Proof. Step 1. We shall prove the assertion with ¢ = 1. Thus if limp_, o (f *
©)(x+h) = (A, p) in Q(D™) with A" € C, we have to prove that

hlim (f*N)(x+h)= (AN in Q(D"), for every A € P,. (6)
We use the notation of Proposition 2. Let A € Py, A € O 9(D" + iI') with I’ =
(—a/,a/)™. Assume that vy € N is chosen so that ¢,, < § and «,, < o/. (Here we
use the notation given before the theorem.) By Proposition 2, for given A € P, there
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exist p € M and v € P, such that A = p+~vyand v € Ty i, e o, (cf (4))
which implies

sup  |y(2)[exp (0, — en, 0)2]) < Mp,w (V2 10). (7)
ZER”—FinV’V

By (1) and (2) we have
((f =A)* (A= P))(Z +h)
=3 [ @ Fale bt ing) — Ag)a(e— € - ind) g
oA

for = € R™ + iI" where I"” and 1 are settled down in Proposition 1 and A/ =
Al, (o €AN).

Assumption 4 and Proposition 2 imply that for the proof of (6) it is enough to
show that for every o € A, u > 0,6 > 0 and K CC I” there exist hg > 0,p € M,~ €
P, such that A = p+~ and

J(h)= sup e ¢l
zeR" i K

for hy > hy (i=1,..,n). Let 0 € A,u > 0,e >0 and K CC I"” be fixed. Choose
vp > 0 and n > 0, a compact set Kjv07V0 and kg ovo > 0 such that

(Fo(§4+h+ind) — AL)y(z — & —ind) dE| < p

n

Kjl/oayoDK_T’g" €kug,vo +n<e 2 kvgsvo +77<5V0
Then choose 7y, v, > 0 such that 7, ., < p'5- where

D= sup (B (Erhr )l +I4]). Dy [ ol
hGRi,UGA n

Note that D < oo (this follows from condition 3). We have
elzl + (Ovo = erug o) 2 = &1 = (1 + €k, ) (2] + |2 = £])
> (1 + €hyy ) €]
Take p € M such that

sup  [7(2) exp (0 — €k o) |2]) | < 7py 0

z€R™ —|—1ij0 vo

Then, by (7) and (8), we get (2 € R" +iK)

e—clzl

| (Fat ot hrind) = )l iy — ¢ = in) de
< s [ (ol in0)| 4+ 45 exp (= elal = By = 21y o)l = 1)

< g | (Pl 4ot )]+ 145 1) exp (= 1+ 0}

S T]pl,o,l/()DDl

< U.
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Step 2. We introduce

e(z) = /n c(t)e_(t_z)zdt (z € C").

This is an entire function, and by assumption 1/(ii) there exists a strip I, = {z €
C™: |yl <co} (co > 0) so that e(z) # 0 for z € I.,. Let us prove this assertion. For
this we will use

n
0S (Z 2tiy7;> H cos(2|t;y;|) + Z M; sin(2t;y;)
i=1

7j=1

where M; are linear combinations of products of cos(2t;y;) or sin(2t;y;) (i # 7,7 =
1,...,n) and that for every p € (0, 1) there exists ¢ > 0 such that

n

2.

j=1

/ —t*y Jr|t|]\/[ sin(2y;t;) dt

(lyl < a).

n
<oty / e~ HH | sin(2y,t,)| dt
j=17%"

<p
Let |y| < q. We get
le(2)] = |Re(e(2))]

/ clx + t)e’tz*y2 Ccos (Z 2t,~yi> dt'
" i=1

> / clx + t)e_t2+y2 cos(2|y1|t1) - - - cos(2|yn|tn) dt

n

- Z/ oz + t)e™" V| M sin(2ty;)| dt
j=17%"

1 2 2
> —c(x e_t2+y2_‘t‘dt — —c(x / ety gt
_Bl<>/en 50 [
2n 1
5 Z [ e it

o) { Alul) ~ Ar(ly) 2}

where .
H:{t: til< " (i=1,..,n }
|t Sy ( )

and the observation that A(|y|) > 0, A(|y|) grows as |y| — 0, while 4;(Jy|) — 0 as
ly] — 0. Thus, by choosing p sufficiently small and then by taking sufficiently small
co < q, it follows that % is an analitic function in the strip /., and

le(z +iy)| = Ce(z)  (z € R, [y| < co)
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where C = A(cg) — A1 (co) — 2n];lp . Shrincking I if necessary we can hereafter assume

that ¢ is chosen so that I C I.,. Notice that condition 1/(ii) implies for every € > 0
the existence of constants By > 0 and B3 > 0 so that

