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Estimates for Quasiconformal Mappings
onto

Canonical Domains (II)

Vo Dang Thao

Abstract. In this paper we establish estimates for normal K-quasiconformal mappings
z = g(w) of any finitely-connected domain in the extended w-plane onto the interior or
exterior of the unit circle or the extended z-plane with n (≥ 0) slits on the circles |z| =
Rj (j = 1, . . . , n). The bounds in the estimates for Rj , |g(w)|, etc. are explicitly given.
They are sharp or asymptotically sharp and deduced mainly from estimates for the inverse
mappings of g in our previous paper [10] based on Carleman’s and Grötzsch’s inequalities
and partly improved here. A generalization of the Schwarz lemma and improvements of
some classical inequalities for conformal mappings are shown.
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1. Introduction and notations

This paper is a continuation of our previous paper [11] where estimates for K-
quasiconformal mappings (see the definition in [4: p.16]) onto a circular ring Q <
|z| < 1 with some circular slits are given. Here we shall establish estimates for
normal K-quasiconformal mappings z = g(w) of any finitely-connected domain in
the extended w-plane onto the interior or exterior of the unit circle or the extended
z-plane with some circular slits.

Throughout this paper, we use the following notations. Let w = f(z) be a K-
quasiconformal mapping of a domain A in the extended z-plane onto a domain B in
the extended w-plane. Put

m(R, f) =
{

min |w| : w ∈ E(R, f)
}

M(R, f) =
{

max |w| : w ∈ E(R, f)
}

where E(R, f) means the set of the w-plane corresponding to the circle |z| = R by
f , that may contain some slits or a circle as boundary components of A. Moreover,
denote by S(R, f) the inner area of the domain bounded by the above set E(R, f).
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If A contains z = 0 and f(0) = 0, then put

m′(0, f) = lim
R→0

m(R, f)
R

1
K

, m∗(0, f) = lim
R→0

m(R, f)
RK

M ′(0, f) = lim
R→0

M(R, f)
R

1
K

, M∗(0, f) = lim
R→0

M(R, f)
RK

S′(0, f) = lim
R→0

S(R, f)
πR

2
K

.

If A contains z = ∞ and f(∞) = ∞, then put

m′(∞, f) = lim
R→∞

m(R, f)
R

1
K

, m∗(∞, f) = lim
R→∞

m(R, f)
RK

M ′(∞, f) = lim
R→∞

M(R, f)
R

1
K

, M∗(∞, f) = lim
R→∞

M(R, f)
RK

S′(∞, f) = lim
R→∞

S(R, f)
πR

2
K

.

Throughout this paper, we suppose that the introduced limits exist. Clearly, if
E(R, f) separates the points 0 and ∞, then

m′(0, f)2 ≤ S′(0, f) ≤ M ′(0, f)2 (1.1)
m′(∞, f)2 ≤ S′(∞, f) ≤ M ′(∞, f)2. (1.2)

We consider now the three following classes of K-quasiconformal mappings onto
canonical domains.

Let B1 be any domain in the disk |w| < 1, 0 ∈ B1, bounded by C1 as the external
boundary component with max{|w| : w ∈ C1} = 1 and pn (p ∈ N, n ∈ N0 = N∪{0})
others σ1, . . . , σpn. Suppose that B1 is transformed into itself by the rotation

t = ei 2π
p w. (1.3)

Denote by
S1 (≤ π) – the inner area of the domain bounded by C1

S (≤ S1) – the inner area of the domain B1

G1 – the class of all K-quasiconformal mappings z = g(w)
each of which maps B1 onto the disk |z| < 1 that has been slit along pn circular arcs
L1(g), . . . , Lpn(g) concentric with the unit circle such that |z| = 1 and Lj correspond
to C1 and σj (j = 1, . . . , pn), respectively, g(0) = 0, and satisfies the p-fold rotational
symmetry

g(ei 2π
p w) = ei 2π

p g(w) (1.4)

for all w ∈ B1. Clearly, this condition is trivial for p = 1.
Let B2 be any domain in |w| > 1 containing w = ∞ bounded by pn boundary

components σ1, . . . , σpn and C2 whose interior contains |w| < 1 but cannot contain
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any disk |w − w0| < r with r > 1. Suppose that B2 is transformed into itself by
rotation (1.3). Denote by

