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Explicit and Implicit Complementarity Problems
in a Hilbert Space

A. Carbone and P. P. Zabreiko

Abstract. We present some new results about solvability of implicit complementar-
ity problems in a Hilbert space. We discuss two approaches. One of them is based
on the usual change of variables and reduces the implicit complementarity problem
to the explicit one. The second approach is based on the Skrypnik degree which, in
the case of mappings in a Hilbert space, is essentially more general in comparison
with the classical Leray-Schauder degree. In both cases, the solvability results are
formulated in terms of auxiliary complementarity problems with parameter.
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This article is a direct continuation to the article [1] which dealt with appli-
cation of the Skrypnik degree to the solvability of explicit complementarity
problems in a Hilbert space X. This problem consists in finding an element
u ∈ K such that

u ∈ K, −f(u) ∈ K∗, −(u, f(u)) = 0. (1)

Here K is a closed cone in X and

K∗ =
{
x ∈ X : (x, ξ) ≥ 0 (ξ ∈ K)

}

is its dual wedge (a cone if and only if K −K = X), f is an operator defined
on K and taking its values in X. In this article we consider the implicit
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complementarity problem; this problem consists in finding an element t ∈ X
such that

g(t) ∈ K, −f(t) ∈ K∗, −(g(t), f(t)) = 0 (2)

where f and g are operators acting in X. This problem can be considered as
a generalization of (1) since in the case g = I (and when t = u) problems (1)
and (2) are the same. In what follows we call problem (2) the complementarity
problem with operators f and g.

The aim of this article is to show that topological methods lead to some
simple statements about solvability of the implicit complementarity problem
of alternative type. More exactly, in the main part of the article, assuming
that the operator g is of class S+ and the operator f is complete continuous,
it will be proved that under some natural conditions:

For some bounded domain Ω, either each complementarity problem with
operators (I−λ)g +λf (0 < λ < 1) and g has a solution on the boundary ∂Ω
of the domain Ω or the original complementarity problem with the operators
f and g has a solution in the domain Ω.

In [6] (see also [2, 5]) topological methods are applied to the implicit
complementarity problem in the finite-dimensional case. We point out that
the method suggested there is different from ours. Moreover, the result from
[6] about the solvability of the implicit complementarity problem is not com-
pletely equivalent to ours even in the finite-dimensional case. We will compare
the corresponding exceptional families of elements at the end of the article.

However, we continue to avoid the notion of exceptional families of ele-
ments which are essential for considerations and constructions in [6] and prefer
more standard terminology of homotopy theory. As in [1] the basic technique
in this article is the Skrypnik degree.

1. Recall that the operator PK of the best approximation onto K is
defined by the equation

‖x− PKx‖ = inf
u∈K

‖x− u‖.

The basic properties of the operator PK are gathered in the following lemma;
one can find proofs of these and other properties, e.g., in [7, 9].

Lemma 1. The operator PK has the following properties:
(a) PK is a positively homogeneous and non-expansive operator:

PK(λx) = λPKx (x ∈ X, 0 < λ < ∞)

‖PKx′ − PKx′′‖ ≤ ‖x′ − x′′‖ (x′, x′′ ∈ X);



Complementarity Problems II 35

moreover, the operator PK satisfies the inequality

‖PKx′ − PKx′′‖2 ≤ (x′ − x′′, PKx′ − PKx′′) (x′, x′′ ∈ X).

(b) In the infinite dimensional case PK is not a weakly sequential contin-
uous operator. However, it has the following property of ws-closedness: if a
sequence (xn) weakly converges to x∗ and the sequence (PKxn) converges in
norm to z∗, then PKx∗ = z∗.

(c) The equality u = PKx (x ∈ X, u ∈ K) holds if and only if

(x− u, v) ≤ 0 (v ∈ K)q (x− u, u) = 0;

in particular, for any x ∈ X,

(x− PKx, v) ≤ 0 (v ∈ K), (x− PKx, PKx) = 0.

(d) The equation PK +P(−K∗) = I holds; moreover, the equality x = u+v
with u ∈ K, v ∈ K∗, (u, v) = 0 holds if and only if u = PKx and v = P(−K∗)x.

Here P(−K∗) is the operator of the best approximation onto (−K∗). In
the most important case when X = L2(Ω,A, µ) (here Ω is a set, A a σ-algebra
of subsets, µ a σ-finite measure) and K is the cone of non-negative functions
from X, we have the evident equation PKx = x+, P(−K∗)x = −x− (x ∈ X)
where x+ = max{x, 0} and x− = −min{x, 0}.

