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Abstract. Solutions of nonlinear difference equations of second order are investigated with
respect to their asymptotic behaviour. In particular, seven conjectures of Kulenović and
Ladas concerning rational difference equations are verified.
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1. Introduction

The book by Kulenović and Ladas [4] contains a large number of open problems and
conjectures concerning the dynamics of rational difference equations

xn+1 =
α + βxn + γxn−1

A + Bxn + Cxn−1
(n ∈ N0) (1.1)

with non-negative parameters (A + B + C > 0) and of more general equations.
Problems and conjectures concerning the asymptotic behaviour of the solutions xn

of equations (1.1) can be solved by constructing two suitable bounds yn and zn with

yn ≤ xn ≤ zn (1.2)

for great n. This construction can be realized in the following way (cf. [2: §11]):
Choose an asymptotic scale ϕk(n) (k ∈ N0), i.e. a sequence of positive functions with
ϕk+1(n) = o(ϕk(n)) for n →∞, such that all shifts ϕk(n± 1) and all products ϕlϕm

possess asymptotic expansions with respect to this scale. In the case α 6= 0 also the
constant function 1 must possess such an expansion. Then make the ansatz

xnK =
K∑

k=0

ckϕk(n) (1.3)

with a fixed K ≥ 1, determine the coefficients out of

xn+1(A + Bxn + Cxn−1)− α− βxn − γxn−1 = O(ϕL(n)) (1.4)
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as n →∞, with xn = xnK and L as great as possible, and put

yn = xn,K−1 + aϕK(n)

zn = xn,K−1 + bϕK(n)

}
(1.5)

with a < cK < b. Simple examples for possible scales are ϕk = 1
nk and ϕk = tkn with

0 < t < 1. After having found the bounds yn and zn it remains to show the existence
of a solution xn of equation (1.1) with property (1.2) which shall be done in Section
2.

If we have no idea how to choose the scale ϕk, we can try the following possibility
(cf. [2: §15]). Replace equation (1.1) by a differential equation which approximates
(1.1) asymptotically as n → ∞ and which can be solved explicitly. Then take its
solution (or an asymptotic approximation of it) as xn,K−1 in (1.5). In the simplest
case the approximating differential equation can be obtained by substituting into
(1.1) the first terms of the Taylor expansions for xn+1 and xn−1. However, this
requires that the derivatives with respect to n (considered as continuous variable)
have a smaller order than the functions as it is the case by the functions 1

nk , but not
by the functions tkn. For more complicated possibilities cf. [2: §14].

If asymptotically two-periodic solutions are sought, then put un = x2n−1 and
vn = x2n, and replace equation (1.1) by the system

un+1 =
α + βvn + γun

A + Bvn + Cun

vn+1 =
α + βun+1 + γvn

A + Bun+1 + Cvn





(1.6)

to which the foregoing procedures can be transferred.

In the following we deal on the one hand with the later generalization (2.1) of
equation (1.1), and on the other hand with its special cases

xn+1 =
xn−1

1 + xn
(1.7)

xn+1 = β +
xn−1

xn
(1.8)

xn+1 =
1 + xn−1

xn
(1.9)

xn+1 =
α + xn−1

1 + xn
(α > 0). (1.10)

In particular, we verify the following conjectures:

Conjecture [4: 4.8.2]. Show that equation (1.7) has a solution which converges
to zero.

Conjecture [4: 4.8.3]. Show that equation (1.8) has a solution which remains
above the equilibrium x = β + 1 for all n ≥ −1.
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Conjecture [4: 5.4.6]. Show that equation (1.9) has a non-trivial positive
solution which decreases monotonically to the equilibrium of the equation.

Conjecture [4: 6.10.3]. Show that equation (1.10) has a positive and mono-
tonically decreasing solution.

We also deal with asymptotically periodic solutions of equation (1.7) and we give
a partial answer to Open Problem [4: 4.8.4], which among other things demands to
investigate the global character of the solution of equation (1.7) in dependence on its
initial values x−1 and x0.

