Bernstein's 'Lethargy' Theorems in SF-Spaces

B. Micherda

Abstract. We prove a version of Bernstein's 'lethargy' theorem for cones in the class of SF-spaces. Moreover, an analogue of the Bernstein theorem for linear projections onto closed subspaces of an SF-space is obtained. This extends results given by G. Lewicki.

Keywords: Bernstein's 'lethargy' theorem, SF-spaces, Orlicz-Musielak spaces, best approximations, linear projections

AMS subject classification: Primary 41A65, 46E30, secondary 46A16

1. Introduction

The Bernstein 'lethargy' theorem, one of the most important results in the constructive theory of functions, reads as follows.

Theorem 1.1. Let X be a Banach space and let $V_1 \subsetneq V_2 \subsetneq \ldots \subsetneq X$ be an ascending sequence of distinct finite-dimensional linear subspaces of X. Then for every real sequence $\varepsilon_n \downarrow 0$ there exists $x \in X$ such that $||x|| = \varepsilon_1$ and $\operatorname{dist}(x, V_n) = \varepsilon_n$ for all $n \geq 1$.

This result was first obtained by Bernstein for $X = C_{\mathbb{R}}[0,1]$ and $V_n = P_n$, where $C_{\mathbb{R}}[0,1]$ denotes the space of all continuous real functions on [0,1] equipped with the supremum norm and P_n is the space of all real polynomials of degree at most n (see [3]). Later, other versions of the 'lethargy' theorem were proved (see, e.g., [2, 5, 9, 11 - 14]). This theorem became a very useful tool in the theory of quasianalytic functions of several complex variables (see [10]).

In [7], Lewicki proved the following, more general version of Bernstein's 'lethargy' theorem in the class of SF-spaces, which includes all F-spaces and Orlicz-Musielak spaces with the condition Δ_2 (basic definitions and notation of SF-spaces are given in Section 2).

Theorem 1.2. Let (X, N) be an SF-space, let $V_1 \subsetneq V_2 \subsetneq \ldots \subsetneq X$ be an ascending sequence of distinct finite-dimensional subspaces of X and let $R_N(\cup_{n=1}^{\infty} V_n) > 0$. Then for every real sequence $\varepsilon_n \downarrow 0$ there exist $n_0 \in \mathbb{N}$ and $x \in X$ such that $\operatorname{dist}_N(x, V_n) = \varepsilon_n$ for all $n \geq n_0$.

In the present note, using a similar technique, we obtain an analogue of the Bernstein theorem (Theorem 3.1), replacing the sequence of finite-dimensional linear subspaces of an SF-space by a sequence of closed cones which generate such subspaces (the

B. Micherda: Jagiellonian Univ., Dept. Math., Reymonta 4, PL – 30-059 Kraków, Poland micherda@im.uj.edu.pl

case of cones has not been discussed before). We also present a version of Bernstein's 'lethargy' theorem, in which projections onto closed subspaces of an SF-space replace best approximation operators (Theorem 4.3). This generalizes [6: Proposition 3].

2. SF-Spaces: definitions and basic properties

In this section we have compiled some basic facts on SF-spaces, following [7]. We start with

Definition 2.1. Let X be a linear space over \mathbb{K} ($\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$) and let $N: X \to [0, \infty)$ be a function satisfying the following conditions:

$$N(x) = 0 \text{ if and only if } x = 0 \tag{2.1}$$

$$N(a_n x_n - ax) \to 0 \text{ for all sequences } \{a_n\} \subset \mathbb{K}$$
 (2.2)

and $\{x_n\} \subset X$ such that $a_n \to a$ and $N(x_n - x) \to 0$

$$N(x_n + y_n - x - y) \to 0$$
 for all sequences $\{x_n\}, \{y_n\} \subset X$ (2.3)

such that $N(x_n - x) \to 0$ and $N(y_n - y) \to 0$

$$N(ax) = N(x)$$
 for all $x \in X$ and $a \in \mathbb{K}$ such that $|a| = 1$ (2.4)

$$N(x_n) \to N(x)$$
 for every sequence $\{x_n\} \subset X$ such that $N(x_n - x) \to 0$. (2.5)

Then N is called an SF-norm. If, moreover, the space X is complete with respect to the topology induced by the family $\{K(x,r)\}_{x\in X,r>0}$, where $K(x,r)=\{y\in X:N(y-x)< r\}$, then the pair (X,N) is said to be an SF-space. If $N(a_1x)\geq N(a_2x)$ when $x\in X$ and $|a_1|>|a_2|$, then N is a non-decreasing SF-norm.

Remark 2.2. Every SF-space is a complete metrizable topological linear space (as a Hausdorff space with a countable basis of neighbourhoods of 0; see, e.g., [4]). Consequently, all finite-dimensional subspaces of an SF-space are closed.

It is obvious that all F-spaces (in particular, all Banach spaces) are SF-spaces.

Example 2.3. Let (Ω, Σ, μ) be a measurable space and let $f : \Omega \times \mathbb{R}_+ \to \mathbb{R}_+$ be a φ -function with a parameter, i.e. f satisfies the following properties:

- $(\varphi 1)$ For every $t \in \Omega$, $f(t, \cdot) : \mathbb{R}_+ \to \mathbb{R}_+$ is a non-decreasing, continuous function such that f(t, 0) = 0 and f(t, x) > 0 for x > 0.
- $(\varphi 2)$ For every $x \in \mathbb{R}_+$, $f(\cdot, x) : \Omega \to \mathbb{R}_+$ is a Σ -measurable function.

We denote by M the set of all \mathbb{K} -valued Σ -measurable functions defined on Ω , with equality μ -almost everywhere. Set

$$ho_f(x) = \int_{\Omega} f(t,|x(t)|) d\mu(t) \qquad (x \in M).$$

Then ρ_f is the Orlicz-Musielak modular given by f, and the corresponding modular space X_{ρ_f} will be called Orlicz-Musielak space. In [7] Lewicki showed that an Orlicz-Musielak space $(X_{\varrho_f}, \varrho_f)$ is an SF-space with respect to the modular ϱ_f if the generating

function f is locally integrable and satisfies the condition Δ_2 (for definitions and basic properties of modular spaces we refer the reader to [8]).

Now we present a sequence of lemmas concerning SF-spaces which shall be needed in the following sections.

