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Existence and Asymptotic Behavior
of Positive Solutions of a Non-Autonomous
Food-Limited Model with Unbounded Delay

Yuji Liu and Weigao Ge

Abstract. Consider the non-autonomous logistic model

∆xn = pnxn

� 1− xn−kn

1 + λxn−kn

�r

(n ≥ 0)

where ∆xn = xn+1 − xn, {pn} is a sequence of positive real numbers, {kn} is a sequence of
non-negative integers such that {n − kn} is non-decreasing, λ ∈ [0, 1], and r is the ratio of
two odd integers. We obtain new sufficient conditions for the attractivity of the equilibrium
x = 1 of the model and conditions that guarantee the solution to be positive, which improve
and generalize some recent results established by Phios and by Zhou and Zhang.
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1. Introduction

The asymptotic behavior of solutions of difference equations with unbounded delay
was studied in [1 - 3]. In the present paper we consider the non-autonomous logistic
model

∆xn = pnxn

( 1− xn−kn

1 + λxn−kn

)r

(n ≥ 0) (1)

where ∆xn = xn+1 − xn, {pn} is a sequence of positive real numbers, {kn} is a
sequence of non-negative integers such that {n−kn} is non-decreasing, λ ∈ [0, 1] and
r is the ratio of two odd integers. Let

γ = −min{n− kn : n ≥ 0} ≥ 0

σ0 = max{n : n− kn < 0}+ 1

σ = max{n : n− kn < σ0}+ 1.
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By a solution of equation (1) we mean a sequence {xn} which is defined for n ≥ −γ,
satisfies (1) for n ≥ 0 and which satisfies for given numbers ai (−γ ≤ i ≤ 0) the
initial condition xi = ai > 0 (−γ ≤ i ≤ 0).

Equation (1) contains as special case the equation

∆xn = pnxn(1− xn−kn) (n ≥ 0)

The global attractivity of the equilibrium x = 1 of this equation has been well studied
in [2, 3]. In most results of these papers it is supposed that the solution {xn} satisfies
xn > 0, but we find that this does not always succeed. We give an example as follows:
Let

∆xn = 1.3xn(1− xn−1) (n ≥ 0)

where pn ≡ 1.3, kn = 1, λ = 0 and the initial condition is x−1 = 0.23 and x0 = 0.2.
Then

x1 = 0.4002, x2 = 0.8164, x3 = 1.453, x4 = 1.7998, x5 = 0.7399

are positive but x6 = −0.62938 ... are negative.
Two problems appear naturally considering equation (1):

1. Under what conditions every solution (xn) satisfies xn > 0 ?
2. Under what conditions every positive solution converges to 1 ?

In Section 2 we answer the first problem and in Section 3 the second problem is
settled. Our results improve the theorems in [2, 3].

By the way, equation (1) is the discrete type of the differential equation

N ′(t) = r(t)N(t)
( 1−N(t− τ)

1 + λN(t− τ)

)r

(t ≥ 0)

which was called generalized Food-Limited model, posed in [4] and studied by many
authors (see [2 - 4] and the references cited therein). If r = 1, the above equation
becomes the well-known Food-Limited ecology mathematical model

N ′(t) = r(t)N(t)
1−N(t− τ)
1 + λN(t− τ)

(t ≥ 0)

which together with its discrete type

xn+1 = xn exp
(
rn

1− xn−k

1 + λxn−k

)
(n ≥ 0)

was studied in [4, 5]. However, to the best of our knowledge, its discrete analogue

∆xn = rnxn
1− xn−k

1 + λxn−k
(n ≥ 0)

has not been studied. We call equation (1) the generalized difference Food-Limited
model.
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2. Positivity of solutions

Remember that in equation (1) λ ∈ [0, 1] and that xi (−γ ≤ i ≤ 0) is the initial
condition. In this section, we prove the following

Theorem 1. Suppose there are numbers β > 0 and θ > 1 such that:
(i)

∑n
j=n−kn

pj ≤ α (n ≥ σ0) and pn ≤ β (0 ≤ n ≤ σ) where α is a real root
of the transcendental equation

eα
( 1 + λ

1 + λe−α

)− 1+λ
λ

=
α1/r + 1
α1/r − λ

(λ ∈ (0, 1]) (2)

or for λ = 0 of the equation

eα−1+e−α

= 1 +
1

α1/r
. (3)

(ii) θα1/r+1
θα1/r−λ

(1 + β)σ < 1+α1/r

−λ+α1/r .