Now we assume that the operator g satisfies the condition g(0) = 0 and is
invertible. Then the explicit complementarity problem

u ∈ K, −f ◦ g−1(u) ∈ K∗, −(u, f ◦ g−1(u)) = 0

is similar to (1) but with the operator f ◦ g−1; observe that this problem and
problem (2) with the operators f and g are connected to each other, namely,
by the change of variable u = g(t).

Thus, under the assumption about the invertibility of the operator g one
can reduce the investigation of the implicit complementarity problem to the
investigation of the explicit one. In order to apply results from [1] we need
some notations and definitions.

Let, as usual,

Br =
{
x ∈ X : ‖x‖ ≤ r

}

Sr =
{
x ∈ X : ‖x‖ = r

} (0 < r < ∞).

We will say that the pair of operators f and g is regular if for each sequence
(tn) (tn ∈ X) such that g(tn) ∈ K (n ≥ 1), (g(tn)) weakly converges to
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u∗ = g(t∗) and (f(tn)) converges in norm to v∗, then f(t∗) = v∗. If a pair of
operators f and g is not regular we introduce a multi-valued operator f̃ by
the formula

f̃(t) =
{

lim
n→∞

f(tn) : (tn) ∈ Q(f,g)(t)
}

where Q(f,g)(t) the set of sequences (tn) such that g(tn) ∈ K, (g(tn)) is
weakly convergent to g(t), (f(tn)) converges in norm to an element from K∗,
and (f(tn), g(tn)) ≤ 0 (n ≥ 1). The multi-valued operator f̃ will be called the
special closure with respect to the pair f, g of the (single-valued) operator f .
For a single-valued operator g and a multi-valued operator f̃ one can consider
a generalized implicit complementarity problem of finding an element t ∈ X
such that

g(t) ∈ K, −f̃(t) ∩K∗ 6= ∅, −(g(t), φ) = 0 (φ ∈ f̃(t) ∩K∗).

Theorem 1. Let f and g, with g(0) = 0, be continuous operators in X,
such that g has a continuous inverse g−1 and, moreover, either f is compact
and g−1 is bounded or, at least, f ◦g−1 is compact. Let (f, g) be a regular pair
of operators and 0 < r < ∞. Then

• either for some λ ∈ (0, 1) the complementarity problem with the opera-
tors g and (1− λ)g + λf has a solution in the set g−1(Sr ∩K)

• or the complementarity problem with the operators g and f has a solution
in the set g−1(Br ∩K).

Theorem 2. Let f and g, with g(0) = 0, be continuous operators in X,
such that g has a continuous inverse g−1 and, moreover, either f is compact
and g−1 is bounded or, at least, f ◦ g−1 is compact. Let 0 < r < ∞. Then

• either for some λ ∈ (0, 1) the complementarity problem with the opera-
tors g and (1− λ)g + λf has a solution in the set g−1(Sr ∩K)

• or the generalized complementarity problem with the operators g and f̃
has a solution in the set g−1(Br ∩K).

2. Now we omit the assumption about the invertibility of g and begin
a direct analysis of the complementarity problem with operators f and g.
Consider the family of complementarity problems

g(t) ∈ K, (1− λ)g(t) + λf(t) ∈ K∗,
(
g(t), (1− λ)g(t) + λf(t)

)
= 0

(0 ≤ λ ≤ 1).
(3)

For λ = 1 this is the original complementarity problem (2); for λ = 0 this
problem is degenerated:

g(t) ∈ K, g(t) ∈ K∗, (g(t), g(t)) = 0 (4)
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and equivalent to solving the equation

g(t) = 0.

Family (3) is a linear deformation connecting the original complementarity
problem and the degenerated complementarity problem (4).

The complementarity problem (3) can easily be reduced to the solvability
of special systems of two equations. More precisely, the following lemma holds.

Lemma 2. Let f and g be operators in a Hilbert space X. Then for each
λ ∈ (0, 1) the complementarity problem with operators (1− λ)g + λf and g is
solvable if and only if the following system (with respect to t, ξ ∈ X)

f(t) + ξ − λPKξ = 0

g(t)− λPKξ = 0

}
(5)

is solvable.

Proof. The case λ = 0 is evident and so we consider only the case 0 <
λ ≤ 1. Let (t∗, ξ∗) be a solution of system (5), i.e.

f(t∗) + ξ∗ − λPKξ∗ = 0

g(t∗)− λPKξ∗ = 0

}
.

Then f(t∗)− g(t∗) + ξ∗ = 0 or, by Lemma 1,

(1− λ)g(t∗) + λf(t∗) = λ(PKξ∗ − ξ∗) = −(λξ∗ − PK(λξ∗)).