BQ€7€\m| < 6(93 + Zy) < Bgef|1’| (:L‘ eR" y e I)

Thus e, % € 6(]1)” + ¢I). Moreover, the given estimates for e imply for every £ > 0
the existence of a constant C' > 0 such that

c(h
AV | < getlel R, h € R" I). 9
(:c+h+zy’ @EREERLY E) Y
We need also

ez +iy) )2 3

li S = el -ihdi=nt (e, (10)

Note, the Cauchy formula implies that the integral in (10) does not depend on y € I.
Let us prove (10). Indeed, letting y € I for this, we have

i —e(x+iy)_ im exp(—(t—x —1 2@
lim @) = lim . p(—(t Y) )C(m) dt
= lim [ exp(~(t - iy)?) C(f(z)t) dt
o
_ / exp(~(t — iy)?) lim C(f(;t) dt

/ exp(—(t — iy)?) dt
Lo

VI3

=T

Step 3. Let 2 € I, and f; = 73 f. Note that % € Q(D™). We will prove that,
for every v € P,,

jim S = i (£ +0)( )
Tim (L)@ n) = (a9) (12)

in Q(D™). This will complete the proof of Theorem 1. For this rewrite (11) as

e () ooy wows
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We will prove (13) similarly as (6). It is sufficient to prove that, for every o € A and
e >0, limp_o00 Hy(h) =0 (v € P,) where
Hyy(h) = sup e =l
z€R"+iK

n
T2

| Falernsind) (s~ e e € - i) de

We have

~ F (64 h+1in?) c(h)
H,,(h) = su e E'”'/ g -
)= sup ) €t htid)

x</;éﬁ%ﬁﬁ(ﬁt§%t@—J)ﬁ)ﬂz—f—mﬁdg

. (i 082
— sup e elz| / e (t—in,)
zeR"+iK n

Fy(E4+h+ind) c(h) c(t+&+h)
X(/n t@;7ye@+h+w%<ttm; -1)

X A( — & — i) df) i,

The order of integration is changed on the basis of estimates which are to follow. For
these estimates we use assumption 1/(ii) (with g, ., instead of ¢ in the exponent),
(9) (again with ej, ,, instead of € in the exponent) and the assumptions on d,,, and
€k

4]

U07V0

5277+25k: 5y0_5k Vo 277+25k1/071/0'

vg Y07 vg s

We get

Fo(§+ h+ing)
e(h)
‘ c(h) (c(t +&+h)
e(§+ h+iy9) c(h)
< Bexp (= elal = ¢ +0lé] + 2o (1 + 1€1) = (Gug = byl = 1)
.. and by (8)

< Fexp ( —t? 4+ Ekyy wolt] = Ekuy o |§|)

|exp (—elo] - (¢ — in2)?)

—Qv@—&—mﬁ

IN

where F is a suitable positive constant. Then the Lebuesgues theorem implies that
limy, o0 Hy(R) = 0.
Fo

Now we prove (12). We will show that, for every o € A, E, = —= satisfies
assumption 3 with ¢ = 1. Let K, CC I, and y, € K, (0 € A). Then, for h € R,
i . Fo' .
@+ h+iye)| = |2 @+ b+ igs)

< ’ﬁg(x+h+iya) c(h) (v € RY).

c(h) ‘dx+h+wd
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By assumption 3 of the theorem and by (9), we obtain
|Fy(z 4 b+ iyy)| < el (2 ¢ R

for every 7 > 0 and € > 0 and a suitable constant C” > 0. This completes the proof
of Theorem 1 i

In the next theorem we will suppose a stronger assumption than assumption 3
and that the limit in assumption 4 exists in C.