(iii) 0 < xi < θα1/r+1
θα1/r−λ

(−γ ≤ i ≤ 0).

Then every solution (xn) of equation (1) satisfies

0 < xn <
α1/r + 1
α1/r − λ

for n ≥ 1.

Proof. By (2) or (3) we see that α > 1 and by (1) we get

xn+1 = xn

[
1 + pn

( 1− xn−kn

1 + λxn−kn

)r
]
.

Since

0 < x−r, x−r+1, . . . , x0 <
θα1/r + 1
θα1/r − λ

<
α1/r + 1
α1/r − λ

,

then by assumptions (ii) - (iii) we find

x1 = x0

(
1 + p0

( 1− x−k0

1 + λx−k0

)r)





> x0

(
1 + p0

(
1− α1/r+1

α1/r−λ

1+λ α1/r+1
α1/r−λ

)r)
≥ x0

(
1 + α

(
1− α1/r+1

α1/r−λ

1+λ α1/r+1
α1/r−λ

)r)
= 0

≤ θα1/r+1
θα1/r−λ

(1 + β) < α1/r+1
α1/r−λ

.

Similarly we obtain

x2 = x1

(
1 + p1

( 1− x1−k1

1 + λx1−k1

)r)





> x1

(
1 + p1

(
1− α1/r+1

α1/r−λ

1+λ α1/r+1
α1/r−λ

)r)
≥ x1

(
1 + α

(
1− α1/r+1

α1/r−λ

1+λ α1/r+1
α1/r−λ

)r)
= 0

≤ x1(1 + p0) ≤ θα1/r+1

θα
1
r −λ

(1 + β)2 < α1/r+1

α
1
r −λ
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and so on. Finally we get

xσ = xσ−1

(
1 + pσ−1

( 1− xσ−1−kσ−1

1 + λxσ−1−kσ−1

)r)





xσ−1

(
1 + pσ−1

(
1− α1/r+1

α1/r−λ

1+λ α1/r+1
α1/r−λ

)r)
≥ xσ−1

(
1 + α

(
1− α1/r+1

α1/r−λ

1+λ α1/r+1
α1/r−λ

)r)
= 0

≤ θα1/r+1
θα1/r−λ

(1 + β)σ < α1/r+1
α1/r−λ

.

Now it suffices to prove that if n0 ≥ σ and

0 < xn <
α1/r + 1
α1/r − λ

(0 ≤ n ≤ n0),

then

0 < xn0+1 <
α1/r + 1
α1/r − λ

. (4)

In fact,

xn0+1 > xn0

(
1 + α

(
1− α1/r+1

α1/r−λ

1 + λ α1/r+1
α1/r−λ

)r)
= 0,

which is the left inequality in (4). Next we prove the right inequality in (4). Assume
that contrary xn0+1 ≥ α1/r+1

α1/r−λ
, set p(t) = pn for t ∈ [n, n + 1) and 0 ≤ n ≤ n0 and

x(t) =
{

xn if t = n

xn(xn+1
xn

)t−n if n ≤ t < n + 1.