Lemma 2.4 (see [7: Lemma 3.3]). Let (X, N) be an SF-space and put

$$N_1(x) = \sup \{ N(tx) : t \in [0,1] \}$$
 $(x \in X).$

Then (X, N_1) is an SF-space, N_1 is non-decreasing, and for every sequence $\{x_n\} \subset X$ we have

$$N_1(x_n) \to 0 \text{ if and only if } N(x_n) \to 0.$$
 (2.6)

Definition 2.5. Let (X, N) be an SF-space. If $Y \subset X$ and $Y \setminus \{0\} \neq \emptyset$, then we define the *radius* of the set Y by

$$R_N(Y) = \inf \left\{ \sup \{ N(ty) : t \ge 0 \} : y \in Y \setminus \{0\} \right\} \in [0, +\infty].$$

In the general case it may occur that $R_N(Y) = 0$ (see [7: Examples 3.6 and 4.4]).

Lemma 2.6 (see [7: Corollary 3.8]). Let (X, N) be an SF-space. Assume that $V_1 \subsetneq V_2 \subsetneq \ldots \subsetneq X$ is an ascending sequence of distinct finite-dimensional subspaces of X and $R_N(\bigcup_{n=1}^{\infty} V_n) > 0$. Then there exists d > 0 such that $\overline{K}(0, d) \cap V_n$ is a compact set for all $n \in \mathbb{N}$, where $\overline{K}(x, r) = \{y \in X : N(y - x) \leq r\}$.

If (X, N) is an SF-space, $\emptyset \neq Y \subset X$ and $x \in X$, then, as in metric spaces, we may define

$$\operatorname{dist}_{N}(x,Y) = \inf \left\{ N(x-y) : y \in Y \right\}$$

and

$$P_Y(x) = \{ y \in Y : N(x - y) = \text{dist } N(x, Y) \}.$$

If $y \in P_Y(x)$, then we call y the best approximation to x in Y.

Remark 2.7. If $Z \subset Y \subset X$ and $x \in X$, then

$$\operatorname{dist}_{N}(x,Y) < \operatorname{dist}_{N}(x,Z). \tag{2.7}$$

If V is a linear subspace of $X, x \in X$ and $v \in V$, then

$$\operatorname{dist}_{N}(x+v,V) = \operatorname{dist}_{N}(x,V). \tag{2.8}$$

If V is a linear subspace of X, $x \in X$, $t_1, t_2 \in \mathbb{K}$ such that $|t_1| \leq |t_2|$ and N is non-decreasing, then

$$\operatorname{dist}_{N}(t_{1}x, V) \leq \operatorname{dist}_{N}(t_{2}x, V). \tag{2.9}$$

Let us recall that a subset K of a linear space V is a (convex) cone if $K + K \subset K$, $aK \subset K$ for all $a \geq 0$ and $K \cap (-K) = \{0\}$. If K is a cone, then $\operatorname{Span} K = K - K$.

A slight modification of [7: Proposition 3.4] gives

Lemma 2.8. Suppose that (X, N) is an SF-space and $K_1 \subsetneq K_2 \subsetneq \ldots \subsetneq X$ is an ascending sequence of distinct closed cones satisfying $V_n \subsetneq V_{n+1}$ and dim $V_n < \infty$ for all $n \in \mathbb{N}$, where $V_n = K_n - K_n$. Furthermore, assume that there exists d > 0 such that $\overline{K}(0,d) \cap V_n$ is a compact set for every $n \in \mathbb{N}$. Define

$$a_n = \sup \left\{ \text{dist}_N(k, V_n) : k \in K_{n+1} \right\}$$
 (2.10)

$$b_n = \inf \Big\{ \sup \{ \operatorname{dist}_N(v+k, V_n) : k \in K_{n+1} \} : v \in \bigcup_{i=n+2}^{\infty} V_i \setminus V_{n+1} \Big\}.$$
 (2.11)

Then $a_n, b_n \geq d$ for every $n \in \mathbb{N}$.

Proof. Choose any $n \in \mathbb{N}$ and $v \in K_{n+1} \setminus V_n$. Let us prove that

$$\sup \left\{ \operatorname{dist}_{N}(tv, V_{n}) : t \geq 0 \right\} \geq d.$$

Suppose this is not true. Then for every $k \in \mathbb{N}$ there exists $v_k \in V_n$ with $N(kv-v_k) \leq d$. Since $kv-v_k \in \overline{K}(0,d) \cap V_{n+1}$ for all k, by argument of compactness we may assume that $N(kv-v_k-z) \to 0$ for some $z \in V_{n+1}$. But $kv-v_k \in V_n \oplus [v]$, which (by Remark 2.2) is a closed subspace of X. Hence z=tv+w, where $t \in \mathbb{K}$ and $w \in V_n$. Since $N(kv-v_k-z) \to 0$, from (2.6) we get $N_1((k-t)v-(v_k+w)) \to 0$, therefore dist $N_1((k-t)v,V_n) \to 0$. Now fix $N_1((k-t)v,V_n) \to 0$. Now fix $N_1((k-t)v,V_n) \to 0$. Now fix $N_1((k-t)v,V_n) \to 0$. Now have

$$\operatorname{dist}_{N_1}((k-t)v, V_n) \ge \operatorname{dist}_{N_1}((k_0 - t)v, V_n) > 0 \qquad (k \ge k_0).$$

This contradicts the fact that $\operatorname{dist}_{N_1}((k-t)v,V_n)\to 0$ if $k\to\infty$. Consequently, $a_n\geq\sup\{\operatorname{dist}_N(tv,V_n):t\geq 0\}\geq d$. The proof of the second inequality $b_n\geq d$ is completely similar to that of [7: Proposition 3.4]. So we omit the details

Lemma 2.9. Suppose that (X, N) is an SF-space and $K_1 \subset K_2 \subset ... \subset X$ is an ascending sequence of closed cones which generate finite-dimensional subspaces $V_n = K_n - K_n$ of X. Furthermore, assume that there exists d > 0 such that $\overline{K}(0, d) \cap V_n$ is a compact set for all $n \in \mathbb{N}$. Then, for i > j and $x \in K_i$:

- 1. If dist $N(x, K_j) < d$, then $P_{K_j}(x) \neq \emptyset$.
- **2.** If dist $N(x, V_j) < d$, then $P_{V_j}(x) \neq \emptyset$.

