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Existence and Asymptotic Behavior

of Positive Solutions of a Non-Autonomous
Food-Limited Model with Unbounded Delay

Yuji Liu and Weigao Ge

Abstract. Consider the non-autonomous logistic model

1 — Tpn—k, "

>0
1+ )\xn,kn (n - )

Axn = PnZn

where Az, = Tp41 — xn, {Pn} is a sequence of positive real numbers, {k,} is a sequence of
non-negative integers such that {n — k,} is non-decreasing, \ € [0, 1], and r is the ratio of
two odd integers. We obtain new sufficient conditions for the attractivity of the equilibrium
x = 1 of the model and conditions that guarantee the solution to be positive, which improve
and generalize some recent results established by Phios and by Zhou and Zhang.
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1. Introduction

The asymptotic behavior of solutions of difference equations with unbounded delay
was studied in [1 - 3]. In the present paper we consider the non-autonomous logistic

model
1- Tn—k, )r

14+ Azp—k, (n=0) (1)

Axn = PnTn <

where Az,, = 41 — Ty, {Pn} is a sequence of positive real numbers, {k,} is a
sequence of non-negative integers such that {n —k,, } is non-decreasing, A € [0, 1] and
r is the ratio of two odd integers. Let

v=-—min{n—k,: n>0} >0
oo =max{n: n—k, <0}+1

o=max{n: n—k, <op}+ 1
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By a solution of equation (1) we mean a sequence {x,} which is defined for n > —~,
satisfies (1) for n > 0 and which satisfies for given numbers a; (—y < i < 0) the
initial condition z; = a; > 0 (—y <i<0).

Equation (1) contains as special case the equation
Az = prrn(l — zp_k,) (n>0)

The global attractivity of the equilibrium x = 1 of this equation has been well studied
in [2, 3]. In most results of these papers it is supposed that the solution {z,,} satisfies
x, > 0, but we find that this does not always succeed. We give an example as follows:
Let

Az, =1.3x,(1 —zy_1) (n>0)

where p,, = 1.3, k,, = 1, A = 0 and the initial condition is z_; = 0.23 and xg = 0.2.
Then
x1 =0.4002, x5 =0.8164, x3=1.453, x4 =1.7998, x5 =0.7399

are positive but g = —0.62938 ... are negative.

Two problems appear naturally considering equation (1):
1. Under what conditions every solution (x,) satisfies x,, > 0 7

2. Under what conditions every positive solution converges to 1 7

In Section 2 we answer the first problem and in Section 3 the second problem is
settled. Our results improve the theorems in [2, 3].

By the way, equation (1) is the discrete type of the differential equation

1= N(t—7)\"
1+>\N(t—7)>

N'(1) = ()N () (t>0)

which was called generalized Food-Limited model, posed in [4] and studied by many
authors (see [2 - 4] and the references cited therein). If r = 1, the above equation
becomes the well-known Food-Limited ecology mathematical model

1-N({t—71)
!/
= >
N0 =rONOT o (20
which together with its discrete type
1—xp,_
Tpi1 = Ty €XP (Mﬁ) (n>0)

was studied in [4, 5]. However, to the best of our knowledge, its discrete analogue

has not been studied. We call equation (1) the generalized difference Food-Limited
model.



Solutions of a Food-Limited Model

1017
2. Positivity of solutions

Remember that in equation (1) A € [0,1] and that z; (—y < i < 0) is the initial
condition. In this section, we prove the following

Theorem 1. Suppose there are numbers 3 > 0 and 6 > 1 such that:

(i) Z?:n_kn pj <a (n>09) andp, < B (0 <n <o) where a is a real root
of the transcendental equation

L+A 5 o741
N = — A 1

“(r5es) ar—y  (Ae@1)

or for X =0 of the equation

(2)

60471+e_ — 1+

Py (3)
.e 0 1/r p 1/r
(ii) f27 5 (1+0)7 < LE2e.

(iii) 0 < a; < fo+L (—y <i<0).

Then every solution (x,) of equation (1) satisfies

al/m 4+ 1
0<x, <

al/m — X
forn > 1.