The function x is positive and continuous on the interval [0, n0+1], x(n) = xn (n ≥ 0)
and x is monotone on [n, n + 1). Let [ · ] denote the maximum integer function and
let x′ stand for the left derivative of x. Then

x′(t) = x(t) ln
{

1 + p(t)
(

1− x([t− k[t]])
1 + λx([t− k[t]])

)r}
(5)

for 0 ≤ t ≤ n0 + 1. Since x([t− k[t]]) > 0 for these t, we get

x′(t) ≤ x(t) ln(1 + p(t)) ≤ p(t)x(t) a.e. on [0, n0 + 1). (6)

By ∆xn0 = xn0+1 − xn0 > 0 and (1) we have xn0−kn0
< 1. Then there exists

ξ ∈ [n0 − kn0 , n0 + 1) such that x(ξ) = 1 and x(t) > 1 for t ∈ (ξ, n0 + 1]. When
0 ≤ t ≤ ξ, integrating (6) from t to ξ we get

x(t) > exp
(
−

∫ ξ

t

p(s) ds

)
(0 ≤ t ≤ ξ).
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If ξ ≤ t < n0 + 1 and [t− k[t]] ≤ ξ, we obtain

x([t− k[t]]) ≥ exp
(
−

∫ ξ

[t−k[t]]

p(s) ds

)
.

Substituting this into (5), it follows

x′(t) < x(t)p(t)
1− exp

(− ∫ ξ

[t−k[t]]
p(s) ds

)

1 + λ exp
(− ∫ ξ

[t−k[t]]
p(s) ds

) . (7)

If [t − k[t]] > ξ, since [t] ≤ n0, then n0 − kn0 ≥ [t] − k[t] = [t − k[t]] > ξ. But this
contridicts ξ ∈ [n0 − kn0 , n0 + 1]. Hence this case is impossible.

Integrating (7) from ξ to n0 + 1, noting that λ ∈ [0, 1] and n0 ≥ σ implies
n0 − kn0 ≥ σ0, thus [t− k[t]] ≥ 0 for t ∈ [ξ, n0 + 1], we get

ln x(n0 + 1)

<

∫ n0+1

ξ

p(t)
1− exp

(− ∫ ξ

[t−k[t]]
p(s) ds

)

1 + λ exp
(− ∫ ξ

[t−k[t]]
p(s) ds

) dt

≤
∫ n0+1

ξ

p(t)
1− e−α exp

( ∫ t

ξ
p(s) ds

)

1 + λe−α exp
( ∫ t

ξ
p(s) ds

) dt

=
∫ n0+1

ξ

p(t) dt− (1 + λ)
∫ n0+1

ξ

p(t)
e−α exp

( ∫ t

ξ
p(s) ds

)

1 + λ exp
(− α +

∫ t

ξ
p(s) ds

) dt

=





∫ n0+1

ξ
p(t) dt− 1+λ

λ ln
1+λ exp

(
−α+

∫ n0+1

ξ
p(s) ds

)
1+λe−α if λ ∈ (0, 1]∫ n0+1

ξ
p(t) dt− e−α

[
exp

( ∫ n0

ξ
p(s) ds

)− 1
]

if λ = 0.

Since ∫ n0+1

ξ

p(t) dt ≤
n0∑

j=n0−kn0

pj ≤ α,

the function

x− 1 + λ

λ
ln

1 + λe−α+x

1 + λe−α
or x− e−α(ex − 1)

is increasing in [0, α]. Then

xn0+1 = x(n0 + 1)

<

{
exp

(
α− 1+λ

λ ln 1+λ
1+λe−α

)
= α1/r+1

α1/r−λ
if λ ∈ (0, 1]

α− 1 + e−α = 1 + 1
α1/r if λ = 0

which contradicts the assumption xn0+1 ≥ α1/r+1
α1/r−λ

. This completes the proof

Remark 1. Since 1 < θα1/r+1
θα1/r−λ

< α1/r+1

α
1
r −λ

, Theorem 1 gives sufficient conditions

which guarantee xn > 0 for each solution {xn} of equation (1).
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3. Global attractivity

In this section we give a sufficient condition that guarantees every positive solution
of equation (1) to converge to 1 as n → +∞. Remember that in (1) λ ∈ [0, 1].

Theorem 2. Suppose there is a constant δ > 0 such that:
(i)

∑n
s=n−kn

ps ≤ δ(1 + λ) for sufficiently large n.

(ii)
∑+∞

n=1 pn = +∞.

