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Abstract. New existence results for singular second order boundary value problems,
where the singularity is integrable, are presented using fixed point theory for weakly
sequentially continuous maps.
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1. Introduction

In this paper we discuss the singular boundary value problem

y′′ + f(t, y) = 0 a.e. on [0, 1]

y(0) = y(1) = 0

}
(1.1)

where our non-linearity f may be singular in the independent variable y and
may also be singular at y = 0. Problems of form (1.1) have received a lot of
attention in the literature, see [1, 3, 5, 8, 10] and the references therein. All
of these papers make use of fixed point theory for continuous, compact maps.
In his 1991 book, Corduneanu [7: pp. 192] (based on work of Gaponenko [9])
shows how fixed point theory for weakly sequentially continuous maps can be
used to discuss non-singular problems of form (1.1). These ideas were extended
by Bonanno [6] to singular problem (1.1) where the boundary condition y(0) =
y(1) = 0 is replaced by y(0) = 0, y(1) = a > 0.
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In the present paper we use fixed point theory for weakly sequentially
continuous maps to present existence results for problem (1.1) where the sin-
gularity is integrable. We also indicate how these results could be obtained
using fixed point theory for continuous, compact maps. However, in our opin-
ion, the weakly sequentially continuous approach is easier and quicker since
one does not need to check the compactness of the map. The results of this
paper improve and extend the results in [6]. Moreover, it is easy to see that we
could consider Sturm-Liouville boundary data also in (1.1); however, since the
arguments are essentially the same we will restrict our discussion to Dirichlet
data. In fact, homogeneous Dirichlet data are the most difficult boundary
data to discuss in the singular case. In Section 2 we also discuss the non-
singular problem (1.1) and we present two results based on fixed point theory
for weakly sequentially continuous maps. We also remark here that all the
results in this paper easily extend to higher order boundary value problems
(see Theorem 2.6). Finally, we present the fixed point theorems which will be
needed in Section 2.

The first result is due to Arino, Gautier and Penot [4].

Theorem 1.1. Let E be a metrizable locally convex linear topological
space and let Q be a weakly compact, convex subset of E. Then any weakly
sequentially continuous map F : Q → Q has a fixed point.

Our next result is a Furi-Pera theorem for weakly sequentially continuous
maps. This result can be found in [11]; we note that one of the conditions is
stated incorrectly and the proof there has to be adjusted slightly (see [2]).

Theorem 1.2. Let E be a separable and reflexive Banach space, and let
C and Q be closed bounded convex subsets of E with Q ⊆ C and 0 ∈ Q.
Suppose F : Q → C is a weakly sequentially continuous map and assume the
following condition is satisfied:





If {(xj , λj)}∞1 is a sequence in Q× [0, 1] with

xj ⇀ x, λj → λ and x = λF (x) for 0 ≤ λ < 1

then there exists j0 ∈ N with λj0F (xj0) ∈ Q





. (1.2)

Then F has a fixed point in Q.

2. Existence theory

Our first result concerns problem (1.1) when f may be singular in the de-
pendent variable. We note that f may be singular also in the independent
variable at some set Ω ⊆ [0, 1] with measure zero.
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Theorem 2.1. Suppose the following conditions are satisfied:





f : [0, 1]× (0,∞) → R with

t 7→ f(t, y) measurable ∀ y ∈ (0,∞)

y 7→ f(t, y) continuous for a.e. t ∈ (0, 1)





(2.1)





∀ r > 0 ∃ ψr : [0, 1] → R with

ψr > 0 a.e. on [0, 1], ψr ∈ L1[0, 1]

f(t, y) ≥ ψr(t) a.e. on [0, 1] ∀ y ∈ (0, r]





(2.2)





∀ r > 0 ∃ hr : [0, 1] → R with

hr ≥ 0 a.e. on [0, 1], hr ∈ L1[0, 1]

f(t, y) ≤ hr(t) for a.e. t ∈ [0, 1] and y ∈ [∫ 1

0
G(t, s)ψr(s) ds, r

]





(2.3)

and

∃ M > 0 with M ≥
∫ 1

0

G(s, s)hM (s) ds (2.4)

where

G(t, s) =
{

(1− t)s if 0 ≤ s ≤ t ≤ 1
(1− s)t if 0 ≤ t ≤ s ≤ 1.