S2 – the external area of the compact set bounded by C2

G2 – the class of all K-quasiconformal mappings z = g(w)

each of which maps B2 onto the domain |z| > 1 that has been slit along pn circular
arcs L1(g), . . . , Lpn(g) concentric with the unit circle such that |z| = 1 and Lj corre-
spond to C2 and σj (j = 1, . . . , pn), respectively, g(∞) = ∞, and satisfies (1.4) for
all w ∈ B2 .

Let B3 be any domain in the extended w-plane containing w = 0 and w =
∞ bounded by pn boundary components σ1, . . . , σpn and transformed into itself by
rotation (1.3). Denote by G3 the class of all K-quasiconformal mappings z = g(w)
each of which maps B3 onto the extended z-plane that has been slit along pn circular
arcs L1(g), . . . , Lpn(g) concentric with the unit circle such that Lj corresponds to
σj (j = 1, . . . , pn), g(0) = 0, g(∞) = ∞, and satisfies (1.4) for all w ∈ B3. Moreover,
suppose m∗(∞, g) = 1 for g ∈ G3.

For each σj as boundary component of Bν and for each Lj(g) (g ∈ Gν ; j =
1, . . . , pn; ν = 1, 2, 3) put

cj = minw∈σj |w|
dj = maxw∈σj |w|
Rj(g) = |z| (z ∈ Lj(g))
R0(g) = max1≤j≤pn Rj(g)
s0 = min1≤j≤pn sj

s =
∑pn

j=1 sj

where sj means the external area of the compact set bounded by σj .

The principal aim of this paper is to estimate |g(w)|, the radii Rj(g), etc. for
w ∈ Bν , g ∈ Gν (j = 1, . . . , pn; ν = 1, 2, 3). For K = 1 (conformal mappings) these
radii are nothing but the Riemann moduli of the domains Bν (see [5: p. 334]). The
obtained estimates are sharp or asymptotically sharp. Their bounds are explicitly
given as functions of |w|, cj , dj , sj , etc. with the help of two auxiliary functions
R(p, t, s) and T (p, r, s) introduced and studied in [11 : pp. 822 - 823] or, more
precisely, [6: pp. 102 - 105] where R(p, t, s) = rp(t, s) and T (p, r, s) = %̃p(r, s). They
are deduced from the estimates for the classes Fν of all mappings f = g−1, g ∈
Gν (ν = 1, 2, 3), that by (1.4) satisfy

ei 2π
p f(z) = f(ei 2π

p z) (1.5)

for all z ∈ Aν with Aν = g(Bν) (ν = 1, 2, 3). Therefore the classes F1 and F2 intro-
duced here are larger than F1 and F2 studied in [10], respectively, whose estimates
will be partly improved. Our main tools are two inequalities due to Carleman [1:
p. 212] and Grötzsch [2: p. 372] that were generalized and improved in [6 - 9] and
especially in [10].
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2. Estimates for the classes F1 and G1

To establish estimates for the class G1 we need the following estimates for F1.

Theorem 1. Under the above hypotheses and notations we have for every f ∈
F1, 0 < R < 1, (0 <) Rj (< 1), j = 1, . . . , pn and (0 6=) z ∈ A1

(π ≥) S1(f) ≥ πS′(0, f) +
∑pn

j=1R
− 2

K
j sj(f) (2.1)

(π ≥) S(f) ≥ πS′(0, f) +
∑pn

j=1(R
− 2

K
j − 1)sj(f) (2.2)

(0 ≤) S′(0, f) ≤ S(f)
π (≤ 1) (2.3)

(0 ≤) psj(f) ≤ [
S1(f)− πS′(0, f)

]
R

2
K
j (2.4)

psj(f) ≤ [
S(f)− πS′(0, f)

]
(R−

2
K

j − 1)−1 (2.5)

(0 ≤) s(f) ≤ [
S1(f)− πS′(0, f)

]
R

2
K
0 (2.6)

s(f) ≤ [
S(f)− πS′(0, f)

