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Invariant Measures in Quasi-Metric Spaces

M.V. Marchi

Abstract. We prove that in separable, complete, quasi-metric spaces there exists
exactly one probability measure with bounded support, invariant with respect to
given families of contractions and weights. The invariant measure has compact
support and is an attractor in the space of probability measures with bounded
support equipped with a metric defined in term of Hölder continuous functions.
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1. Introduction

In fractal theory we are interested in measures invariant with respect to finite
families of functions S1, . . . , SN and weights m1, . . . , mN , i.e. in measures µ
such that

µ =
N∑

i=1

miµ ◦ S−1
i (1.1)

where mi > 0 are constants such that
∑N

i=1 mi = 1.

Hutchinson [2] proved that when the functions Si are contractions in Rn,
there exists exactly one invariant probability measure µ with compact sup-
port. The support of µ is the compact set invariant with respect to the
family {S1, . . . , SN}, i.e. the unique non-empty compact set K such that
K =

∑N
i=1 Si(K). Moreover, µ is an attractor for the map

T (ν) =
N∑

i=1

miν ◦ S−1
i
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with respect to the weak convergence of probability measures with compact
supports. For example, an n-dimensional cube Q, which is invariant with
respect to 2n similarities of contraction factor 2−1, supports the normalized
restriction to the cube of the n-dimensional Lebesgue measure, that we denote
by µ. The latter is the unique probability measure on the cube invariant
with respect to dilations and translations that make up the 2n similarities.
Furthermore, the sequence (Tn(ν)) = ((T ◦ · · · ◦ T )(ν)) converges weakly to µ
for every probability measure ν with compact support.

It is natural to extend the fractal theory by replacing the space Rn with
a quasi-metric space. Actually, these spaces occour, for example, in harmonic
analysis (see Stein [9]) or in the dynamic fractal theory, when a self-similar
set is endowed with the Lagrangian metric (see Mosco [5, 6]).

When the space is of homogeneous type, the contractions are similarities
of contraction factors li and mi = l

df

i , where df is the fractal dimension,
density arguments show that the normalized restriction to the invariant set
of the df -dimensional Hausdorff measure is the unique invariant measure (see
Marchi [4]).

In the Euclidean case, the existence and uniqueness of a probability mea-
sure, invariant with respect to given families of general contractions and
weights, has been proved by using the fixed point theorem. Actually, once
the space of probability measures with compact support is equipped with the
metric

δ(µ, ν) = sup
{∣∣∣∣

∫
fdµ−

∫
fdν

∣∣∣∣ : f – Lipschitz with constant Lf ≤ 1
}

,

T turns out to be a contraction. Moreover, the subspaces of probability mea-
sures with equibounded supports turn out to be complete. In fact, every
Cauchy sequence in the metric δ defines a positive linear form on the family
of Lipchitz maps. Due to density with respect to the uniform convergence
on compacta of the latter family in the space C0 of continuous functions with
compact support, the form turns out to be a positive linear functional on C0.
Then, by the Riesz’s representation theorem, it is an integral with respect to
a probability measure, to which the Cauchy sequence turns out to converge
in the metric δ and then weakly.

Mosco [7] proved that Hutchinson’s results still hold in locally compact,
quasi-metric spaces. In the quasi-metric case, the family of Lipschitz maps
may be too poor to define a metric on the space of probability measures. Ac-
tually, by the presence of the constant cT ≥ 1 in the quasi-triangle inequality,
the quasi-distance function can fail even to be continuous. Nevertheless, once
in the metric δ the Lipschtz functions are replaced by the Hölder continuous
functions of the same Hölder exponent of the Macias-Segovia quasi-metric



Invariant Measures 19

(a locally Hölder continuous quasi-metric metrically equivalent to the origi-
nal one), the set of probability measures with equibounded compact supports
turns out to be a complete metric space.

In this paper we extend Mosco’s results by proving that in a separable,
complete, quasi-metric space there exists exactly one probability measure,
with bounded support, invariant with respect to T . More precisely, we prove

Theorem. Let S1, . . . , SN be contractions in a separable, complete, quasi-
metric space (X, d) and m1, . . . , mN be positive constants such that

∑N
i=1 mi =

1. Then:

(i) There exists exactly one probability measure µ with bounded support
that satisfies (1.1). Moreover, suppµ = K, where K is the unique non-empty
compact set, invariant with respect to {S1, . . . , SN}.

(ii) For every probability measure ν with bounded support, the sequence
(Tn(ν)) converges weakly to the measure µ.

The plan of the paper is the following: In Section 2 we recall the Daniell-
Stone theorem and its applications in metrizable spaces. In Section 3 we define
in the space of probability measures with bounded support a metric in terms
of Hölder continuous functions and prove that the convergence with respect
to this metric is equivalent to the weak convergence. Finally, in Section 4 we
prove our main result.