Moreover, g(t∗) = PK(λξ∗). Thus, we get the equations

(1− λ)g(t∗) + λf(t∗) = λ(PKξ∗ − ξ∗) = −(ζ∗ − PKζ∗)

g(t∗) = PKζ∗

where ζ∗ = λξ∗. But, by Lemma 1,

PKζ∗ ∈ K, −(ζ∗ − PKζ∗) ∈ K∗,
(
PKζ∗,−(ζ∗ − PKζ∗)

)
= 0

and, consequently, these equations, again by Lemma 1, immediately imply
that t∗ is a solution to the complementarity problem with the same λ.

All these considerations can be inverted. This means that if (t∗, ξ∗) is a
solution of system (5), then t∗ is a solution of the complementarity problem
with operators (1− λ)g + λf and g
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It is evident that system (5) is equivalent to the system

f(t)− g(t) + ξ = 0

g(t)− λPKξ = 0

}

but this system is equivalent to the equation

g(t)− λPK(g(t)− f(t)) = 0. (6)

Thus, we have the following

Lemma 3. Let f and g be operators in a Hilbert space X. Then, for
each λ ∈ (0, 1), t∗ is a solution of the complementarity problem with operators
(1− λ)g + λf and g if and only if it is a zero of the vector field

Ψ(λ)(t) = g(t)− λPK(g(t)− f(t)). (7)

Unfortunately, in general the vector fields of the family Ψ(λ) (0 ≤ λ ≤ 1)
do not belong to a class of fields for which the degree is defined. However,
it is a possible to pass from the family of vector fields Ψ(λ) (0 ≤ λ < 1) to
another family H(λ) (0 ≤ λ < 1) of class S+; remark that this passage is
not possible for the field Ψ(1), but the passage Ψ(λ) → H(λ) (0 ≤ λ < 1) is
sufficient for our considerations.

Remark that for each λ ∈ [0, 1) the operator (I − λPK)−1 exists and is
bounded and continuous. This follows from the fact that the operator PK is
non-expansive (see Lemma 1). The evident chain of equations

Ψ(λ) = g(t)− λPK(g(t)− f(t))

= (I − λPK)(g(t)− f(t)) + f(t)

= (I − λPK)(g(t)− f(t) + (I − λPK)−1f(t))

= (I − λPK)H(λ)(
0 ≤ λ < 1, H(λ) = g − (I − λPK)−1f

)

implies the following

Lemma 4. Let f and g be operators in a Hilbert space X. Then for
each λ ∈ (0, 1), t∗ is a solution of the complementarity problem with operators
(1− λ)g + λf and g if and only if it is a zero of the vector field

H(λ)(t) = g(t)− f(t) + (I − λPK)−1f(t). (8)

Recall that a vector field H in a Hilbert space X is demicontinuous if
it maps sequences convergent in norm in weakly convergent sequences; it is
called of class S+ if each sequence (xn) from X, which weakly converges to
x∗ and satisfies the condition

lim sup
n→∞

(Hxn, xn − x∗) ≤ 0

converges to x∗ in norm.
The following lemma is almost evident.
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Lemma 5. Let f be completely continuous and g of class S+ in a Hilbert
space X. Then for each λ ∈ [0, 1) the operator H(λ) is of class S+.

This lemma shows that we can use the Skrypnik degree in order to study
all vector fields H(λ) (0 ≤ λ < 1) whose zero by Lemmas 3 and 4 are solutions
of the complementarity problems with operators (1 − λ)g + λf (0 ≤ λ < 1)
and g.

The Skrypnik theory [10] (see also [8]) states that for each demicontinuous
field Φ of class S+ defined on a bounded domain Ω and without zeroes on the
boundary ∂Ω of the domain Ω there is defined an integer γ(Φ,Ω) (the degree
of the field Φ on the boundary ∂Ω of the domain Ω), and the function

(Φ,Ω) → γ(Φ,Ω)

has the usual properties of Brouwer-Hopf and Leray-Schauder degree:

I. γ(I, Ω) = 1 if 0 ∈ Ω where I is the identity mapping, i.e. It = t (t ∈
X).

II. If Ω = Ω1 ∪ Ω2 and Φ has no zero on the set ∂Ω1 ∪ ∂Ω2 ∪ (Ω1 ∩ Ω2),
then γ(Φ, Ω) = γ(Φ, Ω1) + γ(Φ, Ω2).

III. If Φ0 and Φ1 are homotopic on Ω, then γ(Φ0, Ω) = γ(Φ1,Ω) (vector
fields Φ0 and Φ1 are homotopic on Ω if there exists a family Φ(λ, ·) (0 ≤ λ ≤ 1)
of class S+, defined on Ω and demicontinuous with respect to both variables
such that Φ(0, ·) = Φ0, Φ(1, ·) = Φ1 and Φ(λ, t) 6= 0 (0 ≤ λ ≤ 1, t ∈ ∂Ω)).