Proof. By (2) or (3) we see that & > 1 and by (1) we get

1l—x,_& "
= 1 (#) )
it xn{ AV + ATk, 1
Since
fat/m+1 a1
O<x—ram—’r+17 7x0<0a1/r_)\<a1/r_)\7
then by assumptions (ii) - (iii) we find
1—xz_g r
=ao(1+ ()
T $0( Trol 7 v
al/T 41 r al/T 41 r
0 O\ 14a ot =0 1422t
1/r 1/r
< fey (L+6) < 78

al/r—X\-*
Similarly we obtain

1—x1_ r
1’2:1’1(1+p1(—1 k1 ) )

1+ )\xl_kl

al/Ty1 r al/Ty1 r
>z |1+ Tt >l 1+ a T —0
1 P 1+/\211//:iri Z 1 1+)\a1/rj1
1/r 1/r
<z1(1+po) < 9@% (14 8)? < et
ar —

ar —A
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and so on. Finally we get

=261k, \"
e (1 2 =)
To = Ty 1< + Po—1 1+ Aeo1-k,_,

1 all//’"+1 T 1 a11;7v+1 r
T T
1| 1+ por| —77 > To1| 1 +al — 57— =0
[ —+1 @ +1
AT AT

Oa/"+1 riq
S gal/r+)\(1 +ﬁ)g < gjl/—ri—)\'

Now it suffices to prove that if ng > o and

O<xn<% (0 <n <mnyg),
then
0 < Tpyt1 < % (4)
In fact,

al/"41 r
1= S
Tng+1 > Tng (1 + (W) ) =0,
1/r )\

which is the left inequality in (4). Next we prove the right inequality in (4). Assume
that contrary z,,4+1 > 1/7« /\, set p(t) = p, fort € [n,n+ 1) and 0 < n < ng and

T, ift=n
z(t) = {xn(—x”“ Y ifn <t <n 1.

The function z is positive and continuous on the interval [0, no+1], z(n) = z,, (n > 0)
and x is monotone on [n,n + 1). Let [-] denote the maximum integer function and
let 2’ stand for the left derivative of z. Then

iy 1—a([t —kpl) \"
0 =20 {100 Ty | )

for 0 <t <mng + 1. Since z([t — kfy]) > 0 for these ¢, we get

(1) <z(t)In(1+p(t)) < p(t)z(t) a.e. on [0,ng + 1). (6)
By Az, = Zpo41 — Tn, > 0 and (1) we have zy,,_k, < 1. Then there exists

€ € [no — kny,mo + 1) such that z(§) = 1 and z(t) > 1 for ¢t € ({,no + 1]. When
0 <t <&, integrating (6) from ¢ to £ we get

(t) >eXp(—/t£p(S)dS) (0<t<g).
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If £ <t <mno+1and [t —kpy] <& we obtain

ol =) > esp - | g_km]pcs) is).

Substituting this into (5), it follows
1—exp(— f[f—k[t]] p(s) ds)
14 Xexp ( — f[f_k[t” p(s)ds)

If [t — k] > &, since [t] < ng, then ng — ky, > [t] — kyy = [t — k] > & But this
contridicts £ € [ng — kn,,no + 1]. Hence this case is impossible.

'(t) < z(t)p(t) (7)

Integrating (7) from £ to mg + 1, noting that A € [0,1] and ny > o implies
ng — kny > 00, thus [t — k] > 0 for t € [, ng + 1], we get

Inz(ng +1)

dt

no+1 1—exp(— f[f—k[t]} p(s)ds)
</ p(t z
1+)\eXp(—f[t ki) P (s)ds)

no+1 1 - s)d
S/ e exp(f£ ) ds) o
3

1+)\e O‘exp(f£ ds)

no+1 no+1 e %Yex dS
/ Nt — (1 +)\)/ p(®) p(ept)ds)
¢ ¢ 1+)\exp(—a—|—f£ ds)

Aexp | —« 0 p(s) ds
_ gno—i—l t B 1+)\ In + p( 1_:;\{& _ p(s) ) if e (0, 1]
gno+1 () dt — e~ [exp (fg ds) } if A=0.

Since
no+1 no
/ p)ydt< Y pi<a,
5 j:no_kno
the function
14+, 14 e t®
x — —; In 1++ )e\e*o‘ or r—e “e —1)

is increasing in [0, «]. Then

Tnog+1 = x(no + 1)

A A ) allr :
<{exp( — A A ) = tLif A e (0,1]

1-‘1-)\6 « al/T—)\
a—l—l—e‘azl—l— 1/,, iftA=0

which contradicts the assumption z,, 11 > < This completes the proof il

1/7‘ >\

/r 1/r . . -
Remark 1. Since 1 < gal /ﬂ'i < 5 +/\1, Theorem 1 gives sufficient conditions
ar —

which guarantee x,, > 0 for each solution {x,} of equation (1).
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3. Global attractivity

In this section we give a sufficient condition that guarantees every positive solution
of equation (1) to converge to 1 as n — +o00. Remember that in (1) A € [0, 1].