]
(R−

2
K

0 − 1)−1 (2.7)

(0 ≤) s0(f) ≤ [
S1(f)− πS′(0, f)

](∑pn
j=1R

− 2
K

j

)−1 (2.8)

s0(f) ≤ [
S(f)− πS′(0, f)

](∑pn
j=1R

− 2
K

j − pn
)−1 (2.9)

S′(0, f)πR
2
K ≤ S(R, f) ≤ S1(f)R

2
K (2.10)

m(R, f) ≤
√

S1(f)
π R

1
K (2.11)

M(R, f) ≥
√

S′(0, f)R
1
K (2.12)

m(R, f) ≥ 4−
1
p m′(0, f)R

1
K = m0 (≥ 0) (2.13)

M(R, f) ≤ T (p, R
1
K ,m0) ≤ T (p,R

1
K , 0) < 4

1
p R

1
K (2.14)

m = 4−
1
p m′(0, f)|z| 1

K ≤ |f(z)| ≤ T (p, |z| 1
K ,m) < 4

1
p |z| 1

K (2.15)

mj = 4−
1
p m′(0, f)R

1
K
j ≤ cj(f) ≤ dj(f) ≤ T (p,R

1
K
j ,mj) < 4

1
p R

1
K
j (2.16)

(1 ≤) dj(f)
cj(f) < 2

4
p m′(0, f)−1 if m′(0, f) > 0 (2.17)

where equality in each of relations (2.1)− (2.12) holds if and only if f(z) = az|z| 1
K−1

with |a| = 1.

Proof. Applying [10: Lemma 2.1] to the mapping f ∈ F1 of the domain A1 onto
B1, we have (2.1) and thus (2.2) since S = S1 − s. Because of the p-fold rotational
symmetry (1.5) of f ∈ F1 from (2.1) we obtain (2.4), (2.6) and (2.8). Similarly,
from (2.2) we get (2.3), (2.5), (2.7) and (2.9). Applying again [10: Lemma 2.1] to
the mapping f ∈ F1 of the domain A1 ∩ {|z| < R} we obtain the lower estimate for
S(R, f) in (2.10), while the upper estimate holds by applying [9: Lemma 2.1] to the
mapping f ∈ F1 of the domain A1 ∩ {|z| > R}. Combining this with the relation

πm(R, f)2 ≤ S(R, f) ≤ πM(R, f)2 (2.18)

for 0 < R < 1 and f ∈ F1 yields (2.11) and (2.12). Equality in each of relations (2.1)
- (2.12) holds if and only if f(z) = az|z| 1

K−1 + b, with b = 0 since f(0) = 0 and with
|a| = 1 since M(1, f) = 1. The proof of estimates (2.13) - (2.17) is as in [10: p. 372]
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Remark 1. Theorem 1 with S ≤ S1 ≤ π generalizes and improves [10: Theorem
2.1], where C1 is the unit circle, i.e. S = S1 = π. It generalizes also [7: Theorem 3],
where K = 1.

Remark 2. The upper estimate for |f(z)| in (2.15) presents a generalization
of the Schwarz lemma to the case of quasiconformal mappings of finitely-connected
domains. The sharpness of this estimate is open. In the particular case n = 0 and
p = 1, where A1 is the open unit disk, Hersch and Pfluger [3] showed the sharp upper
estimate for |f(z)| that under our notations has the form |f(z)| ≤ T (1, r

1
K , 0) with

r = R(1, |z|, 0), f ∈ F1, z ∈ A1. Note that this cannot remain true for n ≥ 1 by a
similar example as in [9: pp. 62 - 63].

Corollary 1. For K = 1 by S′(0, f) = |f ′(0)|2 from (2.3) we obtain

|f ′(0)| ≤
√

S(f)
π (f ∈ F1) (2.19)

with equality if and only if f(z) = az with |a| = 1.

By S ≤ π this improves the classical inequality |f ′(0)| ≤ 1 for f ∈ F1 with K = 1
(see [5: p. 352]).