2. Measures in metrizable spaces

In this section we recall the Daniell-Stone theorem, its applications in metriz-
able spaces and some results on probability measures. For notations and
proofs we refer to Bauer [1] and Parthasarathy [8].

Given a set X, a vector space F of real functions on X and a positive linear
form I on F , the Daniell-Stone theorem allows one to construct a measure µ in
X, with respect to which I and F turn out to be the integral and the family of
elementary functions, respectively. Obviously, in order to apply the Daniell-
Stone theorem, F and I must satisfy the properties of the latter mathematical
objects, i.e. F must be a Stone vector lattice and I an abstract integral the
definitions of which will be given below.

Definition 2.1. A Stone vector lattice on a set X is a vector space F of
real functions on X such that

(i) |u| ∈ F
(ii) inf(u, 1) ∈ F

for all u ∈ F .
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When the Stone vector lattice contains the costant functions, condition
(ii) follows from condition (i).

Definition 2.2. A set G ⊂ X is said to be F-open, if there exists an
increasing sequence of positive functions un in F such that 1G = sup un.

The system of F-open subsets of X is closed with respect to countable
unions. Further, G is F-open whenever, for a function u ∈ F , G = {x ∈ X :
u(x) > 0}. We denote by A(F) the smallest σ-algebra containing the F-open
subsets of X, and we say A(F) to be the σ-algebra generated by F .

Definition 2.3. An abstract integral on a Stone vector lattice F is a
linear form I on F with the following properties:

(i) Positivity: I(u) ≥ 0 for all u > 0 in F .

(ii) Monotonicity: for every sequence (un) in F decreasing to 0, inf I(un) =
0.

Theorem 2.4 (Daniell-Stone). Let F be a Stone vector lattice on a set
X and I be an abstract integral on F . Then:

(i) There exists exactly one measure µ on A(F) with the properties

F ⊆ L1(µ) (2.1)

I(u) =
∫

u dµ for every u ∈ F (2.2)

µ(E) = inf
{
µ(G) : E ⊆ G,G is F − open

}
for all E ∈ A(F). (2.3)

(ii) If F contains the constant functions, the measure µ is uniquely deter-
mined by properties (2.1)− (2.2) and is finite.

When X is a metrizable space, the σ-algebra of Borel sets B(X), i.e. the
smallest σ-algebra containing the open subsets of X, coincides with the σ-
algebra of Baire sets A(Cb), where Cb denotes the Stone vector lattice of all
bounded continuous functions on X. Therefore, every abstract integral on Cb

is an integral with respect to a finite Borel measure. Conversely, since every
integral with respect to a finite Borel measure is an abstract integral on Cb,
we can consider abstract integrals on Cb and finite Borel measures as the same
mathematical objects.

Moreover, by (2.3) it follows that every finite Borel measure µ is Borel-
regular, i.e.

µ(A) =
{

inf{µ(G) : A ⊆ G with G open}
sup{µ(F ) : F ⊆ A with F closed} (2.4)

for every A ∈ B(X). By taking into account the identity between finite Borel
measures and abstract integrals on Cb, we define in the space of probability
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measures M1 = M1(X) with

M1 =
{

Borel measures in X with bounded support and unitary mass
}

the weak topology. We recall that a sequence (µn) in M1 is said to be weakly
convergent to a measure µ ∈ M1 if limn→+∞

∫
f dµn =

∫
f dµ for every

f ∈ Cb.
Sometimes it is convenient to consider the probability measures as abstract

integrals on Stone vector lattices, rich enough to generate B(X), but smaller
than Cb. For example, when X is locally compact and C0 is the Stone vector
lattice of continuous functions with compact support, any positive linear form
on C0 is continuous, once C0 has been equipped with the uniform convergence
on compacta, and then, by Dini’s theorem, monotone. Therefore, by the
Daniell-Stone theorem, it is a Radon measure, i.e. a Borel measure, finite
on compacta and regular, i.e it satisfies (2.4) and µ(A) = sup

{
µ(K) : K ⊆

A with K compact
}
.

Another case in which we consider the probability measures as abstract
integrals on Stone vector lattices smaller than Cb is in metrizing M1. When X
is separable, we can construct in M1 a metric whose topology coincides with
the weak one (see [8: Theorem 6.2]). This metric depends on the topology on
X, but, in general, does not reflect the properties of a given distance d in X.
In order to define in M1 a metric which takes into account the distance d,
we consider the probabilty measures as abstract integrals on the Stone vector
lattice Lip(X) of bounded functions, Lipschitz continuous with respect to d.
Due to the Lipschitz continuity of d, this lattice is rich enough to generate
B(X). Thus every abstract integral on Lip(X) is an integral with respect to
a finite Borel measure and viceversa.

In the next section the topology on the metrizable space X will be defined
in terms of a quasi-distance d. We recall that a quasi-distance d satisfies the
properties of a distance with the triangle inequality replaced by the quasi-
triangle inequality: there exists a constant cT ≥ 1 such that

d(x, z) ≤ cT (d(x, y) + d(y, z)) for all x, y, z ∈ X.