In the theory of Skrypnik degree the following analogue of the basic exis-
tence principle holds:

If Φ has no zero on the boundary ∂Ω of the domain Ω and the degree
γ(Φ,Ω) of this vector field on the boundary ∂Ω of Ω is non-zero, then there
exists at least one zero t∗ of Φ in Ω.

As was proved above, the vector fields H(λ) (0 ≤ λ < 1) defined by (8) are
of class S+. Consider the family of vector fields H(λ) (0 ≤ λ < 1) on a domain
Ω. It is evident that the family under our assumptions is demicontinuous with
respect to both variables and H(0, ·) = g. Assume that γ(g, Ω) 6= 0.

We have two possibilities:

• First, there exist λ∗ ∈ (0, 1) and t∗ ∈ ∂Ω such that H(λ∗)t∗ = 0. In
this case t∗ is a solution of the complementarity problem with the operators
(1− λ∗)g + λ∗f and g.

• Second, for all λ ∈ (0, 1) the inequalities H(λ)x 6= 0 (x ∈ ∂Ω) hold.
Then all vector fields H(λ) (0 ≤ λ < 1) are homotopic on Ω and, therefore,
they have the same degree γ(H(λ),Ω) on the boundary ∂Ω of the domain Ω.
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But γ(H(0), Ω) 6= 0 by assumption. Thus, in the second case we have the
equation

γ(H(λ),Ω) 6= 0 (0 ≤ λ < 1). (9)

This implies that each vector field H(λ) (0 ≤ λ < 1) has at least one zero
tλ ∈ Ω:

g(tλ) = λPK

(
g(tλ)− f(tλ)

)
.

This implies the solvability of all complementarity problems with operators
(1−λ)I +λf (0 ≤ λ < 1) and g in the domain Ω. Moreover, if g is a bounded
operator, then the equation

g(tλ)− PK

(
g(tλ)− f(tλ)

)
= (1− λ)PK

(
g(tλ)− f(tλ)

)

implies
inf
t∈Ω

∥∥g(t)− PK(g(t)− f(t))
∥∥ = 0. (10)

This means that the original complementarity problem is ”almost” solvable
in this case.

Let (λn) → 1 and tn = tλn (n ≥ 1). Without loss of generality we can
assume that the sequence (g(tn)) weakly converges to a w∗ and the sequence
(f(tn)) converges in norm to a v∗. Since Ψ(1)(tn) = g(tn)−PK(g(tn)−f(tn)),
‖Ψ(1)(tn)‖ → 0 and

P(−K∗)(g(tn)− f(tn)) = (I − PK)(g(tn)− f(tn)) = Ψ(1)(tn)− f(tn),

the sequence
(
P(−K∗)(g(tn)−f(tn))

)
converges in norm to −v∗. On the other

hand, the sequence
(
g(tn)− f(tn)

)
weakly converges to w∗− v∗. But this (see

Lemma 1) implies
P(−K∗)(w∗ − v∗) = −v∗. (11)

Now, if we assume that f and g are weakly continuous operators, we obtain
the equality

P(−K∗)(g(t∗)− f(t∗)) + f(t∗) = 0

or Ψ(1)(t∗) = 0. This implies the solvability of the original complementarity
problem with operators f and g.

One can weaken the assumptions about weak continuity of f and g. Equa-
tion (11) can be rewritten in the form

w∗ ∈ v∗ + P
(−1)
(−K∗)(−v∗)

where P
(−1)
(−K∗)(·) denotes the pre-image of (·) under the mapping P(−K∗). Thus,

by our considerations, we see that the sequence (tn) weakly converges to t∗
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such that (f(tn)) converges in norm to v∗ ∈ −K∗, g(tn) ∈ K (n ≥ 1)
and (g(tn)) weakly converges to w∗ ∈ v∗ + P

(−1)
(−K∗)(−v∗). We call the pair

of operators f and g regular if all these conditions imply f(t∗) = v∗ and
g(t∗) = w∗.

We summarize all statements obtained as a result of these considerations
in the form of a theorem.

Theorem 3. Let f be completely continuous, g of class S+, and the pair
f, g regular. Let Ω be a bounded domain and γ(g, Ω) 6= 0. Then

• either for some λ ∈ (0, 1) the complementarity problem with the oper-
ators (1 − λ)g + λf and g has a solution on the boundary ∂Ω of the domain
Ω

• or the complementarity problem with the operators f and g has a solution
in the domain Ω.