Lemma 1. Let w = f(z) be a K-quasiconformal mapping of a domain containing
z = 0 with f(0) = 0 and m′(0, f) > 0. Then for g = f−1 we have

m′(0, f) = M∗(0, g)−
1
K (2.20)

M ′(0, f) = m∗(0, g)−
1
K . (2.21)

Proof. For small R > 0 put CR = {z : |z| = R} and C ′R = f(CR). Clearly, there
exist a point w1 ∈ C ′R and a point z1 ∈ CR such that

m(R, f) = |w1| = |f(z1)| = r.

Put Lr = {w : |w| = r} and L′r = g(Lr). Noticing that L′r is situated in |z| ≤ R, we
get

M(r, g) = |g(w1)| = |z1| = R.

Thus, since m′(0, f) > 0 we conclude

m′(0, f) = lim
R→0

m(R, f)
R

1
K

= lim
r→0

r

M(r, g)
1
K

= lim
r→0

[M(r, g)
rK

]− 1
K

= M∗(0, g)−
1
K .

Similarly we can prove (2.21)

Remark 3. For K = 1, since m′(0, f) = |f ′(0)| and M∗(0, g) = |g′(0)|, equality
(2.20) becomes the well-known relation |f ′(0)| = |g′(0)|−1.
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Theorem 2. Under the above hypotheses and notations we have for every g ∈
G1, w ∈ B1 and j = 1, . . . , pn

M∗(0, g) ≥ (
π
S

)K
2 (≥ 1) (2.22)

M∗(0, g) > 2−
4K
p

(dj

cj

)K (2.23)

Rj(g) >
[

psj

psj+S−πM∗(0,g)
− 2

K

]K
2

with sj > 0 (2.24)

R0(g) >
[

s

S1−πM∗(0,g)
− 2

K

]K
2

with s > 0 (2.25)

(pn <)
∑pn

j=1R
− 2

K
j (g) < S1−πM∗(0,g)

− 2
K

s0
with s0 > 0 (2.26)

∑pn
j=1R

− 2
K

j (g) < pn + S−πM∗(0,g)
− 2

K

s0
with s0 > 0 (2.27)

4−
K
p dK

j < R(p, dj , 0)K ≤ Rj(g) ≤ 4
K
p M∗(0, g)cK

j (2.28)

Rj(g) >
[ psj

Qj(g)

]K
2 (2.29)

with sj > 0 and Qj(g) = S1 −
(
π + 2−

4
p

∑
Rν 6=Rj

sν

c2
ν

)
M∗(0, g)−

2
K (> 0) and

4−
K
p |w|K < R(p, |w|, 0)K ≤ |g(w)| ≤ 4

K
p M∗(0, g)|w|K . (2.30)

Equality in relation (2.22) holds if and only if B1 = B0
1 , where B0

1 means the open
unit disk that has been slit along pn circular arcs concentric with the unit circle, and
g(w) = aw|w|K−1 with |a| = 1.

Proof. Combining (1.1), (2.3) and (2.20) yields estimate (2.22) with equality if
and only if

w = f(z) = g−1(z) = bz|z| 1
K−1 with |b| = 1.

This implies the above assertion in the case of equality in (2.22). Similarly, from
(2.17) estimate (2.23) follows. With the help of (1.1) and (2.20), by (2.5), (2.6), (2.8)
and (2.9) we obtain inequalities (2.24) - (2.27), respectively. From (2.16) we get

dj ≤ T (p, R
1
K
j ,mj) ≤ T (p,R

1
K
j , 0) = tj .

Thus, by the definitions of the auxyliary functions T (p, r, s) and R(p, t, s) and their
monotonys (see [11: pp. 822 – 823]) we conclude

R
1
K
j = R(p, tj , 0) ≥ R(p, dj , 0) > 4−

1
p dj ,

hence the lower estimate for Rj in (2.28) follows, while its upper estimate is deduced
easily from (2.16) and (2.20). Writing (2.1) by (1.5) in the form

S1 ≥ πS′(0, f) +
psj

R
2
K
j

+
∑

Rν 6=Rj

sν

R
2
K
ν

and using (1.1), (2.20) and the upper estimate for Rν in (2.28) we obtain (2.29).
Estimate (2.30) is deduced from (2.15) and (2.20) similarly as in the proof of (2.28)
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Corollary 2. For K = 1 estimate (2.22) becomes

|g′(0)| ≥
√

π
S (g ∈ G1) (2.31)

with equality if and only if B1 = B0
1 and g(w) = aw with |a| = 1.