In this case Cb will be replaced by the Stone vector lattice

C0,γ
b =

{
bounded functions, Hölder continuous

of exponent γ with respect to d

}

where γ is as in Theorem 3.1. We will prove that, when X is separable,
A(C0,γ

b ) = B(X) and, by using C0,γ
b , we will define a metric δ in M1. In order
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to prove the completeness of (M1, δ), we will need to prove that a bounded
positive linear form L on C0,γ

b , obtained as limit of µn-integrals, where (µn) is
a Cauchy sequence in (M1, δ), is an abstract integral. By using the density on
compacta of C0,γ

b in C0, Mosco [7] proved that, when X is locally compact and
the measures have compact support, the positive linear form L is an abstract
integral.

In the following section, without assuming X to be locally compact, we will
prove the monotonicity of L by showing that any Cauchy sequence in (M1, δ)
is uniformly tight. We recall that a sequence (µn) is said to be uniformly tight
if for every η > 0 there exists a compact set Kη such that, for each n > 0,
µn(Kη) > 1− η.

In order to prove that the weak convergence and the convergence with
respect to the metric δ are equivalent, we will use the following theorem.

Theorem 2.5 [8: Theorem 6.8]. Let X be a complete, separable, metriz-
able space and (µn) be a sequence in M1. Then (µn) converges weakly to a
measure µ ∈M1 if and only if

lim
n→+∞

sup
{∣∣∣∣

∫
f dµn −

∫
f dµ

∣∣∣∣ : f ∈ A0

}
= 0

for every family A0 of functions equicontinuous at all points x ∈ X and uni-
formly bounded.

3. A metric on the set of Borel measures

in quasi-metric spaces

A quasi-distance d on a set X is a function d : X ×X → R+ such that:

(i) d(x, y) ≥ 0 for all x, y ∈ X

(ii) d(x, y) = 0 if and only if x = y

(iii) d(x, y) = d(y, x) for all x, y ∈ X

(iv) For a constant cT = cd
T ≥ 1, d(x, z) ≤ cT

(
d(x, y) + d(y, z)

)
for all

x, y, z ∈ X.

For every x ∈ X and R > 0 we set

Bd(x,R) =
{
y ∈ X : d(x, y) < R

}

Cd(x,R) =
{
y ∈ X : d(x, y) ≤ R

}
.



Invariant Measures 23

Further, for x0 ∈ X, E ⊆ X and ε > 0 we set

dx0(x) = d(x, x0)

dE(x) = inf
{
d(x, a) : a ∈ E

}

Id
ε (E) =

{
x ∈ X : dE(x) < ε

}

diamdE = inf
{
d(x, y) : x, y ∈ E

}
.

A quasi-metric space is a topological space X on which a quasi-distance d
is defined, such that the balls Bd(x,R) form a basis of neighborhoods of x
for the topology of X. This space turns out to be a uniform space whose
uniformity has a countable base. Then, by the Alexandroff-Uryson theorem,
it is metrizable. In particular, any subset of X is complete if and only if it
is sequentially complete, and it is compact if and only if it is complete and
totally bounded.

In order to introduce a metric in the space of probability measures on X,
i.e. in M1 with respect to which a map T : M1 → M1, defined in term of
contractions on (X, d), turns out to be a contraction, we need to find a Stone
vector lattice of continuous functions F which takes into account the metric
properties of (X, d) and that is rich enough so that A(F) = B(X). When d is
a metric, the seeked lattice is that of Lipschitz maps. Actually, in this case for
every E ⊆ X the function dE(x) is a Lipschitz map. Because of the presence
of the constant cT in the quasi-triangle inequality, in a quasi-metric space dx0

can even fail to be continuous. Unfortunately, we cannot replace d with the
distance given by the Alexandroff-Uryson theorem, because the latter is not
metrically equivalent to d.

The following Theorem 3.1 shows that there exists a quasi-distance d̃,
metrically equivalent to d, such that d̃x0 is locally Hölder continuous. We
recall that a real function f on a quasi-metric space X is said to be Hölder
continuous of exponent γ, 0 < γ ≤ 1, if there exists a constant k > 0 such
that

|f(x)− f(y)| ≤ k d(x, y)γ for all x, y ∈ X.

The constant

|f |d0,γ = inf
{

k > 0 : |f(x)− f(y)| ≤ k d(x, y)γ for every x, y ∈ X
}

is called the Hölder constant of f . Further, the function f is said to be locally
Hölder continuous of exponent γ if, for every closed bounded C ⊂ X, there
exists a constant k = k(C) > 0 such that

|f(x)− f(y)| ≤ k d(x, y)γ for all x, y ∈ C.
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Moreover, we recall that two quasi-distances d and d̃ on X are said to be
metrically equivalent if they satisfy (3.1).