Finally, we verify three conjectures of [4] (see Section 6) concerning bounded
solutions of equation (1.1), and we refer to a further conjecture of [4] (see beginning
of Section 7) concerning the rational difference equation

xn+1 =
p + xn−2

xn
(n ∈ N0) (1.11)

which is not of type (1.1). We shall verify the conjecture for p = 0, whereas for p > 0
we shall supplement it by an open problem.

For some calculations we have used the DERIVE system.

2. The inclusion theorem

In order to verify inequalities (1.2) we consider the equation

xn−1 = f(xn, xn+1) (2.1)

which can be either the inversion of equation (1.1) with respect to xn−1 (in the case
γ + C > 0) or an equation with an arbitrary f (such that (2.1) is uniquely invertible
with respect to xn+1).

Theorem 1. Let the function f = f(y, z) be continuous and non-decreasing in
both arguments, and let (yn) and (zn) be sequences with yn < zn for n ≥ n0 as well
as

yn−1 ≤ f(yn, yn+1), f(zn, zn+1) ≤ zn−1 (n > n0). (2.2)

Then there exists a solution of equation (2.1) with property (1.2) for n ≥ n0.

Proof. Choosing an arbitrary integer N > n0, then the solution xn of equation
(2.1) with given initial values xN+1 and xN satisfying inequalities (1.2) for n =
N + 1 and n = N can be continued by means of (2.1) to arguments n with n < N .
Inequalities (2.2) and the monotony of f yield the validity of inequalities (1.2) for all n
with n0 ≤ n ≤ N +1. Let AN be the non-empty set of all pairs (xn0 , xn0+1) such that
the solutions xn of equation (2.1) satisfy (1.2) for n0 ≤ n ≤ N +1. The continuity of
f implies that AN is a closed set, and the monotony of f implies that AN ⊃ AN+1.
Hence, there exists a non-empty set A = ∩∞N=n0+1AN of pairs (xn0 , xn0+1) such that
all attached solutions xn of equation (2.1) satisfy (1.2) for all n ≥ n0
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As the proof shows, the continuity and the monotony of f are only necessary for
such arguments which satisfy (1.2) for n > n0.

Theorem 1 can be modified in different ways (cf. [1 - 3, 5]), but we do not need
here such modifications. Instead of that we come back to the special cases (1.7) -
(1.10) of equation (1.1) and to the verification of the announced four conjectures.

Example 1. For example (1.7) of equation (1.1) inversion (2.1) yields the func-
tion f(xn, xn+1) = (1 + xn)xn+1, which satisfies the assumptions of Theorem 1 for
positive arguments. Writing xn = x and using the approximations xn±1 ≈ x ± x′,
we replace (1.7) by the differential equation (2 + x)x′ + x2 = 0 with the solution
x = 2

n+ln x+C . In the case x → 0 as n → ∞ we find x ∼ 2
n and therefore, choosing

C = − ln 2, we find iteratively the asymptotic approximations

x[0] = 2
n , x[1] = 2

n−ln n , x[2] = 2
n−ln n+ 1

n ln n
.

Taking into account that x[2] = 2
n + 2

n2 ln n+ 2
n3 ln2 n+O( 1

n3 ln n) we make the ansatz

yn = 2
n + 2

n2 ln n + a
n3 ln2 n

zn = 2
n + 2

n2 ln n + b
n3 ln2 n

with a < 2 < b (cf. (1.5) with K = 2). Then we find the asymptotic relation

yn+1(1 + yn)− yn−1 ∼ 2
n4 (2− a) ln2 n

and an analogous relation with z and b instead of y and a, respectively. These
relations show that inequalities (2.2) are satisfied for sufficiently great n. Hence,
Theorem 1 can be applied and it yields, in particular, the existence of a solution of
equation (1.7) converging to zero, i.e. it verifies conjecture [4: 4.8.2].