Theorem 2. Let ¢ € Py, = F(p) and f = [F] € Q, F € O((D" + iI)#D")
with I = (—a,a)™ for a > 0. Let ¢ and v satisfy assumptions 1 and 2 of Theorem
1. Further, assume the following:

3. For every K, CC I, (0 € A) there exists N > 0 such that, for every y, € K,
|%] < N for all x € R™ and h € R}

4. There exists A € C such that lim,_, o % = (4,p) in C.

Then
lim Y N) = (A, \) in C, for every \ € P,. (14)

oo ofa)

Proof. The structure of the proof of Theorem 2 is the same as for Theorem 1.
We have only to take care that the limits are not in Q@ but in C. In the first step we
take ¢ = 1. We use the fact that

lim (f*A)(z) — (A",A\) =0  in C, for every A € P,

xr— 00

is equivalent to

lim ((f —A")(z)«(A=p))(z) =0  inC, for every p€ M and X € P..

Xr—00

We have

(f—a) e (h—p) =Y / sgn(0) By (€ + i) — AL)y(w — & — inl) de

ogEA

for every x € R"™, where v = A — p. (AL is the same as in Theorem 1.) Proposition 1
implies that the functions

9o (7, ) = /n (sgn(o)Fr (& +ing) — AL)y(z — & —ing)dé  (w € R™,0 € A)

are slowly increasing. By Carleman’s theorem (cf. [11: Lemma 8.4.7]),

((f = A= =) go(r,x)  (zeRM).

AN
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We shall show that for every u > 0 and o € A there exist g > 0,p € M and v € P,,
A = p + 7y such that

|gd(77x)’ < % (xl > x07i = 1; 7”) (15)

Take p € M such that ~ satisfies (7) with the same notation and assumptions on

Kj, vo and €k, 1, > 0. Now chose 1, ., < %7, where

D/:(N+]A;])/ exp (— (Buy — b, wo)lH]) .

n

The proof of (15) is to follow. For every o € A we have

/ exp (= (80 — 2oy wo)lt]) (Fo(@ — £+ in0)| + | A1)

X tselgl | exp (6, — Ekyy o) L)V (t — iyg)|dt

< o, (N + | AL / exp (— (B — £y ) [E])dt

n

<p

for x; > xy (i = 1,...,n). Let e be the function defined in Step 2 of the proof of
Theorem 1 and f; = 72 f. We shall prove that, for every v € P,,

220 (5
mh_)ngo <% * 7) () = (A,~) in C. (17)

First, we prove (16). The properties of e imply that (16) can be rewritten as

w[3

™

a:lggo (f< +) (c(i) Ce(-+ a:)) i 7) (0)=0. (18)

Let v € O~9(D" + iI’). In order to prove (18), we shall prove that, for every
nel, (0 €l),

n

T2

lim Go(z) = lim [ Fy(z+&+in?

e =00 JRn )<c(x) Ce(z+E+im0) )’Y(_5 — i) d¢

We have

Go(r) = /Rjn o (t=ing)? Fy(z + & +ing) c(x)

c(x) e(z+&+1in9)

X (% - 1)7(—5 — i1]y) dédt.
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Now, as in the previous theorem, using assumptions 1 and 3 and (9), one can show
that lim, . G,(z) =0 for o € A.

Let us prove (17) by showing that F = £ satisfies assumption 3 with ¢ = 1.
With this, the first part of the proof implies (17) We have
~ , F,(z+iy,)
Fla-t i) = | Pt )
Flating)] = | s
_ / o~ (t—z—iys)? Fo (@ +iys) dt (Yo € Ky).
n c(t)

oy, [ e B ) ),
7 Jrn clx)  c(t+x)

Assumptions 1 and 3 imply the boundedness of the last integral. Now (14) follows
from (16) and (17) B

4. Applications

1. Recall [3], a function L is called slowly varying if it is a positive measurable

function on (tg,00) (to > 0) such that lim, % =1 (t>tyg). If n =1, then
assumption 1/(ii) follows from assumption 1/(i). This follows from [3: Theorems
1.4.1 and 1.5.6] (with the change of variables x = Inwu,u > 0). In fact, in this case

c(x) =e*L(e”) (x> xg) (cf. [17]). The function
c(w) = (] + )P Ly(e™) -+~ (a5 + 1) Ly (e™)

for x = (x1,...,x,) € R™, where L; (i = 1,...,n) are slowly varying functions and
p = (p1,...,pn) € R™, satisfies assumption 1 of Theorems 1 and 2.