Then problem (1.1) has a solution y ∈ W 2,1[0, 1] with y(t) > 0 for t ∈ (0, 1).

Remark 2.1. In Theorem 2.1 it is possible to replace condition (2.3) with
the following one:

{
For any r > 0, assume hr ∈ L1[0, 1] where

hr(t) = sup
{
f(t, y) : y ∈ [∫ 1

0
G(t, s)ψr(s) ds, r

]}
}

. (2.5)

Remark 2.2. In Theorem 2.1 notice that the solution y to problem (1.1)
satisfies y(t) ≥ ∫ 1

0
G(t, s)ψM (s) ds for t ∈ [0, 1] (see the proof) and, moreover,

it is easy to see (see the argument in Theorem 2.2) that there exists a constant
kM > 0 with y(t) ≥ kM t(1− t) for t ∈ [0, 1].

Proof of Theorem 2.1. Let the constant M be chosen as in condition
(2.4), and choose the functions ψM and hM as in (2.2) and (2.3), respectively.
Let

Q =
{

u ∈ L1[0, 1] : ψM (t) ≤ u(t) ≤ hM (t) for a.e. t ∈ [0, 1]
}

.

Clearly, Q is convex and closed, so weakly closed. Indeed, to see closedness let
vn ∈ Q with vn → v in L1[0, 1]. Since there exists a subsequence S of N with
vn(t) → v(t) a.e. on [0, 1] as n → ∞ in S we have immediately that v ∈ Q.
In fact, Q is weakly compact by the Dunford-Pettis theorem.
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We will apply Theorem 1.1. With this in mind define the operator Φ :
L1[0, 1] → C[0, 1] by

(Φu)(t) =
∫ 1

0

G(t, s)u(s) ds.

It is easy to see that solving problem (1.1) is equivalent to finding a solution
u ∈ L1[0, 1] to the equation

u = f(t,Φ(u)). (2.6)

For this define the operator F : L1[0, 1] → L1[0, 1] by (Fu)(t) = f(t, Φ(u)(t)).
So solving (2.6) is equivalent to finding a fixed point of F .

First we show that F : Q → Q. To see this let u ∈ Q. So ψM (t) ≤ u(t) ≤
hM (t) for a.e. t ∈ [0, 1]. Notice from (2.4) that

(Φu)(t) ≥
∫ 1

0

G(t, s)ψM (s) ds

and

(Φu)(t) ≤
∫ 1

0

G(t, s)hM (s) ds ≤
∫ 1

0

G(s, s)hM (s) ds ≤ M.

So as a result, (2.2) and (2.3) imply

ψM (t) ≤ f(t,Φ(u)(t)) ≤ hM (t) for a.e. t ∈ [0, 1]. (2.7)

Thus Fu ∈ Q, so F : Q → Q.
It remains to show that F : Q → Q is weakly sequentially continuous.

Let {yn} be a sequence in Q with yn ⇀ y in L1[0, 1]. Notice for fixed t ∈ [0, 1]
that (note that G(t, ·) ∈ L∞[0, 1])

|(Φyn)(t)− (Φy)(t)| =
∣∣∣∣
∫ 1

0

G(t, s)[yn(t)− y(s)] ds

∣∣∣∣ → 0 as n →∞,

so limn→∞(Φyn)(t) = (Φy)(t). From (2.1), the sequence {Fyn} converges to
Fy a.e. on [0, 1]. Also, Fyn ∈ Q. Thus |(Fyn)(t)| ≤ hM (t) for a.e. t ∈ [0, 1].
The Lebesgue dominated convergence theorem implies

lim
n→∞

Fyn = Fy in L1[0, 1], (2.8)

so in particular Fyn ⇀ Fy in L1[0, 1]. Now Theorem 1.1 guarantees that
equation (2.6) has a solution u ∈ Q. As a result we notice that y = Φu

satisfies (1.1) with y(t) ≥ ∫ 1

0
G(t, s)ψM (s) ds > 0 for t ∈ (0, 1). Note also that

y ∈ W 2,1[0, 1]
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Remark 2.3. Notice that one could also prove Theorem 2.1 using Schauder’s
fixed point theorem. To see this take Q to be the set
{

u ∈ C[0, 1] :
∫ 1

0

G(t, s)ψM (s) ds ≤ u(t) ≤
∫ 1

0

G(t, s)hM (s) ds (t ∈ [0, 1])
}

and let F : C[0, 1] → C[0, 1] be defined by (Fy)(t) =
∫ 1

0
G(t, s)f(s, y(s)) ds.

Our next result is a more “applicable” version of Theorem 2.1.