Estimate (2.31) with S ≤ π improves the classical inequality |g′(0)| ≥ 1 for
g ∈ G1 with K = 1.

In order to establish an estimate that can sharpen (2.22) and therefore (2.31) we
shall prove

Corollary 3. Putting C = 2−
4
p

∑pn
j=1

sj

c2
j

(≥ 0), for every g ∈ G1 we have

M∗(0, g) ≥ (
π+C
S1

)K
2 (2.32)

with equality if and only if B1 = B0
1 and g(w) = aw|w|K−1 with |a| = 1.

Proof. Combining (1.1), (2.1), (2.20) and (2.28) yields

S1 ≥ πM∗(0, g)−
2
K + CM∗(0, g)−

2
K ,

hence (2.32) follows with the above assertion in the case of equality

Corollary 4. In the case K = 1, where M∗(0, g) = |g′(0)|, estimate (2.32)
becomes

|g′(0)| ≥
√

π+C
S1

(g ∈ G1)

with equality if and only if B1 = B0
1 and g(w) = aw with |a| = 1.

3. Estimates for the classes F2 and G2

To establish estimates for the class G2 we need the following estimates for F2.

Theorem 3. Under the hypotheses and notations given in Section 1, for f ∈
F2, z ∈ A2, 1 < R < ∞, (1 <) Rj (< ∞) (j = 1, . . . , pn) we have the estimates

S′(∞, f) ≥ S2(f)
π +

∑pn
j=1

sj(f)

πR
2
K
j

( ≥ S2
π ≥ 1

)
(3.1)

psj(f) ≤ [
πS′(∞, f)− S2(f)

]
R

2
K
j (3.2)

s0(f) ≤ [
πS′(∞, f)− S2(f)

](∑pn
j=1R

− 2
K

j

)−1 (3.3)

s(f) ≤ [
πS′(∞, f)− S2(f)

]
R

2
K
0 (3.4)

(πR
2
K ≤) S2(f)R

2
K ≤ S(R, f) ≤ S′(∞, f)πR

2
K (3.5)

M(R, f) ≥
√

S2(f)
π R

1
K (3.6)
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m(R, f) ≤
√

S′(∞, f)R
1
K (3.7)

M(R, f) < 4
1
p M ′(∞, f)R

1
K = M0 (3.8)

m(R, f) ≥ T (p,R−
1
K ,M−1

0 )−1 ≥ T (p,R−
1
K , 0)−1 > 4−

1
p R

1
K (3.9)

4−
1
p |z| 1

K < T (p, |z|− 1
K , M−1)−1 ≤ |f(z)| < 4

1
p M ′(∞, f)|z| 1

K = M (3.10)

4−
1
p R

1
K
j < T (p,R

− 1
K

j ,M−1
j )−1 ≤ cj ≤ dj < 4

1
p M ′(∞, f)R

1
K
j = Mj (3.11)

(1 ≤) dj

cj
< 2

4
p M ′(∞, f) (3.12)

where equality in each of relations (3.1)− (3.7) holds if and only if f(z) = az|z| 1
K−1

with |a| = 1.

Proof. Applying [10: Lemma 3.1] to the mapping f ∈ F2 of the domain A2

onto B2, we have (3.1) and therefore (3.2) - (3.4). Applying again this lemma to the
mapping f ∈ F2 of the domain A2∩{|z| > R}, we get the upper estimate for S(R, f)
in (3.5), while the lower estimate holds by applying [9: Lemma 2.1] to the mapping
f ∈ F2 of the domain A2 ∩ {|z| < R}. Thus, by (2.18) for R > 1 and f ∈ F2, we
obtain estimates (3.6) and (3.7). The equality in each of relations (3.1) - (3.7) holds
if and only if f(z) = az|z| 1

K−1 + b with b = 0 and |a| = 1 because of the conditions
of C2. The proof of estimates (3.8) - (3.12) is as in [10: pp. 374 – 375]

Remark 4. Theorem 3 with S2 ≥ π generalizes and improves [10: Theorem 3.1],
where C2 is the circle |w| = 1, i.e. S2 = π. It generalizes also [7: Theorem 5], where
K = 1.

