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Abstract. We prove a version of Bernstein’s ‘lethargy’ theorem for cones in the class of SF-

spaces. Moreover, an analogue of the Bernstein theorem for linear projections onto closed
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1. Introduction

The Bernstein ‘lethargy’ theorem, one of the most important results in the constructive
theory of functions, reads as follows.

Theorem 1.1. Let X be a Banach space and let Vi C Vo C ... C X be an as-
cending sequence of distinct finite-dimensional linear subspaces of X. Then for every
real sequence e, | 0 there exists x € X such that ||z|| = €1 and dist (z,V,) = e, for all
n > 1.

This result was first obtained by Bernstein for X = Cy[0, 1] and V,, = P,,, where
Cr[0, 1] denotes the space of all continuous real functions on [0,1] equipped with the
supremum norm and P, is the space of all real polynomials of degree at most n (see
[3]). Later, other versions of the ‘lethargy’ theorem were proved (see, e.g., [2, 5, 9, 11
- 14]). This theorem became a very useful tool in the theory of quasianalytic functions
of several complex variables (see [10]).

In [7], Lewicki proved the following, more general version of Bernstein’s ‘lethargy’
theorem in the class of SF-spaces, which includes all F-spaces and Orlicz-Musielak spaces
with the condition Ay (basic definitions and notation of SF-spaces are given in Section
2).

Theorem 1.2. Let (X, N) be an SF-space, let V1 C Vo C ... C X be an ascending
sequence of distinct finite-dimensional subspaces of X and let Rn(US,Vy,) > 0. Then
for every real sequence e,, | 0 there exist ng € N and x € X such that dist (2, V,,) = &p
for all n > ny.

In the present note, using a similar technique, we obtain an analogue of the Bern-
stein theorem (Theorem 3.1), replacing the sequence of finite-dimensional linear sub-
spaces of an SF-space by a sequence of closed cones which generate such subspaces (the
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case of cones has not been discussed before). We also present a version of Bernstein’s
‘lethargy’ theorem, in which projections onto closed subspaces of an SF-space replace
best approximation operators (Theorem 4.3). This generalizes [6: Proposition 3].

2. SF-Spaces: definitions and basic properties
In this section we have compiled some basic facts on SF-spaces, following [7]. We start
with

Definition 2.1. Let X be a linear space over K (K = R or K = C) and let
N : X — [0,00) be a function satisfying the following conditions:

N(z)=0if and only if z = 0 (2.1)

N(anx, —ax) — 0 for all sequences {a,} C K (2.2)
and {z,} C X such that a,, - a and N(x, —x) = 0

N(zp + yn —x — y) — 0 for all sequences {z,},{yn} C X (2.3)
such that N(z, —z) - 0 and N(y, —y) = 0

N(axz) = N(z) for all z € X and a € K such that |a| =1 (2.4)

N(z,) = N(z) for every sequence {z,} C X (2.5)

such that N(z, —z) — 0.

Then N is called an SF-norm. If, moreover, the space X is complete with respect to the
topology induced by the family {K (z,7)}zex r>0, where K(z,7r) ={y € X : N(y—=z) <
r}, then the pair (X, N) is said to be an SF-space. If N(a1xz) > N(azz) when z € X
and |a1| > |az|, then N is a non-decreasing SF-norm.

Remark 2.2. Every SF-space is a complete metrizable topological linear space
(as a Hausdorff space with a countable basis of neighbourhoods of 0; see, e.g., [4]).
Consequently, all finite-dimensional subspaces of an SF-space are closed.

It is obvious that all F-spaces (in particular, all Banach spaces) are SF-spaces.

Example 2.3. Let (2, 1) be a measurable space and let f: Q2 x Ry — Ry be a
p-function with a parameter, i.e. f satisfies the following properties:

(pl) Foreveryt € Q, f(t,-) : Ry — R, is a non-decreasing, continuous function such
that f(¢,0) = 0 and f(¢,2) > 0 for z > 0.

(p2) For every z € Ry, f(-,z): Q — Ry is a X-measurable function.

We denote by M the set of all K-valued Y-measurable functions defined on €2, with
equality p-almost everywhere. Set

i) = /Q f s du(t) (@ e M).