Obviously, a function f is Hölder continuous of exponent γ with respect
to a quasi-distance d if and only if it is Hölder continuous of exponent γ with
respect to a quasi-distance d̃ metrically equivalent to d. The unique difference
consists in the Hölder constants which differ by a constant independent of f .

Theorem 3.1 [3]. Let d be a quasi-distance on a set X. Then there exists
a quasi-distance d̃ on X and constants c1 > 0, c2, c and 0 < γ ≤ 1 depending
only on cT such that

c1d(x, y) ≤d̃(x, y) ≤ c2d(x, y) (3.1)
∣∣d̃(x, z)− d̃(y, z)

∣∣ ≤ c
(
d̃(x, z) + d̃(y, z)

)1−γ
d̃(x, y)γ (3.2)

for every x, y, z ∈ X.

By the previous theorem it follows in particular that, for every x0 ∈ X

and R > 0, Bd̃(x,R) and I d̃
ε (E) are open, C d̃(x,R) is closed and Bd̃(x,R) ⊆

C d̃(x,R). Because of its regularity, in the following we will consider d̃ instead
of d as a quasi-metric on X, and we will omit to write d̃ when the balls, the
diameters, the quasi-triangle and the Hölder constants are referred to d̃.

Let C0,γ
b be the set of bounded Hölder continuous functions of exponent γ

on (X, d̃). It is easy to prove that C0,γ
b is a Stone vector lattice of continuous

functions which contains the constants. We will prove that C0,γ
b is large enough

so that A(C0,γ
b ) = B(X).

We remark that for fixed x0 ∈ X and r > 0, B(x0, r) = {x ∈ X :
r − fr(x) > 0}, where

fr(x) = inf(r, d̃x0(x)).

Therefore, to prove that the B(x0, r) is C0,γ
b -open it suffices to prove that

fr ∈ C0,γ
b . The latter result follows from Lemma 3.2 below, that we prove for

sake of completeness.

Lemma 3.2 [7]. Let x0 ∈ X, and let r > 0 be such that there exists
y0 ∈ X with d̃(x0, y0) = r. Then, for every x ∈ B(x0, r) and y ∈ X with
d̃(y, x0) > r, there exists z ∈ B(x0, cT (1 + 2cT )r) such that r ≤ d̃(z, x0) and
d̃(z, x) ≤ d̃(y, x).

Proof. Let x ∈ B(x0, r). For every u ∈ C(x0, r), d̃(u, x) < 2cT r, so

C(x0, r) ⊂ B(x, 2cT r). (3.3)

Moreover, for every v ∈ B(x, 2cT r), d̃(v, x0) < cT (1 + 2cT )r, thus

B(x, 2cT r) ⊂ B
(
x0, cT (1 + 2cT )r

)
. (3.4)
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Let y ∈ X. If d̃(y, x0) < cT (1 + 2cT )r, we choose z = y, and if d̃(y, x0) ≥
cT (1 + 2cT )r, we choose z = y0. Actually, by (3.4), d̃(y, x) ≥ 2cT r whereas,
by (3.3), d̃(y0, x) < 2cT r

Lemma 3.3. Let x0 ∈ X and let r > 0 be such that there exists y0 ∈ X
with d̃(x0, y0) = r. Then fr ∈ C0,γ

b .

Proof. We have

|fr(x)− fr(y)|

=
{

0 if d̃(x, x0), d̃(y, x0) ≥ r

|d̃(x, x0)− d̃(y, x0)| ≤ c(2r)1−γ d̃(x, y)γ if x, y ∈ B(x0, r).

When x ∈ B(x0, r) and d̃(y, x0) ≥ r, by Lemma 3.2 there exists z ∈ B(x0, cT (1+
2cT )r) such that

0 < fr(y)− fr(x)

= r − d̃(x, x0)

≤ d̃(z, x0)− d̃(x, x0)

≤ c(d̃(z, x0) + d̃(x, x0))1−γ d̃(x, z)γ

< c(cT (1 + 2cT )r + r)1−γ d̃(x, z)γ

≤ c(cT (1 + 2cT )r + r)1−γ d̃(x, y)γ

and the statement is proved

Lemma 3.4. For every x0 ∈ X and r > 0, the ball B(x0, r) is C0,γ
b -open.

Proof. By Lemma 3.3, B(x0, r) is C0,γ
b -open whenever there exists y0 ∈ X

with d̃(x0, y0) = r. Otherwise, or B(x0, r) is countable union of C0,γ
b -open balls

B(x0, rn) where, for every 0 < rn < r, there exists yn ∈ X with d̃(x0, yn) = rn

and then it is C0,γ
b -open, or B(x0, r) = {x0}. In this case we can assume

without loss of generality r ≤ 1. Thus fr ∈ C0,γ
b since

|fr(x)− f(y)| =
{

0 when x, y 6= x0 or x = y
r ≤ rγ ≤ d̃(x, y)γ when x = x0 and y 6= x0

and the lemma is proved

Proposition 3.5. Let (X, d) be a separable, quasi-metric space. Then
A(C0,γ

b ) = B(X).