We can also formulate an analogue of [1: Theorem 2]. Put

f̃(t) =
{

lim
n→∞

f(tn) : (tn) ∈ W(t)
}

g̃(t) =
{

lim
n→∞

g(tn) : (tn) ∈ W(t)
}

where W(t) is a set of sequences (tn) with elements tn from X which weakly
converge to t, and such that (f(tn)) converges in norm to some φ ∈ K∗,
g(tn) ∈ K (n ≥ 1), (g(tn)) weakly converges to ψ ∈ K and (g(tn), f(tn)) ≤
0 (n ≥ 1).

Using these notations we can consider the following generalized comple-
mentarity problems with multi-valued operators f̃ and g̃:

ψ ∈ K, φ ∈ K∗, (ψ, φ) = 0, φ ∈ f̃ , ψ ∈ g̃.

The following result is evident:

Theorem 4. Let f be completely continuous and g of class S+. Let
Ω be a bounded domain, whose closure Ω is weakly sequentially closed, and
γ(g, Ω) 6= 0. Then

• either for some λ ∈ (0, 1) the complementarity problem with the oper-
ators (1 − λ)g + λf and g has a solution on the boundary ∂Ω of the domain
Ω

• or the generalized complementarity problem with the operators f̃ and g̃
has a solution in the domain Ω.
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3. In the finite-dimensional case Theorem 3 is similar to [6: Theorem 7].
However, the authors of [6] used homotopies which are different from family
(7). In our notation they considered the family

Ψ0(λ)(t) = g(t)− λPK

(
g(t)− λf(t)

)
(0 ≤ λ ≤ 1). (12)

This family is generated by the system

λf(t) + ξ − λPKξ = 0

g(t)− λPKξ = 0

}
(0 ≤ λ ≤ 1) (13)

which is different from system (5); however, for λ = 1 they both coincide.
One can see that system (13) is equivalent to the family of complementarity
problems

g(t) ∈ K, 1−λ
λ g(t) + λf(t) ∈ K∗,

(
g(t), 1−λ

λ g(t) + λf(t)
)

= 0

(0 < λ ≤ 1).
(14)

Of course, one can repeat all our considerations with the family Ψ0(λ) (0 ≤
λ ≤ 1) instead of the family Ψ(λ) (0 ≤ λ ≤ 1); in this case it is necessary to
consider the family of vector fields

H0(λ) = g − λf + (I − λPK)−1(λf) (0 ≤ λ ≤ 1).

The corresponding analysis is complicated by the fact that the complemen-
tarity problem (14) is not defined for λ = 0.

In conclusion, we discuss the passage to exceptional families of elements
for both approaches. Let t∗ be a solution to the complementarity problem (3)
for a fixed λ ∈ (0, 1):

g(t∗) ∈ K, (1− λ)g(t∗) + λf(t∗) ∈ K∗,
(
g(t∗), (1− λ)g(t∗) + λf(t∗)

)
= 0.

Put
w = (1− λ)g(t∗) + λf(t∗).

Then one can write
f(t∗) = − 1−λ

λ g(t∗) + ω (15)

where ω = λ−1w. The element ω has the properties

ω ∈ K∗, (u, ω) = 0 (u ∈ Π(t∗)) (16)

where
Π(t∗) =

{
u ∈ K : `(u) = 0

(
` ∈ K∗, `(g(t∗)) = 0

)}
.
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This means that t∗ is an exceptional element for the original complementarity
problem (2).

Similarly, let t∗ be a solution to the complementarity problem (14) for a
fixed λ ∈ (0, 1):

g(t∗) ∈ K, 1−λ
λ g(t∗) + λf(t∗) ∈ K∗,

(
g(t∗), 1−λ

λ g(t∗) + λf(t∗)
)

= 0.

In this case we put
w = 1−λ

λ g(t∗) + λf(t∗).

Then
f(t∗) = − 1−λ

λ2 g(t∗) + ω (17)

where ω = λ−1w. The element ω satisfies property (15) and this means that
t∗ is an exceptional element for the original complementarity problem (2).

One can see that the difference in (15) and (17) is only in notation of
the positive parameter µ which is defined by µ = 1−λ

λ and µ = 1−λ
λ2 , corre-

spondingly. Thus, in the finite-dimensional case, Theorem 3 and [6: Theorem
7] both state the existence of exceptional families of elements in the case
when the original complementarity system is not solvable. However, in the
framework of complementarity theory, these theorems state the solvability of
auxiliary complementarity problems with different operators.
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