Then p; is the Orlicz-Musielak modular given by f, and the corresponding modular
space X, will be called Orlicz-Musielak space. In [7] Lewicki showed that an Orlicz-
Musielak space (X, 10 ) is an SF-space with respect to the modular gy if the generating
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function f is locally integrable and satisfies the condition A, (for definitions and basic
properties of modular spaces we refer the reader to [8]).

Now we present a sequence of lemmas concerning SF-spaces which shall be needed
in the following sections.

Lemma 2.4 (see [7: Lemma 3.3]). Let (X, N) be an SF-space and put
Ni(z) =sup {N(tz) : t € [0,1]} (z € X).

Then (X, N1) is an SF-space, Ny is non-decreasing, and for every sequence {x,} C X
we have
Ni(zy,) — 0 if and only if N(z,) — 0. (2.6)

Definition 2.5. Let (X, N) be an SF-space. If Y C X and Y \ {0} # 0, then we
define the radius of the set Y by

Ry (Y) = inf { sup{N(ty) :t>0}: ye Y\ {0}} € [0, +o0].
In the general case it may occur that Ry(Y) = 0 (see [7: Examples 3.6 and 4.4]).

Lemma 2.6 (see [7: Corollary 3.8]). Let (X,N) be an SF-space. Assume that
Vi C Vo C ... C X is an ascending sequence of distinct finite-dimensional subspaces of
X and Ry (US,V,) > 0. Then there exists d > 0 such that K(0,d) NV, is a compact
set for alln € N, where K(z,r)={ye€ X : N(y—=x) <r}.

If (X, N) is an SF-space, ) #Y C X and x € X, then, as in metric spaces, we may
define
dist y(z,Y) =inf {N(z —y): y €Y}

and
Py(z)={yeY: Nz —y) =dist y(,Y)}.

If y € Py(x), then we call y the best approzimation to x in Y.
Remark 2.7. f Z CY C X and z € X, then

dist N(x, Y) < dist N(a:, Z). (2.7)
If V is a linear subspace of X, z € X and v € V, then
dist y(z + v, V) = dist y(z, V). (2.8)

If V is a linear subspace of X, z € X, t1,t2 € K such that |t;| < |tz| and N is non-
decreasing, then
dist y (t12z, V) < dist y(ta2z, V). (2.9)

Let us recall that a subset K of a linear space V is a (convex) cone if K + K C K,
aK C K for alla > 0 and K N (—K) = {0}. If K is a cone, then Span K = K — K.

A slight modification of [7: Proposition 3.4] gives



6 B. Micherda

Lemma 2.8. Suppose that (X, N) is an SF-space and K1 C Ko C ... C X is an
ascending sequence of distinct closed cones satisfying V,, C Voy1 and dim'V,, < oo for

-

a_ll n € N, where V,, = K,, — K,,. Furthermore, assume that there exists d > 0 such that
K(0,d)NV, is a compact set for every n € N. Define

4y, = Sup {dist Nk, Vo) ke Kn+1} (2.10)

m:hﬁ{wmmmN@+kJ@:keKm¢pveUﬁme\Ww&. (2.11)

Then ay,, b, > d for every n € N.
Proof. Choose any n € N and v € K,, 11 \ V,,. Let us prove that

sup {dist N(tv, V) t > 0} > d.

Suppose this is not true. Then for every k € N there exists vy, € V,, with N(kv—vg) < d.
Since kv — v, € K(0,d) NV, 41 for all k, by argument of compactness we may assume
that N(kv — vy — 2) — 0 for some z € Vyp41. But kv — v, € V,, @ [v], which (by
Remark 2.2) is a closed subspace of X. Hence z = tv + w, where t € K and w € V,,.
Since N (kv — v, — z) — 0, from (2.6) we get Ny ((k — t)v — (v + w)) — 0, therefore
dist n, ((k — t)v, V) — 0. Now fix ko € N such that kg > [t|. As V,, is a closed set and
(ko — t)v & V,, by (2.9) and Lemma 2.4 we have

dist n, ((k — t)v,V;,) > dist i, (ko — t)v, Vi) >0 (k> ko).