Proof. From the separability of the space it follows that any open subset
of X is the countable union of open balls and then C0,γ

b -open



26 M.V. Marchi

Set

δ(µ, ν) = sup
{∣∣∣∣

∫
f dµ−

∫
f dν

∣∣∣∣ : f ∈ C0,γ
b with |f |0,γ ≤ 1

}
.

Theorem 3.6. Let (X, d) be a separable, quasi-metric space. Then (M1, δ)
is a metric space.

Proof. For any µ, ν ∈ M1, δ(µ, ν) ≤ 2Rγ where R = diam(supp µ ∪
supp ν). Actually, for any fixed f ∈ C0,γ

b with |f |0,γ ≤ 1 and x0 ∈ supp µ ∪
supp ν, ∣∣∣∣

∫
f dµ−

∫
f dν

∣∣∣∣

=
∣∣∣∣
∫

(f − f(x0)) dµ−
∫

(f − f(x0)) dν

∣∣∣∣

≤
∫

d̃(x, x0)γdµ +
∫

d̃(x, x0)γdν

≤ 2Rγ .

Obviously, for every µ, ν, σ ∈M1, 0 ≤ δ(µ, ν) = δ(ν, µ) and δ(µ, ν) ≤ δ(µ, σ)+
δ(σ, ν). If δ(µ, ν) = 0, then

∫
f dµ =

∫
f dν for every f ∈ C0,γ

b . Thus I(f) =∫
f dµ (=

∫
f dν) is an abstract integral on C0,γ

b . Therefore, by Theorem 2.4
and Proposition 3.5, µ = ν on A(C0,γ

b ) = B(X)

Let (µn) be a Cauchy sequence in (M1, δ). For every f ∈ C0,γ
b , (

∫
f dµn)

is a Cauchy sequence in R. Actually,
∫

f dµn = |f |0,γ

∫
φdµn where φ =

(|f |0,γ)−1f . Let us define

L(f) = lim
n→+∞

∫
f dµn.

As (µn) is a Cauchy sequence in (M1, δ),

lim
n→+∞

sup
{∣∣∣∣

∫
f dµn − L(f)

∣∣∣∣ : f ∈ C0,γ
b and |f |0,γ ≤ 1

}
= 0. (3.5)

We will prove that (µn) converges in (M1, δ) by showing that L is an abstract
integral on C0,γ

b , so that, by the Daniell-Stone theorem, there exists µ ∈ M1

such that L(f) =
∫

f dµ. Therefore, by (3.5), µn converges to µ.
From the linearity and the positivity of the integral and the limit it follows

that L is a positive linear functional on C0,γ
b . In order to prove the monotonic-

ity of L we will prove that (µn) is uniformly tight whenever X is separable
and bounded.
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Lemma 3.7. Let (X, d) be a bounded quasi-metric space. Then, for every
E ⊆ X, d̃E ∈ C0,γ

b . Moreover, |d̃E |0,γ ≤ c(2R)1−γ , where R = diam X.

Proof. Let x, y ∈ X and ε > 0, and let us assume d̃E(x) ≥ d̃E(y). Then,
by choosing a = aε(y) ∈ E such that d̃(y, a) ≤ d̃E(y) + ε, we have

d̃E(x)− d̃E(y) ≤ d̃(x, a)− d̃(y, a) + ε.

By Theorem 3.1 it follows

∣∣d̃E(x)− d̃E(y)
∣∣ ≤ c

(
d̃(x, a) + d̃(y, a)

)1−γ
d̃(x, y)γ + ε

≤ c(2R)1−γ d̃(x, y)γ + ε.

By the arbitrariness of ε, |d̃E(x)− d̃E(y)| ≤ c(2R)1−γ d̃(x, y)γ

Remark. When X is bounded, we can prove Lemma 3.5 and then Lemma
3.6 without assuming X to be separable. By Lemma 3.7, every open A 6= X
is C0,γ

b -open. Actually, A = {x ∈ X : d̃X\A(x) > 0}. Moreover X is C0,γ
b -open

as well, since the constant functions belong to C0,γ
b . Then A(C0,γ

b ) = B(X).
By proceeding as in Theorem 3.6, we can prove that δ is a metric on M1.

Lemma 3.8. Let (X, d) be a bounded, separable, complete quasi-metric
space and let (µn) be a Cauchy sequence in (M1, δ). Then (µn) is uniformly
tight.