Theorem 2. Suppose there is a constant 6 > 0 such that:
(i) ZZ n—kn ps < 0(1+ N) for sufficiently large n.
(ii) o(1 —|—>\)<—e‘S SeL ) <1.

Aed2(1+M)2/2 47 —
Then every positive solution of equation (1) tends to 1 as n — +oo.

Proof. Suppose that {z,} is a positive solution of equation (1). The following
proof of x, — 1 as n — 400 will be given in three steps.

Step 1: If {x,} is eventually greater than 1, we will prove that z,, — 1 as
n — 400. Choose Ny such that x,,_, > 1 for n > Ny. By (1) we see that Ax,, <0
for n > Ny, hence lim,, .1 x, = p exists. We prove that 4 = 1. Assuming pu # 1,
we have p > 1. Then, for n > Ny,

1—pN\"
Ty < PnT T
and . .
Tn+1 — U \" — B \"
1 <1 [1 n(—>}< n( )
" Tn e 1+ A =P 1+ A\
Hence

xn+1
2 < () 2
" 14+ A Zp

le

Letting n — 400 we get a contradiction.

Step 2: If {z,,} is eventually less than 1, we will prove that z,, — 1 as n — +o0.
Choose Nj such that z,_x, < 1 for n > Ny. Then Az, > 0, so lim, 4o xp = p
exists. We prove that ,u = 1. Assuming p # 1, we have p < 1. We choose 0 < e < 1
such that §(1 + \)(:+=2)" <1 and x,,_x, <¢ for n > Na. Again, we have

14+Xe

Tn+1

1—¢e\"
Z1+p”(1+,\5) (n 2 Na).

n

Since In(1 + z) > sz for x € [0, 1], then

1
2

Tn41 1 1—e\"
1 >_n(—) > N,).
N TP\ T e (n 2 N2)

It is now easy to derive a contradiction to our assumption p # 1 but we omit the

details.

Step 3: If {x,,} is oscillatory about 1, we will also prove that z,, — 1 as n — +oc.
By a method similar to that in Theorem 1, we can prove that {x, } is bounded. Let
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Inz, = y, for n > 0. Then {y,} is oscillatory and bounded, and equation (1)
becomes

]_ _ eynfktn T
Ayn =In (1 +pn<m) ) (TLZ 0) (8)

We will prove now that lim, . -y, = 0. Let u = limsup, ,, ¥y, and v =
liminf, .40 yn. Then —co < v < 0 < u < +00. For any € > 0 there is N3
such that

V1 =0—6€ < Yn—k, <u+e=1ug (n > Nj).

Then we get

Ayn { <l pn(ipen)) sl ea(l=em) o)

> In(1 + pu(ioea)”)

Choose two subsequence of {y, }, denoted by {y,,} and {y,, } with N5 <n; T,m; T
such that 0 < y,, T v and 0 > ym, T v. By (8) one gets yn,—1-%, _, < 0 and then
there is ny with n; — 1 — kn,—1 < nj < n; — 1 such that y,» < 0 and y, > 0 for
nf 4+ 1 <n <n;. Choose a number &; € [0,1) such that

Ynr +&i(Ynr+1 — Ynr) = 0. (10)

By the inequality

=1 i=1 Y
we get
n;—1
—Yj—k; = ~Ynr + Z (Ys+1 — Ys)
S:j—kj
i i1 ]_ — eys k T
=&l o)+ X m (e )
s=j—k;
n;—1
<&n(1 + pnz (1 — e’)) + Z In (14 ps(1—e™))
SZj—kj
n;—1
<(n*—j+k~+g.)1n[1 L-e® (§p + Z p)}
> 7 J 7 —j+k5 +£Z in’ = s .
Then

n—l
1

—(nj —j+k;+&)
1 7‘L + S .
e ey (R DS

—jk

ki > 1+(1—€ )
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By (1+2%)™">1—xforn>0and x>
ik > 1— (1 —e”
Thus by (9) - (11) we get
ni—l
Yn; = Yni+1 + Z (ys+1 - yS)
s:n;‘—&—l

'I’Li—].