Proof. Fix i > j and $x \in K_i$ satisfying dist $N(x, K_j) = \varepsilon < d$. Choose $l_0 \in \mathbb{N}$ such that $\varepsilon + \frac{1}{l_0} \leq d$. Then for every $l \geq l_0$ there exists $k_j^l \in K_j$ with $N(x - k_j^l) \leq \varepsilon + \frac{1}{l}$. By compactness of $\overline{K}(0,d) \cap V_i$, without loss of generality we can assume that $N(x-k_j^l-v) = N(k_j^l-(x-v)) \to 0$ for some $v \in V_i$. Since K_j is a closed set, $v = x-k_j$, where $k_j \in K_j$. Using (2.5), we get $N(x-k_j^l) \to N(x-k_j)$, thus $N(x-k_j) \leq \varepsilon$. By definition of ε , $k_j \in P_{K_j}(x)$, and (1) is proved. To show statement 2, we argue as in the previous case, observing that all spaces V_n are closed in X

Lemma 2.10. Let (X, N) be an SF-space and assume that $V \subset U \subset X$, $(x_n) \subset U$, $x \in X$ and $N(x_n - x) \to 0$. Then

$$\limsup_{n \to \infty} \operatorname{dist}_{N}(x_{n}, V) \le \operatorname{dist}_{N}(x, V). \tag{2.12}$$

If, moreover, U is a finite-dimensional linear subspace of X, the set $U \cap \overline{K}(0,r)$ is compact and dist $N(x_n, V) < r$ for some r > 0 and almost all $n \in \mathbb{N}$, then

$$\lim_{n \to \infty} \operatorname{dist}_{N}(x_{n}, V) = \operatorname{dist}_{N}(x, V). \tag{2.13}$$

Proof. Suppose that $N(x_n - x) \to 0$. We may find $v_k \in V$ satisfying

$$N(x - v_k) \le \operatorname{dist}_N(x, V) + \frac{1}{k}$$
 $(k \in \mathbb{N}).$

By (2.5),

$$\operatorname{dist}_{N}(x_{n}, V) \leq N(x_{n} - v_{k}) \to N(x - v_{k})$$

for all $k \in \mathbb{N}$, which gives (2.12).

Now let U be a linear subspace of X and choose $(x_n) \subset U$, $x \in X$ and r > 0 which have the required properties. In order to prove (2.13), we only need to show that

$$\liminf_{n \to \infty} \operatorname{dist}_{N}(x_{n}, V) \ge \operatorname{dist}_{N}(x, V).$$

Suppose this is false. Then, without loss of generality, we may assume that there exist $\varepsilon > 0$ and $v_n \in V$ with

$$N(x_n - v_n) \le \operatorname{dist}_N(x, V) - \varepsilon \le r.$$

Hence $x_n - v_n \in U \cap \overline{K}(0,r)$ and, consequently, $N(x_n - v_n - u) \to 0$ for some $u \in U$. By (2.5), $N(x_n - v_n) \to N(u)$, thus $N(u) \leq \operatorname{dist}_N(x,V) - \varepsilon$. On the other hand, according to (2.3) - (2.5), $N(x - v_n) \to N(u)$, which implies $N(u) \geq \operatorname{dist}_N(x,V)$. This is a contradiction \blacksquare

3. Bernstein's 'lethargy' theorem for cones

In this section we prove a version of the Bernstein theorem, in which a sequence of cones replaces a sequence of finite-dimensional vector subspaces. The proof will be similar in spirit to that of Theorem 1.2, given by Lewicki in [7]. However, since property (2.8), used constantly in that proof, is no longer valid for cones, we must proceed in a slightly different way.

Our result is the following

Theorem 3.1. Let (X, N) be an SF-space and suppose that $K_1 \subsetneq K_2 \subsetneq \ldots \subsetneq X$ is an ascending sequence of distinct closed cones such that $V_n \subsetneq V_{n+1}$ and dim $V_n < \infty$ for all $n \in \mathbb{N}$, where $V_n = K_n - K_n$. Furthermore, assume that $R_N(\cup_{n=1}^{\infty} V_n) > 0$ and the following condition is satisfied:

For every
$$n \in \mathbb{N}$$
, $x \in K_n$ and all $i, j \in \mathbb{N}$ with $j \le i \le n$:
if $y \in P_{K_i}(x)$ and $z \in P_{K_j}(x)$, then $y - z \in K_i$
$$(3.1)$$

Then for every sequence $\varepsilon_n \downarrow 0$ there exist $n_0 \in \mathbb{N}$ and $x \in X$ such that

$$\operatorname{dist}_{N}(x, K_{n}) = \varepsilon_{n} \qquad (n \ge n_{0}). \tag{3.2}$$

Proof. According to Lemma 2.6, we may find d>0 such that $\overline{K}(0,d)\cap V_n$ is a compact set for all $n\in\mathbb{N}$. By (2.3), there exists $\delta>0$ satisfying $N(x+y)\leq d$ if $x,y\in\overline{K}(0,\delta)$. Put $n_0=\min\{k\in\mathbb{N}:\,\varepsilon_k<\delta\}$ and define

$$E_n = \left\{ x \in K_{n+1} : \operatorname{dist}_N(x, K_l) = \operatorname{dist}_N(x, V_l) = \varepsilon_l \ (l = n_0, \dots, n) \right\}$$

where $n \geq n_0$. Let us first prove that $E_n \neq \emptyset$ if $n \geq n_0$ and $\varepsilon_n > 0$. For this purpose we choose such $n \geq n_0$ and set

$$F_j = \left\{ x \in K_{n+1} : \operatorname{dist}_N(x, K_l) = \operatorname{dist}_N(x, V_l) = \varepsilon_l \ (l = n, \dots, n - j) \right\}$$

where $j = 0, ..., n - n_0$. We will show by induction on j that all the sets F_j are non-empty.

According to Lemma 2.8, $\varepsilon_n < \delta \le d \le a_n$, with a_n defined by (2.10). Therefore $\operatorname{dist}_N(v,V_n) > \varepsilon_n$ for some $v \in K_{n+1}$. Put

$$t_0 = \inf \{ t \ge 0 : \operatorname{dist}_N(tv, V_n) \ge \varepsilon_n \}.$$

By (2.12), dist $N(t_0v, V_n) \ge \varepsilon_n$. Since $\varepsilon_n < d$, (2.13) now implies dist $N(x_1, V_n) = \varepsilon_n$, where $x_1 = t_0v$. By Lemma 2.9, there exist $k_1, k_2 \in K_n$ satisfying $N(x_1 - (k_1 - k_2)) = \varepsilon_n$. Put $x = x_1 + k_2$. Then $x \in K_{n+1}$. From (2.7) and (2.8) we have

$$\operatorname{dist}_{N}(x, V_{n}) = \operatorname{dist}_{N}(x_{1}, V_{n}) = N(x_{1} + k_{2} - k_{1})$$

$$\geq \operatorname{dist}_{N}(x, K_{n}) \geq \operatorname{dist}_{N}(x, V_{n}),$$

hence $x \in F_0$.