Proof. Let (xi) be a dense sequence of points in X. We start by proving
that, for each ε > 0 and η > 0, there exists k > 0 such that, for any n > 0,

µn(Sk,ε) > 1− η (3.6)

where Sk,ε =
⋃k

i=1 C(xi, ε).
Let R = diam X. For any fixed ζ > 0 choose n = n(ζ) such that

δ(µn, µm) ≤ ζ2

c(2R)1−γ for every m,n ≥ n. By the separability of X there
exists k(ζ, n) > 0 such that µn(Sk(ζ,n),ζ) > 1− ζ. The function

f(x) = 1− 1
ζ

inf
(
ζ, d̃Sk(ζ,n),ζ

(x)
)

is Hölder continuous of exponent γ with Hölder constant |f |0,γ ≤ c(2R)1−γ

ζ .
Moreover, 0 ≤ f(x) ≤ 1 for every x ∈ X and

f(x) =
{

0 when x /∈ Sk(ζ,n),2cT ζ

1 when x ∈ Sk(ζ,n),ζ .
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since Iζ(Sk(ζ,n),ζ) ⊆ Sk(ζ,n),2cT ζ . Therefore, for every probability measure µ,

µ(Sk(ζ,n),ζ) ≤
∫

fdµ ≤ µ(Sk(ζ,n),2cT ζ).

Then µn(Sk(ζ,n),2cT ζ) > 1− 2ζ for any n ≥ n. Actually,

1− ζ ≤ µn(Sk(ζ,n),ζ)

≤
∫

fdµn

≤
∫

fdµn +
∣∣∣∣
∫

fdµn −
∫

fdµn

∣∣∣∣

≤ µn(Sk(ζ,n),2cT ζ) + |f |0,γ
ζ2

c(2R)1−γ

≤ µn(Sk(ζ,n),2cT ζ) + ζ.

Set kζ = max
{
k(ζ, n), k1(ζ), . . . , kn−1(ζ)

}
, where µn(Skn(ζ),2cT ζ) > 1−2ζ for

every n < n. Then, for every n > 0,

µn(Skζ ,2cT ζ) > 1− 2ζ. (3.7)

For fixed ε > 0 and η > 0, (3.6) follows from (3.7) by setting ζ = min
{

ε
2cT

, η
2

}
.

Select for each j the integer kj such that µn(Skj , 1
j
) > 1− η

j for all n > 0. Due
to the completeness of X,

Kη =
⋂

j

( kj⋃

i=1

C
(
xi,

1
j

))

is compact since it is totally bounded and closed. Moreover, for each n > 0,
µn(Kη) > 1− η

Let g be a bounded function on X and E ⊆ X. We set ‖g‖E = sup{|g(x)| :
x ∈ E} and ‖g‖ = ‖g‖X .

Corollary 3.9. Let (X, d) be a bounded, separable, complete quasi-metric
space and let (µn) be a Cauchy sequence in (M1, δ). Then L is an abstract
integral on C0,γ

b .

Proof. We need only to prove the monotonocity of L. Let (gk) be a
sequence in C0,γ

b decreasing to 0. For a fixed η > 0 choose Kη such that
µn(Kη) > 1− η for every n > 0. Then, for every n > 0,

∫
gkdµn =

∫

Kη

gkdµn +
∫

X−Kη

gkdµn

≤ ‖gk‖Kηµn(Kη) + ‖g1‖µn(X −Kη)

≤ ‖gk‖Kη + ‖g1‖η.
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As by the Dini theorem (‖gk‖Kη
) converges to 0, we can choose k(η) > 0 such

that ‖gk‖|Kη
< η whenever k > k(η). Consequently,

∫
gkdµn ≤ (1 + ‖g1‖)η

for every n > 0 and k > k(η). By passing to the limit with respect to n we
obtain L(gk) ≤ (1 + ‖g1‖)η for every k > k(η). Therefore L(gk) converges to
0

Theorem 3.10. Let (X, d) be a bounded, separable, complete quasi-metric
space. Then (M1, δ) is a complete metric space.

Proof. Let (µn) be a Cauchy sequence in (M1, δ). By Corollary 3.9, L

is an abstract integral on C0,γ
b . Therefore, by Proposition 3.5 and Theorem

2.4, there exists exactly one finite Borel measure µ such that∫
f dµ = L(f) = lim

n→+∞

∫
f dµn for every f ∈ C0,γ

b .

From (3.5) it follows that µn converges to µ with respect to the metric δ.
Furthermore, µ is a probability measure. Actually, by (2.2), µ(X) = L(1X) =
limn→+∞

∫
1Xdµn = 1

By the well known characterization of weak precompactness (see, e.g., [8:
Theorem 6.7]) it follows that a Cauchy sequence in (M1, δ) converges weakly.
For sake of completeness we prove the latter result.

Theorem 3.11. Let (X, d) be a bounded, separable, complete quasi-metric
space and let the sequence (µn) converge in (M1, δ) to a measure µ. Then (µn)
converges weakly to µ.