The next three examples (1.8) - (1.10) are special cases of

xn+1 =
α + βxn + xn−1

A + xn
. (2.3)

Inversion (2.1) yields the function

f(xn, xn+1) = (A + xn)(xn+1 − β) + Aβ − α

which is continuous and increasing for xn > 0 and xn+1 > β. An equilibrium x of
(2.3) is a solution of x2+(A−β−1)x = α. Here we need the non-negative equilibrium

x = 1
2

(
β + 1−A +

√
(β + 1−A)2 + 4α

)
. (2.4)

Making with an unknown t ∈ (0, 1) the ansatz

xn = x + tn + ct2n + o(t2n) (n →∞) (2.5)
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we find, according to (1.4),

x =
1 + βt−At2

(1 + t)t
, c =

(1 + t)t3

(1− t)(1 + t + t2 + (A + β)t3)
(2.6)

provided that the first equation has a solution t ∈ (0, 1). In this case the ansatz

yn = x + tn + at2n

zn = x + tn + bt2n

leads to the asymptotic representation

f(yn, yn+1)− yn−1 ∼
(
1− a

c

)
t2n+1

and an analogous one with z and b instead of y and a, respectively. These representa-
tions show that inequalities (2.2) are satisfied for sufficiently great n, since c > 0, and
Theorem 1 yields the existence of a solution of equation (2.3) with asymptotic be-
haviour (2.5) which will verify the corresponding three conjectures from [4]. However,
it remains to prove that t ∈ (0, 1).

Example 2. Choosing in (2.3) α = A = 0 we get example (1.8) of equation
(1.1). Equations (2.4) and (2.6) specialize to

x = β + 1 =
1 + βt

(1 + t)t
, c =

t3

(1− t)(1 + t− t2)

and one solution of the first equation is t = 1
2(β+1)

(√
4β + 5 − 1

)
, which satisfies

t ∈ (0, 1) even for β > −1. Hence, there exists a solution of equation (1.8) with
property (2.5), i.e. in particular, a solution of (1.8) with xn > x = β + 1 when
β > −1 and n ≥ n0. But there exists also such a solution when n ≥ −1, namely
xn+n0+1.

Example 3. Choosing in (2.3) α = 1 and β = A = 0 we get example (1.9) of
equation (1.1). Equations (2.4) and (2.6) specialize to

x = 1
2

(
1 +

√
5
)

= 1
(1+t)t , c =

(1 + t)t3

1− t3

and t = 1
2

(√
2
√

5− 1 − 1
) ≈ 0.4317 is the solution of the first equation contained

in (0, 1). Hence, there exists a solution of equation (1.9) with property (2.5). This
asymptotic relation shows that xn is eventually monotonically decreasing to x, and
a suitable shift of xn is decreasing for all n ≥ −1.

Example 4. Choosing in (2.3) β = 0 and A = 1 we get example (1.10) of
equation (1.1). Equations (2.4) and (2.6) specialize to

x =
√

α =
1− t

t
, c =

(1 + t)t3

1− t4

and the first equation implies t = 1√
α+1

∈ (0, 1). Hence, there exists a solution of
equation (1.10) with property (2.5). The validity of the corresponding conjecture [4:
6.10.3] follows analogously as in the foregoing examples.
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3. Asymptotically two-periodic solutions

Equation (1.7) possesses the two-periodic solution x2n−1 = 0, x2n = p with an ar-
bitrary constant p. Looking for an asymptotically two-periodic solution, we put
un = x2n−1 and vn = x2n as before and make the ansatz

un =
∞∑

ν=1

aνcνtνn, vn =
∞∑

ν=0

bνcνtνn (3.1)

with b0 = p and arbitrary c, since (1.6) is an autonomous equation. We choose c > 0.
In the case of equation (1.7) equations (1.6) specialize to

(1 + vn)un+1 = un

(1 + un+1)vn+1 = vn

}
. (3.2)

Substitution of (3.1) into these equations and comparing the coefficients yields t =
1

p+1 , a1 = b1 undetermined, and

aν = 1
(p+1)ν−1−1

ν−1∑
µ=1

bµaν−µ(p + 1)µ−1

bν =
1

(p + 1)ν − 1

ν−1∑
µ=0

bµaν−µ





(ν ≥ 2). (3.3)

In view of the presence of the arbitrary constant c we can choose a1 = b1 = 1. The
next coefficients read

a2 = 1
p

b2 = 2
p(p+2)

and
a3 = 3p+4

p2(p+2)2

b3 = p2+9p+12
p2(p+2)2(p2+3p+3) .