= (1= &)1 —ynr) + >

0 we get
n;—1
)(&pn; + ) ps)-
S:j—k)j

1 — eyn—kn T
In (1 +pn<1 + AeYn—kn > >

n=n;+1

*—k

<(L—é)n(l+pu(l—e™

n;—1

ni—l

")) + Z In (14 p,(1 — e¥n—+n))

n:nf—l—l

S 1n[1+pn(1—€ )(@p”fr Z ps)}'

nn—|—1

By assumption (i) we get

Yn, < (1—&)In [1 + pnx (1 — 6“1)(5(1 +A)—(1- &;)pn;)}

n;—1

+ > 1 {1—1—]9”1—6 )(5(1+)\)— _i ps—(l—ﬁi)pn;)]

nn+1

S(ni—”f—ﬁi)ln{1+

1
_fz

(1 —e")

x [<1 — &) (51 +X) — (1~ E)par)

n;—1
+ Z pn( (I+ XN —

n:n;‘+1

Supposing k,, < k, since n; —n; —&; < ky,

Z ps — (1 _fi>pnj)} }

sn+1

_1+1<k+1itresults in

yn, < (k+1)In {1 e {(1 = &)pn; (O(L+ ) — (1 = &)pn)

kE+1

n;—1
+ Z pn( (I+X)—

n:n;‘—i—l

S b (1-& )”

5n—|—1
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Let

Then by the inequality

i=1 s=1
we get
S D)1+ 51+ A) (1 — )y — (1 — ™)
Yni = " E+1 T c
n;—1 n;—1 n;—1
X|:<1_£i)2 1_52 Z pn+ Z pn Z ps:|}
n=n;—1 s=n;+1
=(k+1)In< 1+ L(5(1 + M) (1 —e")d; L (1 —e")d?
- k+1 B TS DR
1 n;—1
- (1- 22,
TS A { > m+( fﬁpm}}
n= n—l—l
1+ 1 9
<(k+1)1 1+ ——F(1—-e")d; — ———(1 —e")d;
< (k+ )n{ + F il (1—e")d 2(k:+1)( e’)d:
1 1
_ — (1 — ™ d?
2(k:+1)( c )nl—n;" Z}
5(14+XN) k+2 o
<(k+DInd1+ 20—y, — —— 2 (1 —ev)d2 b,
< (k+ )n{ + ) (1—e")d 2(k+1)2( e )dl}
Since

k+2 k+1
1 __rre hen o<~ —
S(1+ Nz 2(k+1)xT when x_k+25(1+)\),

the maximum point of the function is x = 21;5 (1+A). Then

Yn, < (k+1)In <1+ 622;—1;\;(1 —e”l)>.

52(1422

BICESE ) is increasing on (0, +00), hence

It is easy to see that the function xIn(1 +

2 2 2 2
%+&ﬂn@+5£2:3>T6u;A) (k — o0).
Letting © — 400 and € — 0 we get
u§(h+nm(y+%%fi%41—&0. (12)
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Now, let y,,, = max{0,y,}. Again, since Ay,,,—1 < 0, by (8) we have y,,, —1-k
0. Then

m;—1 —

m;—1 1 _ eys—ks T
Ymi = Ymi—1—kp, 1 T Z In (1 +ps<1 + AeYs—ks ) )
s=m;—1—km, 1
m;—1
i 1 _ 6y(57k5)* T
> - -
> Y m(en(imens))
s=m;—1—km, 1
mi—1 1 — eY(s—ks)e \T
> - -

s:mi—l—kmi_l

>1In (146(1+ A)(iY)

1+ dewr
and hence . "
_61 T
o 140014 ) ()
€ > 1+0(1+4) 1+ Aewr
Letting ¢« — 400 and € — 0, one gets
1—e"\"
v> 14601 /\< ) 13
e 214301+ 0) (T (13)

If u # 0, then u > 0. By (12) - (13) we get
31 3 U _ 1 N\T k+1
u§1n<1+5(+)\)<6 >) .

2(k+2) \14 Aev
From (12),
O (1 + A)?\ k1
Let

B+ NP e —1

f(u)—u—ln<1+ 20k +2) <1+)\€u>) :
Clearly, f(0) =0, f""(u) <0, f(u) has at most two zero points in [0, +00) and
52(1 _|_ )\)2 k+1 63(1 + )\)3 euo _ 1 r k+1
f(uo)—ln<1+—2(k+2) ) —ln(l-i- 20k +2) <1+)\euo>> :

By (14), up T M, hence et < 5’ (1+3)?/2, Using assumption (iii) we get
f(ug) > 0. We see that f(u) > 0 for u € (0,ug) which contradicts (13). Then u = 0
and v = 0, which implies lim,,—, y o ¥, = 0. This completes the proof i

Corollary 3. Suppose that assumption (ii) of Theorem 2 holds and that

- 1
Y. pa< g+

s=n—*ky,
for sufficiently large n. Then every positive solution of equation (1) tends to 1 as
n — +00.
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