(ii) δ(1 + λ)
(

eδ2(1+λ)2/2−1
λeδ2(1+λ)2/2+1

)r

≤ 1.

Then every positive solution of equation (1) tends to 1 as n → +∞.

Proof. Suppose that {xn} is a positive solution of equation (1). The following
proof of xn → 1 as n → +∞ will be given in three steps.

Step 1: If {xn} is eventually greater than 1, we will prove that xn → 1 as
n → +∞. Choose N1 such that xn−kn > 1 for n ≥ N1. By (1) we see that ∆xn ≤ 0
for n ≥ N1, hence limn→+∞ xn = µ exists. We prove that µ = 1. Assuming µ 6= 1,
we have µ > 1. Then, for n ≥ N1,

∆xn ≤ pnxn

( 1− µ

1 + λµ

)r

and
ln

xn+1

xn
≤ ln

[
1 + pn

( 1− µ

1 + λµ

)r]
≤ pn

( 1− µ

1 + λµ

)r

.

Hence

ln
xn+1

xN1

≤
( 1− µ

1 + λµ

)r n∑

s=N1

ps.

Letting n → +∞ we get a contradiction.
Step 2: If {xn} is eventually less than 1, we will prove that xn → 1 as n → +∞.

Choose N2 such that xn−kn < 1 for n ≥ N2. Then ∆xn ≥ 0, so limn→+∞ xn = µ
exists. We prove that µ = 1. Assuming µ 6= 1, we have µ < 1. We choose 0 < ε < 1
such that δ(1 + λ)( 1−ε

1+λε )r ≤ 1 and xn−kn < ε for n ≥ N2. Again, we have

xn+1

xn
≥ 1 + pn

( 1− ε

1 + λε

)r

(n ≥ N2).

Since ln(1 + x) ≥ 1
2x for x ∈ [0, 1], then

ln
xn+1

xn
≥ 1

2
pn

( 1− ε

1 + λε

)r

(n ≥ N2).

It is now easy to derive a contradiction to our assumption µ 6= 1 but we omit the
details.

Step 3: If {xn} is oscillatory about 1, we will also prove that xn → 1 as n → +∞.
By a method similar to that in Theorem 1, we can prove that {xn} is bounded. Let
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ln xn = yn for n ≥ 0. Then {yn} is oscillatory and bounded, and equation (1)
becomes

∆yn = ln
(
1 + pn

( 1− eyn−kn

1 + λeyn−kn

)r)
(n ≥ 0). (8)

We will prove now that limn→+∞ yn = 0. Let u = lim supn→+∞ yn and v =
lim infn→+∞ yn. Then −∞ < v ≤ 0 ≤ u < +∞. For any ε > 0 there is N3

such that
v1 = v − ε < yn−kn < u + ε = u1 (n ≥ N3).

Then we get

∆yn

{≤ ln(1 + pn( 1−ev1

1+λev1 )r) ≤ ln(1 + pn(1− ev1))

≥ ln(1 + pn( 1−eu1

1+λeu1 )r)
(n ≥ N3). (9)

Choose two subsequence of {yn}, denoted by {yni} and {ymi} with N3 ≤ ni ↑,mi ↑
such that 0 < yni ↑ u and 0 > ymi ↑ v. By (8) one gets yni−1−kni−1 ≤ 0 and then
there is n∗i with ni − 1 − kni−1 ≤ n∗i ≤ ni − 1 such that yn∗

i
≤ 0 and yn > 0 for

n∗i + 1 ≤ n ≤ ni. Choose a number ξi ∈ [0, 1) such that

yn∗
i

+ ξi(yn∗
i
+1 − yn∗

i
) = 0. (10)

By the inequality
( m∏

i=1

aαi
i

)1/
∑m

i=1
αi

≤
∑m

i=1 αiai∑m
i=1 αi

we get

−yj−kj = −yn∗
i

+
n∗i−1∑

s=j−kj

(ys+1 − ys)

= ξi(yn∗
i
+1 − yn∗

i
) +

n∗i−1∑

s=j−kj

ln
(
1 + ps

( 1− eys−ks

1 + λeys−ks

)r)

≤ ξi ln
(
1 + pn∗

i
(1− ev1)

)
+

n∗i−1∑

s=j−kj

ln
(
1 + ps(1− ev1)

)

≤ (n∗i − j + kj + ξi) ln
[
1 +

1− ev1

n∗i − j + kj + ξi

(
ξipn∗

i
+

n∗i−1∑

s=j−kj

ps

)]
.