For positive p and 0 < t < 1, and the coefficients aν , bν are also positive. It can easily
be proved by induction that the further coefficients allow the estimates aν ≤ 1

pν−1

and bν ≤ 1
pν−1 for all ν ≥ 1. This means that series (3.1) are not only asymptotic

ones as n →∞, but that they even converge for tn < p
c , i.e. for suitable great n.

Remark.

1. By positive initial values u0 and v0 it follows from system (3.2) that all its
solutions are also positive and decreasing, hence converging to a non-negative limit.
At least one limit equals zero (cf. [4: p. 60]). In (3.1) we have un → 0 and vn → p as
n →∞.

2. By elimination it can be shown that both solutions of system (3.2) are also
solutions of the rational difference equation wn+1 = wn+w2

n

wn−1+w2
n
wn which is not of type

(1.1).



Asymptotics of Difference Equations 1067

4. Dependence on the initial values

Next, we want to study the solution of equation (1.7) in dependence on its initial
values x−1 and x0.

Proposition 1. For n ∈ N0 and positive x−1 and x0 the solution of system (1.6)
satisfies the estimates

x2n ≤ x0t
n

x2n−1 ≥ p + (x−1 − p)tn

}
(4.1)

with t = 1√
x−1+1

and p =
√

x−1 + 1− 1 when

x0 ≤ 1
2

(√
x−1 + 1− 1

)
(4.2)

and the estimates
x2n+1 ≤ x1t

n

x2n ≥ p + (x0 − p)tn

}
(4.3)

with t = 1√
x0+1

and p =
√

x0 + 1− 1 when

x1 ≤ 1
2

(√
x0 + 1− 1

)
. (4.4)

Proof. We use the foregoing notations un = x2n−1 and vn = x2n for which
estimates (4.1) read

vn ≤ v0t
n

un ≥ p + (u0 − p)tn

}
. (4.5)

Since these estimates are valid for n = 0 we shall prove them by induction. Hence,
according to (3.2), it suffices to show that

v0t
n

1 + p + (u0 − p)tn+1
≤ v0t

n+1,
p + (u0 − p)tn

1 + v0tn
≥ p + (u0 − p)tn+1

for n ∈ N0, i.e. (for t > 0, v0 > 0 and 0 < p < u0)

1 ≤ (1 + p)t + (u0 − p)tn+2, (u0 − p)(1− t) ≥ v0

(
p + (u0 − p)tn+1

)
.

The optimal solution of the first inequality for n ∈ N0 is t = 1
p+1 , so that 0 < t < 1.

The second inequality is valid, if it is valid for n = 0, i.e. if

(u0 − p)p ≥ v0(p2 + u0). (4.6)

For p =
√

u0 + 1− 1 this inequality turns over into

v0 ≤ 1
2

(√
u0 + 1− 1

)
. (4.7)

Hence, (4.7) implies (4.5), i.e. in view of u0 = x−1 and v0 = x0, (4.2) implies (4.1).
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Writing ηn = x2n and ξn = x2n+1, system (1.6) is equivalent to

(1 + ξn)ηn+1 = ηn

(1 + ηn+1)ξn+1 = ξn.

For un = ηn and vn = ξn these equations coincide with (3.2) so that (4.5) turns over
into

ξn ≤ ξ0t
n

ηn ≥ p + (η0 − p)tn

}
(4.8)

with t = 1
p+1 and p =

√
η0 + 1 − 1, and (4.8) is valid for n ∈ N0 when 0 < ξ0 ≤

1
2 (
√

η0 + 1−1). According to ηn = x2n and ξn = x2n+1 this means that (4.3) is valid
when (4.4) is valid

Remark.

1. In view of equation (1.7) condition (4.4) can be written as

x−1 ≤ 1
2 (x0 + 1)

(√
x0 + 1− 1

)
(4.9)

and (4.2) by inversion as
4x0(x0 + 1) ≤ x−1. (4.10)

Hence, by positive initial values, Proposition 1 and Remark 1 of Section 3 imply
x2n → 0, limn→∞ x2n−1 ≥ √

x−1 + 1 − 1 > 0 under (4.9), and x2n−1 → 0 and
limn→∞ x2n ≥

√
x0 + 1− 1 > 0 under (4.10).