Now suppose that $x \in F_j$. By Lemma 2.9, for $l \in \{n - j, \dots, n\}$,

$$\operatorname{dist}_{N}(x, V_{l}) = \operatorname{dist}_{N}(x, K_{l}) = N(x - v_{l})$$

with some $v_l \in K_l$. According to (3.1), $x_1 = x - v_{n-j} \in K_{n+1}$. Relation (2.8) now implies

$$\operatorname{dist}_{N}(x_{1}, V_{l}) = \operatorname{dist}_{N}(x, V_{l}) = N((x - v_{n-j}) - (v_{l} - v_{n-j})) \ge \operatorname{dist}_{N}(x_{1}, K_{l})$$

since $v_l - v_{n-j} \in K_l$, which follows from (3.1). Consequently,

$$\operatorname{dist}_{N}(x_{1}, K_{l}) = \operatorname{dist}_{N}(x_{1}, V_{l}) = \varepsilon_{l} \qquad (l = n, \dots, n - j)$$

and so $x_1 \in F_i$. Moreover,

$$\operatorname{dist}_{N}(x_{1}, V_{n-j}) = N(x_{1} - 0) \ge \operatorname{dist}_{N}(x_{1}, K_{n-j-1}) \ge \operatorname{dist}_{N}(x_{1}, V_{n-j})$$

which means that

$$\operatorname{dist}_{N}(x_{1}, K_{n-j-1}) = \operatorname{dist}_{N}(x_{1}, V_{n-j-1}) = \varepsilon_{n-j}.$$

If $\varepsilon_{n-j-1} = \varepsilon_{n-j}$, then $x_1 \in F_{j+1}$, so it suffices to consider the case $\varepsilon_{n-j-1} > \varepsilon_{n-j}$. By Lemma 2.8, $\varepsilon_{n-j-1} < \delta \le d \le b_{n-j-1}$, where b_{n-j-1} is given by (2.11). Consequently, there exists $u \in K_{n-j}$ such that dist $N(x_1 + u, V_{n-j-1}) > \varepsilon_{n-j-1}$. Set

$$t_0 = \inf \left\{ t \ge 0 : \operatorname{dist}_N(x_1 + tu, V_{n-j-1}) \ge \varepsilon_{n-j-1} \right\}.$$

As in the previous case, Lemma 2.10 gives dist $N(x_1+t_0u, V_{n-j-1}) = \varepsilon_{n-j-1}$. According to Lemma 2.9,

$$\operatorname{dist}_{N}(x_{1} + t_{0}u, V_{n-j-1}) = N(x_{1} + t_{0}u - (w_{1} - w_{2}))$$

with $w_1, w_2 \in K_{n-j-1}$. Put $z = x_1 + t_0 u + w_2$. Then $z \in K_{n+1}$. By (2.7) and (2.8), we have

$$\operatorname{dist}_{N}(z, V_{n-j-1}) = \operatorname{dist}_{N}(x_{1} + t_{0}u, V_{n-j-1}) = N(z - w_{1})$$

$$\geq \operatorname{dist}_{N}(z, K_{n-j-1}) \geq \operatorname{dist}_{N}(z, V_{n-j-1}).$$

Hence

$$\operatorname{dist}_{N}(z, K_{n-j-1}) = \operatorname{dist}_{N}(z, V_{n-j-1}) = \varepsilon_{n-j-1}.$$

Since $v_l - v_{n-j} \in K_l$, for $l = n, \dots, n-j$ we get

$$\operatorname{dist}_{N}(x_{1}, V_{l}) = N(x_{1} - (v_{l} - v_{n-j})) = N(z - (v_{l} - v_{n-j} + t_{0}u + w_{2}))$$

$$\geq \operatorname{dist}_{N}(z, K_{l}) \geq \operatorname{dist}_{N}(z, V_{l}) = \operatorname{dist}_{N}(x_{1}, V_{l}).$$

Therefore dist $N(z, K_l) = \text{dist } N(z, V_l) = \varepsilon_l$, and, in consequence, $z \in F_{j+1}$. Thus we have proved that all the sets F_j are non-empty. As $E_n = F_{n-n_0}$, we conclude that $E_n \neq \emptyset$.

In the case of $\varepsilon_n > 0$ and $\varepsilon_{n+1} = 0$ for some $n \ge n_0$, each element $x \in E_n$ satisfies condition (3.2). So we can assume that $\varepsilon_n > 0$ for all $n \ge n_0$. Our claim is that $E_n \cap \overline{K}(0,\delta) \ne \emptyset$ for every $n \ge n_0$. To prove this, fix $n \ge n_0$ and choose $\widetilde{x_n} \in E_n$. By Lemma 2.9, there exist $v_l \in K_l$ satisfying

$$\operatorname{dist}_{N}(\widetilde{x_{n}}, K_{l}) = \operatorname{dist}_{N}(\widetilde{x_{n}}, V_{l}) = N(\widetilde{x_{n}} - v_{l}) \qquad (l = n_{0}, \dots, n).$$

Define $x_n = \widetilde{x_n} - v_{n_0}$. Then $x_n \in K_{n+1}$, which follows from (3.1). According to (2.7) and (2.8), we have

$$\operatorname{dist}_{N}(x_{n}, V_{l}) = \operatorname{dist}_{N}(\widetilde{x_{n}}, V_{l}) = N(\widetilde{x_{n}} - v_{l}) = N(x_{n} - (v_{l} - v_{n_{0}}))$$

$$\geq \operatorname{dist}_{N}(x_{n}, K_{l}) \geq \operatorname{dist}_{N}(x_{n}, V_{l})$$

hence dist $N(x_n, K_l) = \text{dist } N(x_n, V_l) = \varepsilon_l$. Furthermore,

$$\operatorname{dist}_{N}(x_{n}, K_{n_{0}}) = N(\widetilde{x_{n}} - v_{n_{0}}) = N(x_{n}) = \varepsilon_{n_{0}} < \delta$$

which means that $x_n \in E_n \cap \overline{K}(0, \delta)$.