Proof. Let us assume that (µn) does not converge weakly to µ. Then
there exist f ∈ Cb, η > 0 and a subsequence µnk

such that, for any k > 0,
| ∫ f dµnk

−∫
f dµ| > η. By Lemma 3.8 there exists a compact set K such that,

for any k > 0, µnk
(K) > 1 − ‖f‖−1 η

8 . As by the Stone-Weierstrass theorem
C0,γ

b is dense in Cb with respect to the uniform convergence on compacta,
there exists g ∈ C0,γ

b such that ‖g − f‖K < η
8 . By choosing n > 0 such that

δ(µn, µ) < (|g|0,γ)−1 η
2 , for every n > n we have, for every nk > n,

η <

∣∣∣∣
∫

f dµnk
−

∫
f dµ

∣∣∣∣

=
∣∣∣∣
∫

X−K

f dµnk
−

∫

X−K

f dµ +
∫

K

f dµnk
−

∫

K

f dµ

∣∣∣∣

≤ η

4
+

∣∣∣∣
∫

K

(g − f) dµnk
−

∫

K

(g − f) dµ

∣∣∣∣ +
∣∣∣∣
∫

K

g dµnk
−

∫

K

g dµ

∣∣∣∣
<

η

2
+ δ(µnk

, µ)|g|0,γ

< η

and this contradiction proves our statement
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By Theorem 2.5 it follows that the converse still holds. Actually, {f ∈
C0,γ

b : |f |0,γ) ≤ 1} is a family of functions equicontinuous at all points and
equibounded whenever X is bounded. Therefore the weak convergence and
the convergence with respect to the metric δ turn out to be equivalent when
(X, d) is a bounded, separable, complete quasi-metric space.

4. Invariant measures in quasi-metric spaces

In this section we will assume (X, d) to be a separable, complete, quasi-metric
space and d̃ to be the locally Hölder continuous quasi-metric given by Theorem
3.1.

Definition 4.1. A map S : X → X is said to be a contraction in (X, d)
(of contraction factor l) if there exists a constant 0 < l = ldS < 1 such that
d(S(x), S(y)) ≤ l d(x, y) for all x, y ∈ X.

Let S1, . . . , SN be contractions in (X, d) with contraction factors l1, . . . , ln
and let l = max{l1, . . . , lN}. For every non-empty bounded set A ⊆ X, set

S(A) =
N⋃

i=1

Si(A)

and by Sn denote the n-iterated map S ◦ · · · ◦ S, i.e.

Sn(A) =
N⋃

i1,...,in=1

Si1,...,in(A)

where Si1...,in = Si1 ◦· · ·◦Sin turn out to be contractions of contraction factors
li1...in = li1 · · · lin .

We say that A ⊆ X is invariant with respect to {S1, · · · , SN} or, briefly,
with respect to S, if S(A) = A.

Let m1, . . . , mN be positive costants such that
∑N

i=1 mi = 1. For every
µ ∈M1, set

Tµ(E) =
N∑

i=1

miµ ◦ S−1
i

and by Tn denote the n-iterated map T ◦ · · · ◦ T , i.e.

Tnµ(E) =
N∑

i1,...,in=1

mi1 · · ·minµ ◦ S−1
i1,...,in

.
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A Borel measure µ on X is said to be invariant with respect to {S1, . . . , SN}
and {m1, . . . , mN} or, briefly, with respect to T , if Tµ = µ.

Before proving our main theorem we recall some results about contractions
in quasi-metric spaces. For the proofs we refer to [4]. For A and B non-empty
bounded subsets of X, define

h(A,B) = max
{

sup
a∈A

d̃B(a), sup
b∈B

d̃A(b)
}

.

Let H(X) =
{
A ⊂ X : A non-empty and compact

}
.

Proposition 4.2. (H(X), h) is a complete quasi-metric space.

We start by considering the case in which S1, . . . , Sn are contractions in
(X, d̃).

Proposition 4.3. S is a contraction in (H(X), h) of contraction factor
l.

By Propositions 4.2 and 4.3 and the fixed point theorem in quasi-metric
spaces, there exists exactly one non-empty compact set K, invariant with
respect to S. Moreover, K is an attractor for S, i.e. for every C ∈ H(X) the
sequence h(Sn(C),K) converges to 0.

As in the metric space, we can prove the uniqueness of the invariant set
also in the class of bounded closed subsets of X.

Lemma 4.4. Let S be a contraction in (X, d̃) and B ⊂ X be a non-
empty, bounded set such that S(B) ⊆ B. Let r > 0 and A ⊂ ⋃

x∈B C(x, r).
Then Sn(A) ⊂ ⋃

x∈B C(x, lnr).

By the previous lemma it follows

Theorem 4.5. Let {S1, . . . , SN} be a family of contractions in (X, d̃).
Then:

(i) There exists exactly one non-empty, bounded, closed set K, invariant
with respect to S. Namely, K is compact.