2. The choice of p in the proof of Proposition 1 is optimal, since domain (4.6) in
the first quadrant of the (u, v)-plane has the envelope

(v + 1)p2 − up + uv = 0

2(v + 1)p− u = 0

so that p = u
2(v+1) and u = 4v(v + 1), i.e. p = 2v and v = 1

2

(√
u + 1− 1

)
.

5. Asymptotically three-periodic solutions

Looking for a three-periodic solution of equation (1.7) generated by x−1 = p, x0 =
q, x1 = r, we have to solve the system of equations

p = (1 + q)r

q = (1 + r)p

r = (1 + p)q





. (5.1)

Not all solutions of this system can be positive, because every positive solution of
equation (1.7) converges to a two-periodic solution (cf. [4: p. 60]). The non-trivial
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solutions of (5.1) are solutions of the polynomial equation z3 + 3z2 = 3, and if p = z

is one solution, then q = 3
z2−3 and r = 3(z+1)

z2−3 . Hence, e.g.,

p = 2 cos π
9 − 1 ≈ 0.879385

q = −2 sin π
18 − 1 ≈ −1.347296

r = −2 cos 2π
9 − 1 ≈ −2.532089.

For the first terms of an asymptotically three-periodic solution we expect, as in
Section 3, the structure

x3n−1 = p + atn

x3n = q + btn

x3n+1 = r + ctn





(5.2)

up to an O(t2n)-term where the coefficients must satisfy the equations

p + atn = (1 + q + btn)(r + ctn)

q + btn = (1 + r + ctn)(p + atn+1)

r + ctn = (1 + p + atn+1)(q + btn+1)

again up to an O(t2n)-term, i.e. besides of (5.1),

(1 + q)c + rb = a

(1 + r)ta + pc = b

(1 + p)tb + qta = c





. (5.3)

This homogeneous system has a non-trivial solution, if its determinant

∣∣∣∣∣∣

−1 r 1 + q
(1 + r)t −1 p

qt (1 + p)t −1

∣∣∣∣∣∣
= t2 + 9t− 1 (5.4)

vanishes. Since it must be |t| < 1, we expect the existence of an asymptotically
three-periodic solution of equation (1.7) with asymptotic approximations (5.2) and
t = 1

2

(− 9 +
√

85
) ≈ 0.109772 . The corresponding solution of system (5.3) reads, up

to a constant factor,
a = 11z2 + 5z − 14

b = −z2(t + 5)− 2z + t + 6

c = z2(2− t) + z(1− t)− 2.

Now, we could proceed as in Section 3, but we resign from doing this. Note that
the existence of a second zero of (5.4) with t < −1 indicates that the three-periodic
solution p, q, r is unstable.
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6. Bounded solutions

Next, we verify a generalization of three conjectures concerning bounded solutions.

Conjecture [4: 11.4.1]. Assuming that all coefficients in equation (1.1) are
positive, show that every of its positive solution is bounded.

Even in the case that all coefficients of equation (1.1) are non-negative an anal-
ogous conjecture comes true if there exists a constant M satisfying α ≤ MA, β ≤
MB, γ ≤ MC because then every non-negative solution of (1.1) satisfies xn ≤ M
for n ∈ N. If all coefficients in the denominator of equation (1.1) are positive
whereas the coefficients in its numerator can remain non-negative, then we can choose
M = max

(
α
A , β

B , γ
C

)
. This means, in particular, that the preceding conjecture comes

true.
The case γ = 0 was already treated in [4: Theorem 9.2.2]. The case β = 0 verifies

Conjecture [4: 9.5.2], and the case α = 0 verifies Conjecture [4: 9.5.3].

7. Global behaviour

Finally, we refer to

Conjecture [4: 11.4.11]. Show that difference equation (1.11) has the following
trichotomy character:

(i) When p > 1, every positive solution converges to the positive equilibrium.
(ii) When p = 1, every positive solution converges to a period-five solution.
(iii) When p < 1, there exist positive unbounded solutions.