Now, choose any $x_n \in E_n \cap \overline{K}(0,\delta)$, where $n \geq n_0$. According to Lemma 2.9, for every $l \geq n_0$ and $n \geq l$ we may find $v_n^l \in P_{K_l}(x_n)$. Since $N(x_n - v_n^l) = \varepsilon_l < \delta$ and $N(x_n) \leq \delta$, by (2.4) and the choice of δ we have $N(v_n^l) \leq d$. Therefore $v_n^l \in K_l \cap \overline{K}(0,d)$, which is a compact subset of X (as a closed subset of a compact set). Consequently, for each $l \geq n_0$ there exist a subsequence $(k_n) \subset \mathbb{N}$ and $v_l \in K_l$ such that $N(v_{k_n}^l - v_l) \to 0$. Applying the diagonal argument, we may assume that $N(v_{k_n}^l - v_l) \to 0$ for all $l \geq n_0$. Let us fix $\varepsilon > 0$. By (2.3), we may find r > 0 such that $N(y_1 + y_2 + y_3 + y_4) \leq \varepsilon$, when $y_1, y_2, y_3, y_4 \in \overline{K}(0, r)$. Choose any $l_0 \geq n_0$ satisfying $\varepsilon_{l_0} \leq r$. Then there exists $k(l_0) \in \mathbb{N}$ such that

$$\left. \begin{array}{l} N(x_{k_n} - v_{k_n}^{l_0}) \\ N(v_{k_n}^{l_0} - v_{l_0}) \\ N(v_{k_m}^{l_0} - v_{l_0}) \\ N(x_{k_m} - v_{k_m}^{l_0}) \end{array} \right\} \leq r$$

for all $n, m \geq k(l_0)$. By (2.4) and the choice of r, $N(x_{k_n} - x_{k_m}) \leq \varepsilon$ if $n, m \geq k(l_0)$. Thus we have proved that (x_{k_n}) is a Cauchy sequence in X. Since the space X is complete, $N(x_{k_n} - x) \to 0$, with some $x \in X$.

It remains to show that $\operatorname{dist}_N(x, K_l) = \varepsilon_l$ for $l \geq n_0$. Fixing such l, by (2.3) and (2.5) we get $N((x_{k_n} - v_{k_n}^l) - (x - v_l)) \to 0$, hence $N(x_{k_n} - v_{k_n}^l) \to N(x - v_l)$, and, finally, $N(x - v_l) = \varepsilon_l$. Moreover,

$$N(x_{k_n} - v_{k_n}^l) \le N(x_{k_n} - v) \to N(x - v)$$

for every $v \in K_l$ and $k_n \geq l$. Therefore $N(x - v) \geq \varepsilon_l$ and, consequently, $v_l \in P_{K_l}(x)$, which completes the proof

As a corollary, we obtain the Bernstein 'lethargy' theorem for cones in Banach spaces (another version is given in Section 4 – see Theorem 4.5).

Corollary 3.2. Let X be a Banach space and suppose that $K_1 \subsetneq K_2 \subsetneq \ldots \subsetneq X$ is an ascending sequence of distinct closed cones such that $K_n - K_n \subsetneq K_{n+1} - K_{n+1}$ and $\dim(K_n - K_n) < \infty$ for all $n \in \mathbb{N}$. Furthermore, assume that condition (3.1) is satisfied. Then for every sequence $\varepsilon_1 \geq \varepsilon_2 \geq \ldots \geq 0 = \lim \varepsilon_n$ there exists $x \in X$ such that $\dim(x, K_n) = \varepsilon_n$ for $n \geq 1$.

Let us observe that the 'lethargy' theorem for cones may not be true if we drop the assumptions of Theorem 3.1, because of

Example 3.3.

1. Let X be the space \mathbb{R}^2 with the Euclidean norm and define

$$K_n = \left\{ (x, y) \in X : 0 \le x < \infty \text{ and } 0 \le y \le nx \right\} \quad (n \in \mathbb{N}).$$

Then $K_n - K_n = X$ for all $n \in \mathbb{N}$ and property (3.1) is not valid. Observe that the condition dist $(z, K_n) = \delta_n \downarrow 0$ implies z = (0, y) for some y > 0. Since for such z and

t>0 we have dist $(tz,K_n)=t$ dist $(z,K_n)=t\delta_n$, in this case we cannot obtain (3.2) if $\varepsilon_n\downarrow 0$ and $\frac{\varepsilon_n}{\delta_n}$ is not constant.

2. Let X be the space of all real (or complex) sequences $(x_n)_{n=1}^{\infty}$ equipped with the F-norm $|(x_n)| = \sum_{i=1}^{\infty} \frac{1}{2^i} \frac{|x_i|}{1+|x_i|}$. Set

$$K_n = \left\{ (x_n) \in X : x_i \ge 0 \text{ for } i \le n \text{ and } x_i = 0 \text{ for } i > n \right\}$$

and $V_n = K_n - K_n$. Then $R_{|\cdot|}(V_n) = \frac{1}{2^n}$ and, consequently, $R_{|\cdot|}(\bigcup_{n=1}^{\infty} V_n) = 0$ (compare [7: Example 3.6]).

Choose any sequence $\varepsilon_n \downarrow 0$ such that $(\varepsilon_k - \varepsilon_{k+1})2^{k+1} \geq 1$ for infinitely many $k \in \mathbb{N}$ and assume that (3.2) holds for some $x \in X$. Then $x_i \geq 0$ $(i \geq 1)$. Since $\operatorname{dist}_{|\cdot|}(x, K_n) = \sum_{i=n+1}^{\infty} \frac{1}{2^i} \frac{|x_i|}{1+|x_i|}$, from (3.2) we get $\frac{1}{2^{n+1}} \frac{|x_{n+1}|}{1+|x_{n+1}|} = \varepsilon_n - \varepsilon_{n+1}$, hence $(\varepsilon_n - \varepsilon_{n+1})2^{n+1} < 1$ for almost all natural n, which is a contradiction.

However, in some situations these assumptions may be weakened, which is shown by

Example 3.4. Suppose that $(V_n)_{n=1}^{\infty}$ is a sequence of distinct finite-dimensional subspaces of the space $X = L^{\infty}[a,b]$ with the supremum norm and $1 \in V_1$. Set $K_n = \{v \in V_n : v \geq 0\}$ $(n \geq 1)$. Here condition (3.1) may not be satisfied, but the Bernstein theorem is still true.

To prove this, fix a sequence $\varepsilon_n \downarrow 0$. By Theorem 1.1, there exists $y \in X$ such that $\operatorname{dist}(y, V_n) = \varepsilon_n$ for $n \in \mathbb{N}$ and $||y|| = \varepsilon_1$. Obviously, if $w_n \in P_{V_n}(y)$, then $||w_n|| \leq 2\varepsilon_1$. Put $x = y + 2\varepsilon_1$. By (2.8), $\operatorname{dist}(x, V_n) = \operatorname{dist}(y, V_n) = \varepsilon_n$ for all $n \in \mathbb{N}$. Moreover, if $w_n \in P_{V_n}(y)$, then $v_n = w_n + 2\varepsilon_1 \in P_{V_n}(x)$ and $v_n \in K_n$, thus $\operatorname{dist}(x, K_n) = \varepsilon_n$.