This contradicts the fact that dist x, ((k — t)v,V,) — 0 if ¥ — oo. Consequently,
an > sup{dist y(tv,V,) : t > 0} > d. The proof of the second inequality b, > d is
completely similar to that of [7: Proposition 3.4]. So we omit the details i

Lemma 2.9. Suppose that (X, N) is an SF-space and K1 C Ko C ... C X is an
ascending sequence of closed cones which generate finite-dimensional subspaces V;, =
K, — K,, of X. Furthermore, assume that there exists d > 0 such that K(0,d) NV, is
a compact set for all n € N. Then, fori > j and x € K; :

1. If dist (2, K;) < d, then Pk, (x) # 0.

2. If dist y(z,V}) < d, then Py, (x) # 0.

Proof. Fix i > j and = € K; satisfying dist y(z, K;) = € < d. Choose [y € N
such that ¢ + % < d. Then for every | > lo there exists ké € K; with N(z — ké) <
€+ % By compactness of K(0,d) N V;, without loss of generality we can assume that
N(x—ké—v) = N(k;—(x—v)) — 0 for some v € V;. Since K is a closed set, v = z—k;,
where k; € K;. Using (2.5), we get N(z — ké) — N(z — kj), thus N(z — k;) < e. By
definition of €, k; € Pk, (), and (1) is proved. To show statement 2, we argue as in the
previous case, observing that all spaces V,, are closed in X 1

Lemma 2.10. Let (X, N) be an SF-space and assume thatV C U C X, (z,) C U,
z € X and N(x, —x) — 0. Then

limsupdist y (2, V) < dist y(z,V). (2.12)

n—o0
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If, moreover, U is a finite-dimensional linear subspace of X, the set U N K(0,r) is
compact and dist y(zn,, V) < 1 for some r > 0 and almost all n € N, then

lim dist 5 (zn, V) = dist y(z, V). (2.13)

n—00

Proof. Suppose that N(z, — x) — 0. We may find v, € V satisfying
) 1
N(z — vg) < dist y(z, V)+E (k € N).

By (2.5),
dist n(zn, V) < N(xy, —vg) = N(z — vg)

for all k € N, which gives (2.12).

Now let U be a linear subspace of X and choose (z,,) C U, z € X and r > 0 which
have the required properties. In order to prove (2.13), we only need to show that

lim inf dist y (2, V) > dist y(z, V).

n—00

Suppose this is false. Then, without loss of generality, we may assume that there exist
e >0 and v, € V with

N(zy, —vy,) <dist y(z,V) —e <.

Hence x, — v, € UN K(0,7) and, consequently, N(x, — v, — u) — 0 for some u € U.
By (2.5), N(z, — v,) — N(u), thus N(u) < dist y(z,V) —e. On the other hand,
according to (2.3) - (2.5), N(z — v,,) — N(u), which implies N (u) > dist y(z, V). This
is a contradiction il

3. Bernstein’s ‘lethargy’ theorem for cones

In this section we prove a version of the Bernstein theorem, in which a sequence of cones
replaces a sequence of finite-dimensional vector subspaces. The proof will be similar in
spirit to that of Theorem 1.2, given by Lewicki in [7]. However, since property (2.8),
used constantly in that proof, is no longer valid for cones, we must proceed in a slightly
different way.

Our result is the following

Theorem 3.1. Let (X, N) be an SF-space and suppose that K1 C Ko C ... C X
is an ascending sequence of distinct closed cones such that V,, C V11 and dimV,, < oo

=

for all n € N, where V,, = K,, — K,,. Furthermore, assume that Rn(U2_,V,,) > 0 and
the following condition is satisfied:

ForeverynEN,a:EKnandalli,jENwithjgiSn:} (3.1)

ify € Pk, (v) and z € Pk, (x), theny — z € K;
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Then for every sequence €,, | 0 there exist no € N and x € X such that

dist n(z, K,,) =€y, (n > nyg). (3.2)

Proof. According to Lemma 2.6, we may find d > 0 such that K(0,d) NV, is a
compact set for all n € N. By (2.3), there exists § > 0 satisfying N(z +y) < d if
z,y € K(0,0). Put ng = min{k € N: ¢ < §} and define

E, = {a: € Kpyq: dist y(z, K)) =dist y(2, V) =1 (I = ny,... ,n)}

where n > ng. Let us first prove that E, # 0 if n > ng and &, > 0. For this purpose
we choose such n > ng and set

F; = {x € Knyr : dist y(z, K)) = dist y(z, V) = &1 (I = n,...,n—j)}

where j = 0,...,m — ng. We will show by induction on j that all the sets F; are
non-empty.