Then

eyj−kj ≥
[
1 + (1− ev1)

1
n∗i − j + kj + ξi

(
ξipn∗

i
+

n∗i−1∑

s=j−kj

ps

)]−(n∗i−j+kj+ξi)

.
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By (1 + x
n )−n ≥ 1− x for n > 0 and x ≥ 0 we get

eyj−kj ≥ 1− (1− ev1)
(

ξipn∗
i

+
n∗i−1∑

s=j−kj

ps

)
. (11)

Thus by (9) - (11) we get

yni
= yn∗

i
+1 +

ni−1∑

s=n∗
i
+1

(ys+1 − ys)

= (1− ξi)(yn∗
i
+1 − yn∗

i
) +

ni−1∑

n=n∗
i
+1

ln
(
1 + pn

( 1− eyn−kn

1 + λeyn−kn

)r)

≤ (1− ξi) ln
(
1 + pn∗

i
(1− e

yn∗
i
−kn∗

i )
)

+
ni−1∑

n=n∗
i
+1

ln
(
1 + pn(1− eyn−kn )

)

≤ (1− ξi) ln
[
1 + pn∗

i
(1− ev1)

(
ξipn∗

i
+

n∗i−1∑

s=n∗
i
−kn∗

i

ps

)]

+
ni−1∑

n=n∗
i
+1

ln
[
1 + pn(1− ev1)

(
ξipn∗

i
+

n∗i−1∑

s=n−kn

ps

)]
.

By assumption (i) we get

yni ≤ (1− ξi) ln
[
1 + pn∗

i
(1− ev1)

(
δ(1 + λ)− (1− ξi)pn∗

i

)]

+
ni−1∑

n=n∗
i
+1

ln
[
1 + pn(1− ev1)

(
δ(1 + λ)−

n∑

s=n∗
i
+1

ps − (1− ξi)pn∗
i

)]

≤ (ni − n∗i − ξi) ln
{

1 +
1

ni − n∗i − ξi
(1− ev1)

×
[
(1− ξi)pn∗

i

(
δ(1 + λ)− (1− ξi)pn∗

i

)

+
ni−1∑

n=n∗
i
+1

pn

(
δ(1 + λ)−

n∑

s=n∗
i
+1

ps − (1− ξi)pn∗
i

)]}
.

Supposing kn ≤ k, since ni − n∗i − ξi ≤ kni−1 + 1 ≤ k + 1 it results in

yni ≤ (k + 1) ln
{

1 +
1

k + 1
(1− ev1)

[
(1− ξi)pn∗

i

(
δ(1 + λ)− (1− ξi)pn∗

i

)

+
ni−1∑

n=n∗
i
+1

pn

(
δ(1 + λ)−

n∑

s=n∗
i
+1

ps − (1− ξi)pn∗
i

)]}
.
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Let

di =
ni−1∑

n=n∗
i
+1

pn + (1− ξi)pn∗
i
.

Then by the inequality
m∑

i=1

x2
s ≥

1
m

( m∑
s=1

xs

)2

we get

yni
≤ (k + 1) ln

{
1 +

1
k + 1

δ(1 + λ)(1− ev1)di − 1
k + 1

(1− ev1)

×
[
(1− ξi)2p2

n∗
i

+ (1− ξi)pn∗
i

ni−1∑

n=n∗
i
−1

pn +
ni−1∑

n=n∗
i
+1

pn

ni−1∑

s=n∗
i
+1

ps

]}

= (k + 1) ln

{
1 +

1
k + 1

δ(1 + λ)(1− ev1)di − 1
2(k + 1)