For example, the 'lethargy' theorem holds for the cones $K_n = \{p \in P_n[a, b] : p \ge 0\}$, where $P_n[a, b]$ denotes the space of all polynomials of degree at most n, restricted to [a, b].

Example 3.5. Let S be the space of all real (or complex) sequences $(x_n)_{n=1}^{\infty}$ such that $x_n = 0$ for almost all $n \in \mathbb{N}$, equipped with a norm $\|\cdot\|$ satisfying $\|(x_n)\| \le \|(y_n)\|$ if $|x_i| \le |y_i|$ for all $i \in \mathbb{N}$. Let X be the completion of the space $(S, \|\cdot\|)$ and set K_n as in Example 3.3/2. If $i \ge j$ and $(x_n) \in K_i$, then $P_{K_j}((x_n)) = (x_1, \ldots, x_j, 0, 0, \ldots)$ and, in consequence, the assumptions of Corollary 3.2 are fulfilled.

In particular, if $X = l^p$ $(1 \le p < \infty)$, then dist $(x, K_n) = \varepsilon_n$ for $n \ge 1$, when $x_1 \ge 0$ and $x_k = (\varepsilon_{k-1}^p - \varepsilon_k^p)^{1/p}$ for $k \ge 2$.

To end this section, we note that the assumption $R_N(\bigcup_{n=1}^{\infty} V_n) > 0$ in Theorem 3.1 is not restrictive in many cases as the following examples show.

Remark 3.6.

- 1. If $(X, |\cdot|)$ is an F-space with an s-homogeneous norm (see Definition 4.5), then $R_{|\cdot|}(X) = \infty$.
- **2.** If (X_{ϱ}, ϱ) is a modular space and ϱ is s-convex with some $s \in (0, 1]$, i.e. $\varrho(ax + by) \leq a^{s}\varrho(x) + b^{s}\varrho(y)$ for all $x, y \in X_{\varrho}$ and $a, b \geq 0$ with $a^{s} + b^{s} = 1$, then $R_{\varrho}(X_{\varrho}) = \infty$.
 - **3.** If an SF-space (X, N) is locally bounded, then $R_N(X) > 0$.

4. (See [7: Proposition 4.5].) If $(X_{\varrho_f}, \varrho_f)$ is an Orlicz-Musielak space defined as in Example 2.3 and $Y \subset X_{\varrho_f}$ with $Y \setminus \{0\} \neq \emptyset$, then

$$R_{\varrho_f}(Y) = \inf \left\{ \int_{A_y} f^{\infty}(t) \, d\mu(t) : y \in Y \setminus \{0\} \right\}$$
 (3.3)

where $A_y = \{t \in \Omega : y(t) \neq 0\}$ and $f^{\infty}(t) = \lim_{s \to \infty} f(t, s)$ for $t \in \Omega$.

4. Bernstein's 'lethargy' theorem for linear projections

Let us now start with

Definition 4.1. Let V be a linear subspace of an SF-space (X, N). Then a linear operator $P: X \to V$ is called a *projection* if it is continuous and Px = x for all $x \in V$. We will denote by P(X, V) the set of all projections from X onto V.

We shall prove a version of the Bernstein theorem for projections onto closed subspaces of an SF-space. This is a generalization of [6: Proposition 3], which deals only with the case of a Banach space and projections onto its finite-dimensional subspaces.

The following lemma will be useful for our purposes.

Lemma 4.2. Let (X,N) be an SF-space, let V be one of its finite-dimensional linear subspaces and assume that $\overline{K}(0,d) \cap V$ is a compact set. If $\varepsilon \leq d$, $x \in V$, $v \in V \setminus \{0\}$ and $N(x) \leq \varepsilon$, then there exists $t_0 \geq 0$ with $N(x + t_0 v) = \varepsilon$.

Proof. By (2.2) and (2.5), the inequiple structure on \mathbb{R} . Therefore e only need to show that N(x+tv)>d for some t>0. On the contrary, suppose this false. Then for every $k\in\mathbb{N}$ we have $N(x+kv)\leq d$, hence $x+kv\in\overline{K}(0,d)\cap V$. By argument of compactness, there exists $z\in V$ satisfying

$$N(x + kv - z) = N(kv - (z - x)) \to 0.$$

Since the one-dimensional space [v] is closed in X, $z-x=t_1v$, where $t_1 \in \mathbb{K}$. According to (2.6), we have $N_1((k-t_1)v) \to 0$, with N_1 defined as in Lemma 2.4. On the other hand, for $k > 2|t_1| + 1$,

$$N_1\big((k-t_1)v\big) \geq N_1\big((|t_1|+1)v\big) > 0$$

which is a contradiction

Our theorem reads as follows.

Theorem 4.3. Suppose that (X,N) is an SF-space and let $V_1 \subsetneq V_2 \subsetneq \ldots \subsetneq X$ be an ascending sequence of distinct closed subspaces of X. Furthermore, suppose that $P_n \in P(X,V_n)$ and for every $n \in \mathbb{N}$ we may find $v_n \in V_{n+1} \setminus V_n$ such that the conditions

$$P_j v_n = 0 \text{ if } j = 1, \dots, n \tag{4.1}$$

$$R_N\left(\cup_{n=1}^{\infty} \operatorname{Span}\left\{v_1, \dots, v_n\right\}\right) > 0 \tag{4.2}$$

are fulfilled. Then for every sequence $\varepsilon_n \downarrow 0$ there exist $n_0 \in \mathbb{N}$ and $x \in X$ such that

$$N(x - P_n x) = \varepsilon_n \qquad (n \ge n_0). \tag{4.3}$$

Proof. Choose any sequence (v_n) of vectors which have the properties listed above and put $W_j = \operatorname{Span}\{v_1, \ldots, v_j\}$ $(j \geq 1)$. By (4.2) and Lemma 2.6, $\overline{K}(0,d) \cap W_n$ is a compact set for some d > 0 and all $n \in \mathbb{N}$. As in the proof of Theorem 3.1, we may find $\delta > 0$ such that $N(x+y) \leq d$ if $N(x) \leq \delta$ and $N(y) \leq \delta$. Let $n_0 = \min\{n \in \mathbb{N} : \varepsilon_n \leq \delta\}$ and choose $n \geq n_0$ satisfying $\varepsilon_n > 0$. For $j = 0, \ldots, n - n_0$ define

$$U_j^n = \operatorname{Span}\left\{v_{n-j}, \dots, v_n\right\}$$

and

$$F_j = \left\{ x \in U_j^n : N(x) = \varepsilon_{n-j}, N(x - P_l x) = \varepsilon_l \text{ for } l = n, \dots, n - j \right\}.$$

We claim that all the sets F_j are non-empty. The proof goes by induction on j.