According to Lemma 2.8, ¢, < § < d < ay,, with a, defined by (2.10). Therefore
dist y (v, V) > €y, for some v € K, 1. Put

to = inf {t > 0: dist y(tv, Vi) > an}.
By (2.12), dist y(tov, V,,) > €,. Since &, < d, (2.13) now implies dist y (21, V) = en,
where 21 = tov. By Lemma 2.9, there exist k1, k2 € K, satisfying N(x1—(k1—k2)) = €.
Put x = 1 + ko. Then z € K,, ;1. From (2.7) and (2.8) we have

dist N(.’L‘, Vn) = dist N(l'l; Vn) = N(SL‘l + kz — kl)
> dist N(;L‘,Kn) > dist N(:U, Vn),

hence z € Fj.

Now suppose that z € Fj. By Lemma 2.9, for [ € {n — j,...,n},
dist y(z,V}) = dist y(z, K;) = N(xz — v;)

with some v; € K;. According to (3.1), 1 = £ — vp—; € Kp41. Relation (2.8) now
implies

dist y (21, V1) =dist y(z, V) = N((& — vp—j) — (v — vp—j)) > dist (21, K7)
since v; — vp—; € Kj, which follows from (3.1). Consequently,
dist v (z1, K;) = dist (21, V) = & (l=n,...,n—j)
and so x1 € Fj. Moreover,

dist N(:cl, Vn_j) = N(ZIT1 - 0) Z dist N(azl, Kn—j—l) Z dist N(Z‘1, Vn_j)
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which means that
dist N(arl,Kn_j_l) = dist N(Jfl, Vn_j_1) =€n—j-

If e,_j—1 = €n—j, then z1 € Fj11, so it suffices to consider the case €,,_j_1 > &,—;. By
Lemma 2.8, e,—j—1 < § < d < b,_j_1, where b,_;_; is given by (2.11). Consequently,
there exists u € K,,_; such that dist y(z1 + u, Vo—j_1) > €n—j_1. Set

to = inf {t > 0 dist x (21 + tu, Ve_j_1) > en_j_l}.

As in the previous case, Lemma 2.10 gives dist y (21 +tou, Vo—j—1) = €n—j—1. According
to Lemma 2.9,

dist N(.’El + t()’u, Vn—j—l) = N(.Cl?l + t()’u - ('wl - ’wg))

with wi,ws € K—j_1. Put 2 =21 + tou +w,. Then z € K, ;. By (2.7) and (2.8), we

have
dist § (2, Vp—j—1) = dist y(21 + tou, Vp—j—1) = N(z — wq)

> dist N(Z, Kn—j—l) > dist N(Z, Vn—j—l)-

Hence
dist N(Z, Kn—j—l) = dist N(Z, Vn—j—l) =€n—j—1-

Since v} —vp—; € Ky, forl =mn,...,n —j we get

dist § (21, V1) = N(z1 — (v — vp—j)) = N(z — (v; — vp—j + tou + w2))
> dist N(Z, Kl) > dist N(z, VD = dist N(arl, VE)
Therefore dist 5 (2, K;) = dist n(2,V}) = €, and, in consequence, z € F;i ;. Thus we
have proved that all the sets F}; are non-empty. As F, = F,_,,, we conclude that
E, # 0.
In the case of €, > 0 and €,4+1 = 0 for some n > ng, each element z € E,, satisfies
condition (3.2). So we can assume that &, > 0 for all n > ng. Our claim is that

E,NK(0,6) # 0 for every n > ng. To prove this, fix n > ngy and choose 7, € E,. By
Lemma 2.9, there exist v; € K; satisfying

dist § (Zn, K;) = dist v (25, Vi) = N (2, — 1) (Il =ng,...,n).