(1− ev1)d2
i

− 1
2(k + 1)

(1− ev1)
[ ni−1∑

n=n∗
i
+1

p2
n + (1− ξi)2p2

n∗
i

]}

≤ (k + 1) ln

{
1 +

δ(1 + λ)
k + 1

(1− ev1)di − 1
2(k + 1)

(1− ev1)d2
i

− 1
2(k + 1)

(1− ev1)
1

ni − n∗i
d2

i

}

≤ (k + 1) ln
{

1 +
δ(1 + λ)
k + 1

(1− ev1)di − k + 2
2(k + 1)2

(1− ev1)d2
i

}
.

Since
δ(1 + λ)x− k + 2

2(k + 1)
x2

x when x ≤ k + 1
k + 2

δ(1 + λ),

the maximum point of the function is x = k+1
k+2δ(1 + λ). Then

yni ≤ (k + 1) ln
(
1 +

δ2(1 + λ)2

2(k + 2)
(1− ev1)

)
.

It is easy to see that the function x ln(1 + δ2(1+λ2

2(x+1)

)
is increasing on (0, +∞), hence

(k + 1) ln
(
1 +

δ2(1 + λ)2

2(k + 2)

)xδ2(1 + λ)2

2
(k →∞).

Letting i → +∞ and ε → 0 we get

u ≤ (k + 1) ln
(
1 +

δ2(1 + λ)2

2(k + 2)
(1− ev)

)
. (12)
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Now, let yn∗ = max{0, yn}. Again, since ∆ymi−1 ≤ 0, by (8) we have ymi−1−kmi−1 ≥
0. Then

ymi
= ymi−1−kmi−1 +

mi−1∑

s=mi−1−kmi−1

ln
(
1 + ps

( 1− eys−ks

1 + λeys−ks

)r)

≥
mi−1∑

s=mi−1−kmi−1

ln
(
1 + ps

( 1− ey(s−ks)∗

1 + λey(s−ks)∗

)r)

≥ ln
(

1 +
mi−1∑

s=mi−1−kmi−1

ps

( 1− ey(s−ks)∗

1 + λey(s−ks)∗

)r
)

≥ ln
(
1 + δ(1 + λ)

( 1− eu1

1 + λeu1

)r)

and hence
eymi ≥ 1 + δ(1 + λ)

( 1− eu1

1 + λeu1

)r

.

Letting i → +∞ and ε → 0, one gets

ev ≥ 1 + δ(1 + λ)
( 1− eu

1 + λeu

)r

. (13)

If u 6= 0, then u > 0. By (12) - (13) we get

u ≤ ln
(

1 +
δ3(1 + λ)3

2(k + 2)

( eu − 1
1 + λeu

)r
)k+1

.

From (12),

u < ln
(
1 +

δ2(1 + λ)2

2(k + 2)

)k+1

= u0. (14)

Let

f(u) = u− ln
(

1 +
δ3(1 + λ)3

2(k + 2)

( eu − 1
1 + λeu

)r
)k+1

.

Clearly, f(0) = 0, f ′′(u) ≤ 0, f(u) has at most two zero points in [0, +∞) and

f(u0) = ln
(
1 +

δ2(1 + λ)2

2(k + 2)

)k+1

− ln
(

1 +
δ3(1 + λ)3

2(k + 2)

( eu0 − 1
1 + λeu0

)r
)k+1

.

By (14), u0 ↑ δ2(1+λ)2

2 , hence eu0 ≤ eδ2(1+λ)2/2. Using assumption (iii) we get
f(u0) ≥ 0. We see that f(u) > 0 for u ∈ (0, u0) which contradicts (13). Then u = 0
and v = 0, which implies limn→+∞ yn = 0. This completes the proof

Corollary 3. Suppose that assumption (ii) of Theorem 2 holds and that
n∑

s=n−kn

ps ≤ 1
2
(1 + λ)

for sufficiently large n. Then every positive solution of equation (1) tends to 1 as
n → +∞.
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