We first show that $F_0 \neq \emptyset$. To do this, choose $t_0 > 0$ with $N(t_0 v_n) = \varepsilon_n$ (by Lemma 4.2 such t_0 exists). We have

$$N(t_0v_n - P_n(t_0v_n)) = N(t_0v_n) = \varepsilon_n,$$

hence $x_0 = t_0 v_n \in F_0$. Now, suppose that $x_j \in F_j$. According to Lemma 4.2, we may find $t_0 \geq 0$ satisfying $N(x_j + t_0 v_{n-j-1}) = \varepsilon_{n-j-1}$. Setting $x_{j+1} = x_j + t_0 v_{n-j-1}$, we have $x_{j+1} \in U_{j+1}^n$. Furthermore, by (4.1) we get

$$N(x_{j+1} - P_{n-j-1}x_{j+1})$$

$$= N(x_j + t_0v_{n-j-1} - P_{n-j-1}x_j - t_0P_{n-j-1}v_{n-j-1})$$

$$= N(x_{j+1})$$

$$= \varepsilon_{n-j-1}$$

and

$$N(x_{j+1} - P_l x_{j+1})$$

$$= N(x_j + t_0 v_{n-j-1} - P_l x_j - t_0 P_l v_{n-j-1})$$

$$= N(x_j - P_l x_j)$$

$$= \varepsilon_l$$

when l = n, ..., n - j. Consequently, $x_{j+1} \in F_{j+1}$. Thus we have showed that every set F_j is non-empty. In particular, $E_n \neq \emptyset$, where $E_n = F_{n-n_0}$, i.e.

$$E_n = \left\{ x \in U_{n-n_0}^n : N(x) = \varepsilon_{n_0}, N(x - P_l x) = \varepsilon_l \text{ for } l = n_0, \dots, n \right\}.$$

Let us observe that each vector $x \in E_n$ satisfies condition (4.3) if $\varepsilon_n > 0$ and $\varepsilon_{n+1} = 0$. Therefore it is sufficient to consider the case of $\varepsilon_n > 0$ for all $n \in \mathbb{N}$. Then, given any $n \geq n_0$, we may choose $x_n \in E_n$. Since $x_n \in W_n$, from (4.1) we get $P_l x_n \in W_l$, with $l \geq n_0$. Moreover, $N(x_n) = \varepsilon_{n_0} \leq \delta$ and $N(x_n - P_l x_n) \leq \varepsilon_l \leq \delta$, thus $N(P_l x_n) \leq d$. We have showed that, for $n, l \geq n_0$, $P_l x_n \in \overline{K}(0, d) \cap W_l$, which is

compact in X. Applying the diagonal argument, we may find a subsequence $(k_n) \subset \mathbb{N}$ and vectors $v_l \in X$ such that $N(P_l x_{k_n} - v_l) \to 0$ for $l \geq n_0$.

Fix $\varepsilon > 0$ and choose r > 0 satisfying $N(x+y+z+w) \le \varepsilon$ if $x,y,z,w \in \overline{K}(0,r)$. We may find $l_0 \ge n_0$ with $\varepsilon_{l_0} \le r$ and $k(l_0)$ such that $N(x_{k_n} - P_{l_0}x_{k_n}) \le r$ and $N(P_{l_0}x_{k_n} - v_{l_0}) \le r$, when $n \ge k(l_0)$. By (2.4) and the choice of r, we get

$$N(x_{k_n} - x_{k_m}) = N\Big((x_{k_n} - P_{l_0} x_{k_n}) + (P_{l_0} x_{k_n} - v_{l_0}) + (v_{l_0} - P_{l_0} x_{k_m}) + (P_{l_0} x_{k_m} - x_{k_m})\Big)$$

$$< \varepsilon$$

for $n, m \geq k(l_0)$. From this it follows that (x_{k_n}) is a Cauchy sequence in X, hence $N(x_{k_n} - x) \to 0$, with some $x \in X$. Let us choose $l \geq n_0$. Since P_l is continuous, by (2.3) - (2.5) we have

$$N((x_{k_n} - P_l x_{k_n}) - (x - P_l x)) \to 0$$

and, consequently,

$$N(x_{k_n} - P_l x_{k_n}) \rightarrow N(x - P_l x).$$

Therefore $N(x - P_l x) = \varepsilon_l$ for $l \ge n_0$ and the proof is complete

Let us emphasize that in Theorem 4.3, contrary to the classical 'lethargy' theorem, subspaces V_n do not need to be finite-dimensional.

Example 4.4. The following sequences of projections have the properties required in Theorem 4.3:

- 1. Let X be a Hilbert space and suppose that $(V_n)_{n=1}^{\infty}$ is an ascending sequence of its distinct closed subspaces. Let P_n be the operator of the best approximation in V_n , i.e. $P_n x \in P_{V_n}(x)$ for $x \in X$ and $n \in \mathbb{N}$. Then $P_n \in P(X, V_n)$ and there exists $v_n \in V_{n+1} \setminus V_n$ such that $P_n v_n = 0$ and, in consequence, $P_j v_n = 0$ for j < n. In this case Theorem 4.3 is a generalization of the classical Bernstein theorem (Theorem 1.1) for Hilbert spaces.
- **2.** Let X be a Banach space with a Schauder basis $(v_j)_{j=1}^{\infty}$. Define $V_n = \text{Span } \{v_1, \ldots, v_n\}$ and set $P_n(\sum_{j=1}^{\infty} \alpha_j v_j) = \sum_{j=1}^{n} \alpha_j v_j$. Then $P_n \in P(X, V_n)$ and $P_j(v_{n+1}) = 0$ for $j = 1, \ldots, n$.
- **3.** Let X_{ϱ_f} be an Orlicz-Musielak space (Example 2.3) generated by a function f satisfying $\lim_{s\to\infty} f(t,s) = \infty$ for almost all $t\in\Omega$. Moreover, assume that $\Omega = \bigcup_{n=1}^{\infty} \Omega_n$ with $\Omega_n \in \Sigma$, $\Omega_n \subset \Omega_{n+1}$ and $0 < \mu(\Omega_{n+1} \setminus \Omega_n) < \infty$. Put $V_n = \{x \in X_{\varrho_f} : x|_{\Omega \setminus \Omega_n} = 0\}$ and $P_n x = x \cdot I_{\Omega_n}$, where I_A denotes the characteristic function of the set A. Then $P_n \in P(X_{\varrho_f}, V_n)$ and $P_j v_n = 0$ for $v_n = I_{\Omega_{n+1} \setminus \Omega_n} \in V_{n+1} \setminus V_n$ and $j \leq n$. Additionally, by (3.3) we have

$$R_{\varrho_f} \left(\bigcup_{n=1}^{\infty} \operatorname{Span} \left\{ v_1, \dots, v_n \right\} \right) = \inf \left\{ \int_{\Omega_{n+1} \setminus \Omega_n} f^{\infty}(t) \, d\mu(t) : n \in \mathbb{N} \right\}$$
$$= \infty.$$

Theorem 4.3 implies the following theorem of Bernstein type for cones in Banach spaces.