Define z,, = z,, — vp,. Then z,, € K,, 11, which follows from (3.1). According to (2.7)
and (2.8), we have

dist §y(2p, Vi) = dist y(zn, VI) = N(z, — v1) = N(xp, — (U1 — Uny))
> dist y(zp, K;) > dist y(zp, V1)

hence dist y(zy, K;) = dist 5y (2, V}) = &;. Furthermore,

dist N (zn, Kny) = N(Zp, — V) = N(zp) = €py < 0
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which means that z,, € E, N K(0,4).

Now, choose any z,, € E, N K(0,68), where n > ng. According to Lemma 2.9, for
every | > ng and n > | we may find v}, € Pk, (z,). Since N(z, —v}) = ¢ < § and
N(z,) < 4, by (2.4) and the choice of § we have N (v',) < d. Therefore v}, € K;NK (0, d),
which is a compact subset of X (as a closed subset of a compact set). Consequently, for
each | > ng there exist a subsequence (k,) C N and v; € K; such that N(Uén —v) — 0.
Applying the diagonal argument, we may assume that N(vf —v;) — 0 for all I > ny.
Let us fix ¢ > 0. By (2.3), we may find » > 0 such that N(y1 + y2 + y3 + y4) < ¢,
when y1,ys,y3,y4 € K(0,7). Choose any Iy > ng satisfying £, < r. Then there exists
k(lp) € N such that

N(zg, — o) )
N (vl —

(;Cn 0) >S7’
N(vg —vi,)
N(zx,, —vg.) |

for all n,m > k(lp). By (2.4) and the choice of r, N(zg, — zi,,) < ¢ if n,m > k(lp).
Thus we have proved that (xg,) is a Cauchy sequence in X. Since the space X is
complete, N(z, —x) — 0, with some z € X.

It remains to show that dist y(z, K;) = ¢; for [ > ng. Fixing such I, by (2.3) and
(2.5) we get N((zx, —vf ) — (z —v)) — 0, hence N(z, — v}, ) = N(z —v;), and,
finally, N(z — v;) = €;. Moreover,

Nz, —Ufcn) < N(zg, —v) = N(z —v)

for every v € K; and k,, > [. Therefore N(z — v) > ¢ and, consequently, v; € Pg,(z),
which completes the proof il

As a corollary, we obtain the Bernstein ‘lethargy’ theorem for cones in Banach spaces
(another version is given in Section 4 — see Theorem 4.5).

Corollary 3.2. Let X be a Banach space and suppose that K1 C Ko C ... C X
15 an ascending sequence of distinct closed cones such that K,, — K, C Kp11 — Kp41
and dim(K,, — K,) < oo for all n € N. Furthermore, assume that condition (3.1) is

satisfied. Then for every sequence €1 > €9 > ... > 0 = lime,, there exists x € X such
that dist (z, K,,) = e, forn > 1.

Let us observe that the ‘lethargy’ theorem for cones may not be true if we drop the
assumptions of Theorem 3.1, because of

Example 3.3.
1. Let X be the space R? with the Euclidean norm and define

Kn:{(x,y)EX:0§a:<ooand0§y§na:} (n € N).

Then K,, — K,, = X for all n € N and property (3.1) is not valid. Observe that the
condition dist (z, K,) = d,, | 0 implies z = (0, y) for some y > 0. Since for such z and
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t > 0 we have dist (tz, K,,) = tdist (z, K,) = td,, in this case we cannot obtain (3.2) if
en 4 0 and 2—: is not constant.

2. Let X be the space of all real (or complex) sequences (x,)22; equipped with the

F-norm [(z,)| =Y i, 2—12 14|iv|ic|i|' Set

Kn:{(a:n)EX:a:iEOforiSnanda:i:()fori>n}

and V,, = K, — K,,. Then R (V) = 5= and, consequently, R},|(U3,V,) = 0 (compare
[7: Example 3.6]).

Choose any sequence &, | 0 such that (e — €k+1)2’“+1 > 1 for infinitely many
k € N and assume that (3.2) holds for some x € X. Then z; > 0 (i > 1). Since

. _ 0 1 |z 1 |Tnt1]|
dist |.|(z, Kpn) = D> ;2,11 3 Ti[g;]» rom (3.2) we get ST TH]psa] = En — En+1, hence

€n — €ns1)2"1! < 1 for almost all natural n, which is a contradiction.
+

However, in some situations these assumptions may be weakened, which is shown

by

Example 3.4. Suppose that (V,,)22, is a sequence of distinct finite-dimensional
subspaces of the space X = L*[a, b] with the supremum norm and 1 € V;. Set K,, =
{veV,:v>0} (n>1). Here condition (3.1) may not be satisfied, but the Bernstein

theorem is still true.