In the elementary case p = 0 the conjecture turns out to be true. Otherwise, for
p > 0 we supplement it by an open problem.

Preliminarily, we make the ansatz

xn =
∞∑

j=0

cja
jznj (7.1)

with an arbitrary a and put it into equation (1.11) in the form

xn = xn+3xn+2 − p. (7.2)

Comparing coefficients we obtain

c0 = c2
0 − p

ac1

(
1− c0(z3 + z2)

)
= 0

}
(7.3)

and for k ≥ 2 the recursions

ck =
z2k

1− c0z2k(zk + 1)

k−1∑

j=1

cjck−jz
j (7.4)
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provided that the denominator is different from zero. The first equation of (7.3)
means that c0 is an equilibrium of (7.2), we choose the solution

c0 = 1
2

(
1 +

√
1 + 4p

)
. (7.5)

As a function of p it is strictly increasing with c0 ≥ 1
2 for p ≥ − 1

4 . The second
equation yields either ac1 = 0 which leads to the stationary solution yn = c0, or it
leaves ac1 undetermined. Without loss of generality we choose c1 = 1, and it remains
to study the solutions of the equation

z3 + z2 = 1
c0

(7.6)

for c0 ≥ 1
2 , which is the characteristic equation of the linearized equation associated

with equation (7.2). The solution z = 1 of equation (7.6) with c0 = 1
2 is useless

since then all denominators in (7.4) vanish. For c0 > 1
2 there exists always a positive

solution with z < 1. For c0 = 27
4 , i.e. for p = 621

16 , there exists also the twofold
negative solution − 2

3 , and for c0 > 27
4 there exist two different solutions z with

−1 < z < 0. For 1
2 < c0 < 27

4 there exist two conjugate complex solutions to which
we come back later on. In particular, for c0 = 1

2

(√
5+1

)
, i.e. for p = 1, the solutions

of equation (7.6) are

z1 = e
4πi
5 , z2 = e

6πi
5 , z3 = 1

2

(√
5− 1

)
. (7.7)

In order to construct further solutions of equation (7.2) we extend ansatz (7.1)
to

xn =
∞∑

j=0

∞∑

k=0

cjkajznjbkwnk (7.8)

with w 6= z. The recursions for the coefficients are the two-dimensional generaliza-
tions of (7.4). It turns out that w must be also a solution of equation (7.6), that
cj0 = cj , and replacing z by w we obtain c0k from ck. More generally, cjk arises from
ckj by exchanging z and w. Hence cjk = ckj when w = z. Some special cases are

c20 =
z5

1− c0z4(z2 + 1)

c11 =
z2w2(z + w)

1− c0z2w2(zw + 1)

c02 =
w5

1− c0w4(w2 + 1)

c30 =
c20z

7(z + 1)
1− c0z6(z3 + 1)

c21 =
z4w2(c20(z2 + w) + c11z(w + 1))

1− c0z4w2(z2w + 1)
.
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In the case p 6= 621
16 the most general ansatz for a solution of equation (7.2) reads

xn =
∞∑

j=0

∞∑

k=0

∞∑

l=0

cjkla
jznjbkwnkcltnl (7.9)

with three different solutions z, w, t of equation (7.6). There are analogous recursions,
symmetries and relations as before, in particular cij0 = cij . The recursions for cjkl

contain the denominator

D = 1− c0z
2jw2kt2l(zjwktl + 1) (7.10)

which has the following property:

Lemma. Let z, w, t be three pairwise different solutions of equation (7.6), let be
c0 > 1

2

(√
5 + 1

)
and j + k + l ≥ 2 (j, k, l ∈ N0). Then D from (7.10) is different

from zero.

Proof. For j + k + l = 1 we have D = 0 in view of (7.6). If the solutions z, w, t
are real, then they have absolute values less then 1, and the powers of these values
diminish. Hence, D > 0 for j + k + l ≥ 2.