2. Let o5 = FY(exp(—6v/-2+1)). Since exp(—d6v-2+1) € P, (6 > 0), it follows
that @5 € P,. One can simply show that 1 = @ satisfies assumption 2 of Theorems
1 and 2. Another important function which satisfies assumption 2 in Theorems 1 and
2 is the Fourier transformation of the function K introduced by Hérmander (cf. [8:
Section 8.4)):

(2,6)
IC(z):(Q;)n /Rn €I(§) d¢ (zeQ={2€C": [Imz| < 1})

where I(§) = [ ,_, e~ dw. Recall, I(§) = Io((¢,€)"/?) (€ € R") where

2 anl 1 n—1
hie) = prmr [ -8 (e

is an entire function which satisfies the estimate

Io(p)] < C(L+|p)~ "7 elBerl (peC) (19)
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(cf. [8: Lemma 8.4.9]).

We shall prove that L € P,. By [8: Lemma 8.4.10], K is analytic in every open
connected set § satisfying 0 C Q = {z € C": (2,2) € (—o0,—1]}. One can simply
prove that the strip Q = {z € C™ : |yx| < ﬁ (k =1,..,n)} is a subset of €.
Let I" be a closed cone such that if z € T'\ {0}, then |zx| > |yx| (K =1,..,n). If
z € I'\ {0}, then (z,z) ¢ (—00,0]. By [7: Lemma 8.4.10], there exists ¢ > 0 such

that IC(2) = O(e=“*l) (2 €T, |z| — 00). Hence,
K(2)| < Ci e (em)IRez| (z e R" 4+ 1K)
for every compact set K C {y € R : |yx| < #ﬁ (k=1,...,n)} and every € > 0.

Consequently, IC € P,.

We denote by v the Fourier transform of K, i.e. ¢ = F(K), and let w > 1. Then

% =I1(¢) (¢ € C) is an entire function. Let ¢ = £ + in with || < 1. Then

Q)| = ] / e-<w’€+i">d§\ — (€)= Io(©).
|w|=1
Now, by (19),

QI < O] < I(Ch < CA+[C) T e (g e R In] <1).
This implies 1(¢) exp(—w+/¢% + 1) € P, for w > 1.

3. The S-asymptotics of Fourier hyperfunctions can be defined in the following way:
Suppose that ¢ is a positive function defined on R™ and f € Q(D™). It is said that f
has the S-asymptotics related to ¢ with the limit v € Q(D") if

t
mh_)ngo <%, go(t)> = (u, p) in C, for every ¢ € P..
Theorem 2 asserts that if f, » and c satisfy the assumptions of Theorem 2 and if
S k) R
Jm (S @)=t

then f has the S-asymptotics related to ¢ with the limit A. Thusif c=1and f € Q
satisfies (f * K)(z) — A as * — oo, then f has the S-asymptotics at oo (equals to
A).

By Theorem 1 one can easily show that hyperfunctions quoted in the introduc-
tion have the S-asymptotics zero with respect to ¢ = 1. This simply shows that
a hyperfunction with the S-asymptotics behaviour with respect to ¢ = 1 is not a
distribution or an ultradistribution, in general.

4. Let P(D) = a€ND aa% be a microlocal operator with constant coefficients,

which means lim|y|— 0 v/|aa|a! = 0, acting as a sheaf homomorphism on the sheaf
of Fourier hyperfunctions (cf. [11: Proposition 8.4.8]). The question is whether the
S-asymptotic behaviour of P(D)f determines the S-asymptotics of f. Since

P(D)f « K = f*(P(D)K),

we have the following assertion:
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Assume that

|P(¢)] > Cexp(—0+/(?+1) for some C' >0 and 6 > 0

in some strip R"+i(—e,e) x...x(e,e) (¢ > 0). Then P(D)K satisfies the assymption
of Theorem 1 and the behaviour of P(D)f * K determines the behaviour of f in the
sense of S-asymptotics with ¢ = 1.

5. It would be interesting to answer the following problem. Whether the Weierstrass
kernel {L/mexp(—%) can be used as an appropriate element of P, since it does not
satisfy assumption 2 in both theorems. This theoretical problem is of interest for the
analysis of the heat equation.
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