To prove this, fix a sequence ¢, | 0. By Theorem 1.1, there exists y € X such that
dist (y, V) = &, for n € N and ||y|| = e1. Obviously, if w, € Py, (y), then ||w,| < 2¢;.
Put z = y + 2¢,. By (2.8), dist (z,V;,) = dist (y, V) = &, for all n € N. Moreover, if
wy, € Py, (y), then v, = w, + 2¢1 € Py, (z) and v,, € K,,, thus dist (z, K,,) = &y,.

For example, the ‘lethargy’ theorem holds for the cones K,, = {p € P,[a,b] : p > 0},
where P,[a,b] denotes the space of all polynomials of degree at most n, restricted to
[a, b].

Example 3.5. Let S be the space of all real (or complex) sequences ()22 ; such

that x,, = 0 for almost all n € N, equipped with a norm || - || satisfying ||(z,)|| < ||(yn)||
if |z;| < |y;| for all i € N. Let X be the completion of the space (S, || - ||) and set K,, as
in Example 3.3/2. If i > j and (z,) € K;, then Pk, ((z,)) = (21,...,2;,0,0,...) and,
in consequence, the assumptions of Corollary 3.2 are fulfilled.

In particular, if X =P (1 < p < 00), then dist (z, K,,) =&, forn > 1, when 21 > 0
and zy, = (eh_, — 6£)1/p for k > 2.

To end this section, we note that the assumption Ry (US2,V;,) > 0 in Theorem 3.1
is not restrictive in many cases as the following examples show.

Remark 3.6.

1. If (X,|-|) is an F-space with an s-homogeneous norm (see Definition 4.5), then

2. If (X,, 0) is a modular space and p is s-convex with some s € (0,1}, i.e. p(az +
by) < a®p(x) +b%p(y) for all z,y € X, and a,b > 0 with a® +b° = 1, then R,(X,) = oco.

3. If an SF-space (X, N) is locally bounded, then Ry (X) > 0.
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4. (See [7: Proposition 4.5].) If (X,,, oy) is an Orlicz-Musielak space defined as in
Example 2.3 and Y C X, with "\ {0} # 0, then

Ry, (V) =t { [ RACLORTE g o} (33)

where A, = {t € Q: y(t) # 0} and f°°(t) = lim,, f(t,s) for t € Q.

4. Bernstein’s ‘lethargy’ theorem for linear projections

Let us now start with

Definition 4.1. Let V be a linear subspace of an SF-space (X, N). Then a linear
operator P: X — V is called a projection if it is continuous and Px =z for all z € V.
We will denote by P(X, V) the set of all projections from X onto V.

We shall prove a version of the Bernstein theorem for projections onto closed sub-
spaces of an SF-space. This is a generalization of [6: Proposition 3], which deals only
with the case of a Banach space and projections onto its finite-dimensional subspaces.

The following lemma will be useful for our purposes.
Lemma 4.2. Let (X,N) be an SF-space, let V be one of its finite-dimensional

linear subspaces and assume that K(0,d) NV is a compact set. If e < d, x € V,
v € V\{0} and N(x) < e, then there exists to > 0 with N(z + tov) = €.

Proof. By (2.2) and (2.5);thdfuappingstcontinuous on R. Therefore
e only need to show that N(x +tv) > d for some ¢ > 0. On the contrary, suppose this

false. Then for every k € N we have N(z + kv) < d, hence z + kv € K(0,d)nV. By
argument of compactness, there exists z € V satisfying

N(z+kv—2)=N(kv—(z—z)) —0.

Since the one-dimensional space [v] is closed in X, z—x = t1v, where t; € K. According
to (2.6), we have Ny((k — t1)v) — 0, with N7 defined as in Lemma 2.4. On the other
hand, for k > 2[t1| + 1,

Ny ((k —t1)v) > Ni(([t1] + 1)v) >0

which is a contradiction i
Our theorem reads as follows.