Now, let z be complex and w = z, and assume that D = 0. For fixed j, k, l we
introduce the notation zjwktl = ρeiϑ. The assumption D = 0 implies

1
c0

= ρ3 cos 3ϑ + ρ2 cos 2ϑ, ρ3 sin 3ϑ + ρ2 sin 2ϑ = 0,

and elimination of ϑ yields

c0 = 1
2ρ4

(
1 +

√
1 + 4ρ2

)
. (7.11)

Since the right-hand side herein is strictly decreasing, there exists exactly one ρ
satisfying (7.11) for given c0, namely ρ = |z|. For c0 > 1

2 (
√

5+1) we have ρ < 1, and
the powers of |z|, |w|, t again diminish, so that D 6= 0

The lemma implies that all coefficients cjkl exist for c0 > 1
2 (
√

5+1), i.e. for p > 1,
where |z| < 1 for all solutions of equation (7.6). However, for 1

2 < c0 ≤ 1
2 (
√

5 + 1),
i.e. for − 1

4 < p ≤ 1, we have |z| = |w| ≥ 1 and t < 1, so that D = 0 is possible. E.g.,
for z = z1 and w = z2 from (7.7) we get zw = 1 and therefore D = 0 in (7.10) for
j = 2, k = 1, l = 0, but then the numerator in c21 also vanishes, and c21 = c210 exists
nevertheless.

In the case p = 0 it can easily be seen that xn = eazn+bzn+ctn

, where z is a
complex and t the real solution of equation (7.6) with c0 = 1, is the general complex
solution of equation (7.2) when a, b, c are arbitrary, and xn is the general positive
solution of equation (7.2) when c is real and b = a (cf. [4: Section 3.3]). For a 6= 0,
xn is indeed unbounded as conjectured in (iii), and obviously, it can be expanded
into form (7.9) with cjkl = 1

j! k! l! .

After these preparations there remains the following
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Open Problem. What are the precise conditions for the existence of cjkl, for
the convergence of (7.9), and for the (unique) determination of the parameters a, b, c
out of given positive initial values x−2, x−1, x0?

For p > 1 series (7.9) are simultaneously asymptotic expansions as n → ∞ and
conform (i).

In the case p = 1 we can modify ansatz (7.9) for solutions (7.7) of equation (7.6)
in the following way. With the notations z = z1 and t = z3 we have w = z2 = z so
that zjwk = zj+4k and, in view of z5 = 1, we can replace ansatz (7.9) by

xn =
4∑

m=0

∞∑

l=0

bmlz
nmcltnl (7.12)

with
bml =

∑

j+4k≡m mod 5

cjkla
jbk. (7.13)

But it is simpler to determine the coefficients bml out of (7.2). This possibility shows
that they can exist even if the right-hand side of (7.13) does not make sense. The
special case of equation (7.12) with c = 0, i.e.

xn =
4∑

m=0

bm0z
nm (7.14)

yields the 5-periodic solution of (7.2) with p = 1 generated by

x0 = r, x1 = s, x2 =
r + 1
rs− 1

, x3 = rs− 1, x4 =
s + 1
rs− 1

. (7.15)

Here r and s are arbitrary positive parameters satisfying rs > 1, if we look for positive
xn.

Since (7.14) is a discrete Fourier transform we easily find by inversion

bm0 =
1
5

4∑

k=0

xmz−mk

with xm from (7.15). The coefficients contain the arbitrary parameters r and s instead
of a and b in (7.13), they determine the further coefficients bml in (7.12) recursively.
For r = s = 1

2 (
√

5 + 1) the 5-periodic solution degenerates to the equilibrium, to
which the solution (7.12) converges in the case a = b = 0, cf. (ii). For the initial
values x−2 = x0 and x−1 = 1

x0
the olution xn of equation (7.2) with p = 1 continues

to smaller n by

x2−5n = x1−5n = 0

x−5n = x−1−5n = x−2−5n = −1

}
(n ∈ N).

For p < 0 it is not possible to choose the initial values for the solutions of equation
(7.2) arbitrarly (cf. [4: p. 17]). Moreover, for − 1

4 < p < 0 besides of (7.5) also
the second equilibrium c0 = 1

2 (1 − √
1 + 4p) is positive and must be taken into

consideration.
The ansatz (7.9) can be transferred to the excluded case p = 621

16 , where z = w =
− 2

3 , replacing wnk by (nzn)k and letting cjkl depend on a and b.
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