Lemma 2. Let w = f(z) be a K-quasiconformal mapping of a domain containing
z = ∞ with f(∞) = ∞ and M ′(∞, f) > 0. Then for g = f−1 we have

M ′(∞, f) = m∗(∞, g)−
1
K

m′(∞, f) = M∗(∞, g)−
1
K .

(3.13)

Proof. Similarly to the proof of Lemma 1, we can prove this lemma

Theorem 4. Under the hypotheses and notations given in Section 1, for g ∈
G3, w ∈ B3 and j = 1, . . . , pn we have the estimates

(0 ≤) m∗(∞, g) ≤ (
π
S2

)K
2 (≤ 1) (3.14)

m∗(∞, g) < 2
4K
p

( cj

dj

)K (3.15)

4−
K
p m∗(∞, g)dK

j ≤ Rj(g) ≤ R(p, c−1
j , 0)−K < 4

K
p cK

j (3.16)

Rj(g) >
[ psj

Vj(g)

]K
2 (3.17)

with sj > 0 and

(0 <) Vj(g) = πm∗(∞, g)−
2
K − S2 −

∑

Rν 6=Rj

sνR(p, c−1
ν , 0)2

≤ πm∗(∞, g)−
2
K − S2 − 2−

4
p

∑

Rν 6=Rj

sν

c2
ν
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and

R0(g) >
[

s

πm∗(∞,g)
− 2

K −S2

]K
2

with s > 0 (3.18)

∑pn
j=1R

− 2
K

j (g) < πm∗(∞,g)
− 2

K −S2
s0

with s0 > 0 (3.19)

4−
K
p m∗(∞, g)|w|K < |g(w)| < R(p, |w|−1, 0) < 4

K
p |w|K (3.20)

with equality in (3.14) if and only if B2 = B0
2 , where B0

2 means the domain |w| >
1 that has been slit along pn circular arcs concentric with |w| = 1, and g(w) =
aw|w|K−1 with |a| = 1.

Proof. Combining (1.1), (3.1) and (3.13) yields (3.14) with equality if and only
if

w = f(z) = g−1(z) = bz|z| 1
K−1 with |b| = 1.

This implies the above assertion in the case of equality in (3.14). Estimate (3.15)
follows from (3.12) and (3.13). By the definitions of the auxiliary functions T (p, r, s)
and R(p, t, s) and their monotony (see [11: p. 822]) we get from (3.11) the equivalence

c−1
j ≤ T (p, R

− 1
K

j , 0) = tj ⇐⇒ R
− 1

K
j = R(p, tj , 0) ≥ R(p, c−1

j , 0),

hence the upper estimate for Rj(g) in (3.16) follows, while the lower estimate is
deduced easily from (3.11) and (3.13). By (1.1), (1.5) and (3.13) relation (3.1) can
be represented in the form

m∗(∞, g)−
2
K ≥ S2

π
+

psj

πR
2
K
j

+
∑

Rν 6=Rj

sν

πR
2
K
ν

.

Thus, using the upper estimate in (3.16) for Rν , we get (3.17). With the help of (3.13)
relations (3.18) and (3.19) are deduced from (3.4) and (3.3), respectively. Similarly
to the proof of (3.16), using (3.10) and (3.13) we can show (3.20)

In order to improve estimate (3.14) we shall prove

Corollary 5. Putting

D =
pn∑

j=1

sjR(p, c−1
j , 0)2 ≥ 2−

4
p

pn∑

j=1

sj

c2
j

(≥ 0)

we have for every g ∈ G2

m∗(∞, g) ≤ (
π

S2+D

)K
2 ≤ (

π
S2

)K
2 (≤ 1), (3.21)

with equality if and only if B2 = B0
2 and g(w) = aw|w|K−1 with |a| = 1.