Theorem 4.3. Suppose that (X,N) is an SF-space and let Vi C Vo C ... C X
be an ascending sequence of distinct closed subspaces of X. Furthermore, suppose that
P, € P(X,V,) and for every n € N we may find v, € V11 \V, such that the conditions

Pjv, =01ifj=1,...,n (4.1)
RN( Us?_; Span {v1, . ..,vn}) >0
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are fulfilled. Then for every sequence e, | 0 there exist ng € N and x € X such that

N(z — Pyx) =€y, (n > ng). (4.3)

Proof. Choose any sequence (v,,) of vectors which have the properties listed above
and put W; = Span {v1,...,v;} (j > 1). By (4.2) and Lemma 2.6, K(0,d) N W, is a
compact set for some d > 0 and all n € N. As in the proof of Theorem 3.1, we may find
d > 0 such that N(z+y) < dif N(z) < and N(y) <J. Let ng = min{n € N: ¢, < 4§}
and choose n > ng satisfying €,, > 0. For 7 =0,...,n — ng define

U} = Span {vn_j, .. .,vn}

and
F; = {x €U} : N(z) =¢en—j, N(x — Px) = ¢ for l:n,...,n—j}.
We claim that all the sets F; are non-empty. The proof goes by induction on j.

We first show that Fy # (). To do this, choose to > 0 with N(tgv,) = €, (by Lemma
4.2 such ty exists). We have

N(to’l)n — Pn(t()’l)n)) = N(to’vn) = &n,

hence z¢ = tov, € Fy. Now, suppose that z; € F;. According to Lemma 4.2, we may
find to > 0 satisfying N(z; + tovp—j—1) = €n—j—_1. Setting ;11 = z; + tovp_j_1, We
have z;1 € U, ;. Furthermore, by (4.1) we get

N(@jp1 — Pooj1%j41)

= N(zj+tovp—j—1 — Po_j_12; — toPn—j—_1Un_j—_1)

= N(zj11)

= €n_j1

and
N(zj41 — Pzjia)

= N(x;j +tovn—j—1 — Pixj; — toPivn—j—1)
= N(z; — Piz;)
=g

when | =mn,...,n—j. Consequently, x;;1 € Fjj;1. Thus we have showed that every set
F; is non-empty. In particular, E, # 0, where E,, = F,,_,,, ie.

E, = {a:e Up_py  N(x) = €y, N(z — Piz) = & for l:no,...,n}.

Let us observe that each vector z € E, satisfies condition (4.3) if ¢, > 0 and
€nt1 = 0. Therefore it is sufficient to consider the case of ¢, > 0 for all n € N.
Then, given any n > ng, we may choose z,, € E,. Since z, € W,, from (4.1) we get
Pz, € Wi, with I > ng. Moreover, N(z,) = €,, < § and N(z, — Piz,) < ¢ <,
thus N(Px,) < d. We have showed that, for n,l > ng, Pz, € K(0,d) N W;, which is
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compact in X. Applying the diagonal argument, we may find a subsequence (k,) C N
and vectors v; € X such that N(Pxg, —v;) — 0 for [ > ny.

Fix € > 0 and choose r > 0 satisfying N(z +y + z + w) < ¢ if z,y,2,w € K(0,7).
We may find lp > ng with g, < r and k(lp) such that N(xg, — P,zk,) < r and
N(P,,zr, —v,) <7, when n > k(lp). By (2.4) and the choice of r, we get

N(zg, — ox,,) =N ((ﬂfkn — Pyzg,) + (P2, — i)

+ (Ulo - Boka) + (Boka - -'L'km))
<e

for n,m > k(lp). From this it follows that (zg,) is a Cauchy sequence in X, hence
N(zg, —z) — 0, with some z € X. Let us choose | > ng. Since P, is continuous, by
(2.3) - (2.5) we have

N((zx, — Pag,) — (z — Pz)) = 0

and, consequently,
N(zg, — Pizy,) — N(x — Pix).

Therefore N(xz — Pix) = g; for | > ng and the proof is complete

Let us emphasize that in Theorem 4.3, contrary to the classical ‘lethargy’ theorem,
subspaces V,, do not need to be finite-dimensional.