Theorem 4.5. Let X be a Banach space and let $K_1 \subsetneq K_2 \subsetneq \ldots \subsetneq X$ be an ascending sequence of distinct closed cones, generating distinct closed subspaces $V_n = K_n - K_n$ of X. Assume that $P_n \in P(X, V_n)$, there exist $v_n \in K_{n+1} \setminus K_n$ satisfying condition (4.1) and M > 0 such that $||Id - P_n|| \leq M$ $(n \in \mathbb{N})$. Then for every sequence $\varepsilon_n \downarrow 0$ we may find $x \in X$ such that

$$\operatorname{dist}(x, K_n) \leq \varepsilon_n \leq M \operatorname{dist}(x, K_n)$$

for $n \geq 1$.

Proof. Reasoning as in the proof of Theorem 4.3, we show the existence of an element $x \in X$ such that $||x - P_n x|| = \varepsilon_n$ for all natural n. Furthermore, since the vectors $x_n \in E_n$, used in the construction of x, are of the form $x_n = \sum_{k=1}^n t_k v_k$ with $t_k \geq 0$, by (4.1) and the choice of v_n we get $P_j x_n \in K_j$ and, in consequence, $P_j x \in K_j$ for all $j \geq 1$. Therefore

$$\operatorname{dist}(x, K_n) \le ||x - P_n x|| = \varepsilon_n \le ||Id - P_n|| \operatorname{dist}(x, K_n) \le M \operatorname{dist}(x, K_n)$$

which is the desired conclusion

Example 4.6. Suppose that X is a Hilbert space and K_n, V_n, ε_n are as in Theorem 4.5. Let P_n denote the operator of the best approximation in V_n (compare Example 4.4.1). In this case $||Id - P_n|| = 1$. By Theorem 4.5, if for every n there exists $v_n \in K_{n+1} \setminus K_n$ with $P_n v_n = 0$, then dist $(x, K_n) = \varepsilon_n$ for some $x \in X$ and all $n \in \mathbb{N}$.

Finally, we formulate Theorem 4.3 for the space L(Y, X) of all linear, continuous operators from Y into X, where X and Y are F-spaces with s-homogeneous norms. This property may be applied to the theory of approximation numbers and Bernstein pairs (see [1] for more details).

Definition 4.7. Let $(X, |\cdot|)$ be an F-space over \mathbb{K} and $s \in (0, 1]$. We say that $|\cdot|$ is an s-homogeneous norm if $|\alpha x| = |\alpha|^s |x|$ for all $\alpha \in \mathbb{K}$ and $x \in X$.

It is easy to check that L(Y,X) is an F-space with the standard F-norm $|L| = \sup\{|L(y)|: |y| \leq 1\}$ if X and Y are F-spaces with s-homogeneous norms. Moreover, $R_{|\cdot|}(L(Y,X)) = \infty$.

Corollary 4.8. Assume that X is an F-space with an s-homogeneous norm and let V_n, P_n, ε_n be such as in Theorem 4.3. Then for any $s_1 \in (0,1]$ and F-space Y with an s_1 -homogeneous norm and $Y^* \neq \{0\}$ there exist $L \in L(Y,X)$ and $n_0 \in \mathbb{N}$ satisfying $|L-W_nL| = \varepsilon_n \ (n \geq n_0)$ where $W_n \in P(L(Y,X),L(Y,V_n))$ is defined by $W_nT = P_n \circ T$ for $T \in L(Y,X)$.

The proof of this corollary is the same as that of [1: Proposition 2.3], where only the case of 1-homogeneous norm was considered.

References

- [1] Aksoy, A. G. and G. Lewicki: *Diagonal operators, s-numbers and Bernstein pairs*. Note Mat. 17 (1997), 209 216.
- [2] Albinus, G.: Remarks on a theorem of S. N. Bernstein. Studia Math. 38 (1970), 227 234.
- [3] Bernstein, S. N.: Collected Works, Vol. II (in Russian). Moscow: Akad. Nauk SSSR 1954.
- [4] Köthe, G.: Topological Vector Spaces, Vol. I. New York: Springer-Verlag 1969.
- [5] Lewicki, G.: Bernstein's 'Lethargy' Theorem and Polynomial Approximations in Function Spaces. Thesis. Cracow: Jagiellonian University 1987.
- [6] Lewicki, G.: A theorem of Bernstein's type for linear projections. Univ. Iagel. Acta Math. 27 (1988), 23 27.
- [7] Lewicki, G.: Bernstein's "lethargy" theorem in metrizable topological linear spaces. Monatsh. Math. 113 (1992), 213 226.
- [8] Musielak, J.: Orlicz Spaces and Modular Spaces. Lect. Notes Math. 1034 (1983).
- [9] Nikolski, W. N.: Some remarks on spaces with (B) property (in Russian). Uchen. Zap. Kalinin. Gos. Ped. Inst. 39 (1964), 48 52.
- [10] Pleśniak, W.: Quasianalytic functions in the sense of Bernstein. Dissertationes Math. 147 (1977), 1 70.
- [11] Pleśniak, W.: On a theorem of S. N. Bernstein in F-spaces. Zeszyty Nauk. Uniw. Jagiell. Prace Matem. 20 (1979), 7 16.
- [12] Shvedov, A. S.: On the existence of an element with prescribed sequence of best approximations (in Russian). In: Proc. Intern. Conf. "Theory of Approximation of Functions", Kiev, May 30 June 6, 1983.
- [13] Tjuriemskih, I. S.: (B) property of Hilbert spaces (in Russian). Uchen. Zap. Kalinin. Gos. Ped. Inst. 39 (1964), 53 64.
- [14] Vasiliev, A. I.: On an inverse problem in the theory of best approximation in F-spaces. East. J. Approx. 4 (1998), 201 215.

Received 23.10.2001