Proof. Combining (1.1), (3.1), (3.13) and (3.16) yields m∗(∞, g)−
2
K ≥ S2+D

π ,
hence (3.21) with the above assertion in the case of equality
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Corollary 6. In the case K = 1, where

m∗(∞, g) = lim
R→∞

m(R, g)
R

= lim
z→∞

|g(z)|
|z| = |g′(∞)|

inequality (3.21) becomes

|g′(∞)| ≤
√

π
S2+D (g ∈ G2)

with equality if and only if B2 = B0
2 and g(w) = aw with |a| = 1.

This sharpens the classical inequality |g′(∞)| ≤ 1 for g ∈ G2 with K = 1.

4. Estimates for the class G3

Since estimates for the class F3 with M ′(∞, f) = m∗(∞, g)−
1
K = 1 for g−1 = f ∈ F3

by (3.13) were shown in [10] we can now establish them for the class G3.

Theorem 5. Under the hypotheses and notations given in Section 1 we have for
every g ∈ G3, w ∈ B3 and j = 1, . . . , pn the estimates

M∗(0, g) ≥ 1 (4.1)

M∗(0, g) ≥ 2−
4K
p

(dj

cj

)K (4.2)

4−
K
p dK

j ≤ Rj(g) ≤ 4
K
p M∗(0, g)cK

j (4.3)

Rj(g) >
[ psj

Tj(g)

]K
2 >

(psj

π

)K
2 (4.4)

with sj > 0 and Tj(g) = π −
(
π + 2−

4
p

∑
Rν 6=Rj

sν

c2
ν

)
M∗(0, g)−

2
K (> 0) and

R0(g) >
{

s

π[1−M∗(0,g)
− 2

K ]

}K
2

with s > 0 (4.5)

∑pn
j=1R

− 2
K

j (g) ≤ π

s0

[
1−M∗(0, g)−

2
K

]
with s0 > 0 (4.6)

4−
K
p |w|K ≤ |g(w)| ≤ 4

K
p M∗(0, g)|w|K (4.7)

with equality in (4.1) if and only if B3 = B0
3 , where B0

3 means the extended w-
plane that has been slit along pn circular arcs concentric with |w| = 1, and g(w) =
aw|w|K−1 with |a| = 1.

Proof. Applying [10: Lemma 4.1] to the mapping f ∈ F3 of A3 onto B3, we
obtain by (1.1) and (2.20) for g ∈ G3

pn∑

j=1

sj

πR
2
K
j (g)

≤ 1−M∗(0, g)−
2
K , (4.8)
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hence (4.1) with the above assertion in the case of equality. Estimate (4.2) follows
from [10: Formula 4.13] and (2.20), while (4.3) is deduced from [10: Formula 4.12]
and (2.20). By the p-fold rotational symmetry of g ∈ G3 inequality (4.8) can be
written in the form

psj

πR
2
K
j

+
∑

Rν 6=Rj

sν

πR
2
K
ν

≤ 1−M∗(0, g)−
2
K ,

hence using upper estimate (4.3) for Rν , we get (4.4). Estimates (4.5) and (4.6)
follow from (4.8). Combining [10: Corollary 4.1] with (2.20) yields (4.7)

In order to improve estimate (4.1) we shall prove

Corollary 7. Putting

E = (π2
4
p )−1

pn∑

j=1

sj

c2
j

(≥ 0)

we have for every g ∈ G3

M∗(0, g) ≥ (1 + E)
K
2 (4.9)

with equality if and only if B3 = B0
3 and g(w) = aw|w|K−1 with |a| = 1.

Proof. Combining (4.8) with (4.3) yields (4.9) with the above assertion in the
case of equality

Corollary 8. In the case K = 1, where M∗(0, g) = |g′(0)|, estimate (4.9) be-
comes

|g′(0)| ≥
√

1 + E (g ∈ G3)

with equality if and only if B3 = B0
3 and g(w) = aw with |a| = 1.

This sharpens the classical inequality |g′(0)| ≥ 1 for g ∈ G3 with K = 1 (see [5:
p. 350]).

Concluding Remark. All estimates obtained in this paper are sharp or asymp-
totically sharp. This follows from [10: p. 377].
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