Example 4.4. The following sequences of projections have the properties required
in Theorem 4.3:

1. Let X be a Hilbert space and suppose that (V;,)22; is an ascending sequence
of its distinct closed subspaces. Let P, be the operator of the best approximation in
Vn, i.e. Pz € Py (z) for x € X and n € N. Then P, € P(X,V,,) and there exists
Up, € Vo1 \ Vi such that Pyv, = 0 and, in consequence, Pjv, = 0 for j < n. In this
case Theorem 4.3 is a generalization of the classical Bernstein theorem (Theorem 1.1)
for Hilbert spaces.

2. Let X be a Banach space with a Schauder basis (v;)$2,. Define V,, = Span {v1, ..., v, }]]
and set Pn(3°;; ajv;) = i ajv;. Then P, € P(X,V,) and Pj(vy41) = 0 for
j=1...,n.

3. Let X,, be an Orlicz-Musielak space (Example 2.3) generated by a function f
satisfying lims_,o f (¢, s) = oo for almost all ¢ € (). Moreover, assume that Q = U2 ,Q,,
with Q,, € ¥, Q, C Qpy1and 0 < p(Qp 41\ Q) < 00. Put V,, = {z € X, : z|g\q, = 0}
and P,z = z - I, where I4 denotes the characteristic function of the set A. Then
P, € P(X,,,Vn) and Pju, =0 for v, = I, , \q, € Vay1\ Va and j < n. Additionally,
by (3.3) we have

R,, <n@1 Span {v1, ..,vn}) - inf{ /Q T e N}

= OQ.

Theorem 4.3 implies the following theorem of Bernstein type for cones in Banach
spaces.
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Theorem 4.5. Let X be a Banach space and let K1 C Ko C ... C X be an
ascending sequence of distinct closed cones, generating distinct closed subspaces V,, =
K, — K, of X. Assume that P, € P(X,V,,), there exist v, € Kn+1 \ K, satisfying
condition (4.1) and M > 0 such that ||Id— P,|| < M (n € N). Then for every sequence
en 4 0 we may find x € X such that

dist (z, K,,) < &, < Mdist (z, Ky,)

formn > 1.

Proof. Reasoning as in the proof of Theorem 4.3, we show the existence of an
element x € X such that ||z — P,z|| = e, for all natural n. Furthermore, since the
vectors z, € E,, used in the construction of z, are of the form z,, = >"}_, txvx with
tr > 0, by (4.1) and the choice of v,, we get P;z,, € K; and, in consequence, P;z € K;
for all j > 1. Therefore

dist (z, K,,) < ||z — Ppz|| = en < ||Id — B, || dist (z, K,,) < Mdist (z, K,)

which is the desired conclusion B

Example 4.6. Suppose that X is a Hilbert space and K,,, V,,, &, are as in Theorem
4.5. Let P, denote the operator of the best approximation in V,, (compare Example
4.4.1). In this case ||[Id — P,|| = 1. By Theorem 4.5, if for every n there exists v,, €
K11\ Ky, with Pyv, = 0, then dist (z, K;,) = &, for some z € X and all n € N.

Finally, we formulate Theorem 4.3 for the space L(Y,X) of all linear, continuous
operators from Y into X, where X and Y are F-spaces with s-homogeneous norms. This
property may be applied to the theory of approximation numbers and Bernstein pairs
(see [1] for more details).

Definition 4.7. Let (X, |- |) be an F-space over K and s € (0,1]. We say that | - |
is an s-homogeneous norm if |az| = |a|®|z| for all « € K and z € X.

It is easy to check that L(Y,X) is an F-space with the standard F-norm |L| =
sup{|L(y)| : |y| < 1} if X and Y are F-spaces with s-homogeneous norms. Moreover,
R (LY, X)) = oc.

Corollary 4.8. Assume that X is an F-space with an s-homogeneous norm and
let V,, Py, e, be such as in Theorem 4.3. Then for any s; € (0,1] and F-space Y with
an s1-homogeneous norm and Y* # {0} there exist L € L(Y,X) and ng € N satisfying
|IL-W,L| =€, (n>no) where W,, € P(L(Y, X), L(Y, Vy)) is defined by W,,T = P,oT
forT € L(Y, X).

The proof of this corollary is the same as that of [1: Proposition 2.3|, where only
the case of 1-homogeneous norm was considered.
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