(ii) For every non-empty bounded set A ⊂ X, the sequence h(Sn(A),K)
converges to 0.

Lemma 4.6. Let µ ∈ M1. Let S be a contraction on (X, d̃) and let
µ ◦ S−1 be the image of µ under S. Then suppµ ◦ S−1 = S(suppµ).

Proof. We start by proving that S(suppµ) ⊆ supp µ ◦ S−1. Let x0 ∈
supp µ. Then, for every ε > 0, there exists xε such that d̃(x0, xε) < ε

and µ(B(xε, r) > 0 for every r > 0. Then d̃(S(x0), S(xε)) < lε and µ ◦
S−1(B(S(xε), lr)) > 0 since B(xε, r) ⊆ S−1(B(S(xε), lr)). Therefore, S(x0) ∈
supp µ ◦ S−1.

Conversely, let x0 6∈ S(suppµ) and let r > 0 be such that B(x0, r) ⊂ X \
S(suppµ). Then S−1(B(x0, r)) ⊂ X \ suppµ. Therefore, x0 6∈ supp µ ◦ S−1
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For r > 0, set X ′ =
⋃

x∈K C(x, r).

Proposition 4.7. T is a contraction on (M1(X ′), δ).

Proof. Let µ ∈ M1(X ′). By Lemma 4.6 supp Tµ =
⋃N

i=1 Si(suppµ).
Then by Lemma 4.4 supp Tµ ⊆ X ′. Let µ and ν ∈ M1(X ′). For every
f ∈ C0,γ

b with |f |0,γ ≤ 1, let fi = l−γf ◦ Si. We have

|fi(x)− fi(y)| = l−γ |f(Si(x))− f(Si(y))|
≤ l−γ d̃γ(Si(x), Si(y))

≤ (
li
l

)γ
d̃γ(x, y)

≤ d̃γ(x, y).

Thus fi ∈ C0,γ
b and |fi|0,γ ≤ 1. Then

∣∣∣∣
∫

f dTµ−
∫

f dTν

∣∣∣∣ ≤
N∑

i=1

mi

∣∣∣∣
∫

f ◦ Sidµ−
∫

f ◦ Sidν

∣∣∣∣

=
N∑

i=1

mil
γ

∣∣∣∣
∫

fidµ−
∫

fidν

∣∣∣∣

≤
N∑

i=1

mil
γδ(µ, ν)

= lγδ(µ, ν).

Therefore δ(Tµ, Tν) ≤ lγδ(µ, ν)

As X ′ is bounded, by Theorem 3.10 (M1(X ′), δ) is complete. Therefore,
by applying the fixed point theorem, we can prove that there exists exactly
one probability measure µ ∈ M1(X ′), invariant with respect to T . By the
arbitrariness of r > 0 it follows that µ is unique in M1. Moreover, for ev-
ery ν ∈ M1, we can prove limn→+∞ δ(Tn(ν), µ) = 0 by applying the fixed
point theorem to the contraction T in the space (M1(X ′), δ), where r > 0
is chosen large enough so that supp ν ⊆ X ′. Therefore, by Theorem 3.11,
Tn(ν) converges weakly to µ. Finally, by Lemma 4.6 and Theorem 4.5/(ii),
supp µ = K.

We have proved

Theorem 4.8. Let (X, d) be a separable complete quasi-metric space,
S1, . . . , SN be contractions in (X, d̃) and m1, . . . , mN be positive constants
such that

∑N
i=1 mi = 1. Then:
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(i) There exists exactly one probability measure µ with bounded support,
invariant with respect to T . Moreover, supp µ = K, where K is the unique
non-empty compact set, invariant with respect to S.

(ii) For every probability measure ν with bounded support, the sequence
Tn(ν) converges weakly to the measure µ.

We now extend our results to contractions in (X, d).

Theorem 4.9. Let (X, d) be a separable, complete, quasi-metric space,
S1, . . . , SN be contractions in (X, d) and let m1, . . . , mN be positive constants
such that

∑N
i=1 mi = 1. Then:

(i) There exists exactly one compact set K ⊆ X invariant with respect to
S and one probability measure µ, with bounded support, invariant with respect
to T . Moreover, supp µ = K and K is compact.

(ii) For every probability measure ν with bounded support the sequence
Tn(ν) converges weakly to the measure µ.

Proof. Although the contractions Si might not be contractions in (X, d̃),
when n > log c1−log c2

log l the maps Si1...,in turn out to be contractions in (X, d̃).

Actually, ld̃i1...,in
≤ (l)n c2

c1
. Then, by Theorem 4.8, there exist exactly one non-

empty compact set K and one probability measure µ with bounded support
that are the fixed points of Sn and Tn. By applying S and T in the equalities
Sn(K) = K and Tn(µ) = µ, we prove that S(K) and T (µ) are also fixed
points of Sn and Tn. By uniqueness, S(K) = K and T (µ) = µ.
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