Theorem 2.2. Suppose conditions (2.1)− (2.2) hold and in addition sup-
pose the following conditions are satisfied:





f(t, y) ≤ q(t)[g(y) + τ(y)] on [0, 1]× (0,∞) with

g > 0 continuous and non-increasing on (0,∞)

τ ≥ 0 continuous and non-decreasing on (0,∞)

q : [0, 1] → R with q > 0 a.e. on [0, 1]





(2.9)

∫ 1

0

q(s)g(a0s(1− s)) ds < ∞ for any a0 > 0 (2.10)

and there exists a constant M > 0 with
∫ 1

0

G(s, s)q(s)
[
τ(M) + g

(∫ 1

0

G(s, x)ψM (x) dx

)]
ds ≤ M (2.11)

where G is as in Theorem 2.1. Then problem (1.1) has a solution y ∈ W 2,1[0, 1]
with y(t) > 0 for t ∈ (0, 1).

Proof. The result follows from Theorem 2.1 once we show that conditions
(2.3) - (2.4) hold. Notice that for y ∈ [ ∫ 1

0
G(t, s)ψr(s) ds, r

]
and a.e. t ∈ [0, 1]

condition (2.9) yields

f(t, y) ≤ q(t)
[
τ(r) + g

(∫ 1

0

G(t, s)ψr(s) ds

)]
.

If we denote the right-hand side by hr(t), then condition (2.3) will be imme-
diate if we show that hr ∈ L1[0, 1]. To see this notice that

∫ 1

0

G(t, s)ψr(s) ds = t(1− t)Θr(t)

where Θr(t) = 1
1−t

∫ 1

t
(1− s)ψr(s) ds + 1

t

∫ t

0
sψr(s) ds. Now since

∣∣∣∣
1
t

∫ t

0

sψr(s) ds

∣∣∣∣ ≤
∫ t

0

ψr(s) ds → 0 as t → 0+

∣∣∣∣
1

1− t

∫ 1

t

(1− s)ψr(s) ds

∣∣∣∣ ≤
∫ 1

t

ψr(s) ds → 0 as t → 1−,
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Θr extends to a continuous function on [0, 1]. Thus there exists kr > 0 with
Θr(t) ≥ kr > 0 for t ∈ [0, 1]. As a result

∫ 1

0

G(t, s)ψr(s) ds ≥ krt(1− t) for t ∈ [0, 1].

Thus hr(t) ≤ q(t)
[
τ(r)+g(krt(1−t))

]
and hr ∈ L1[0, 1] from condition (2.10).

Notice that condition (2.4) is immediate since

∫ 1

0

G(s, s)hM (s) ds

=
∫ 1

0

G(s, s)q(s)
[
τ(M) + g

(∫ 1

0

G(s, x)ψM (x) dx

)]
ds.

Thus the theorem is proved

To show how Theorem 2.2 can be applied in practice consider the problem

y′′ + q(t)[g(y) + τ(y)] = 0 a.e. on [0, 1]

y(0) = y(1) = 0

}
. (2.12)

Theorem 2.3. Assume the following conditions are satisfied:





g > 0 is continuous and non-increasing on (0,∞)

τ ≥ 0 is continuous and non-decreasing on (0,∞)

q : [0, 1] → R is measurable with q > 0 a.e. on [0, 1]





(2.13)

∫ 1

0

q(s)g(a0s(1− s)) ds < ∞ for any a0 > 0 (2.14)

and there exists a constant M > 0 with

∫ 1

0

G(s, s)q(s)
[
τ(M) + g

(
g(M)

∫ 1

0

G(s, x)q(x) dx

)]
ds ≤ M (2.15)

where G is as in Theorem 2.1. Then problem (2.12) has a solution y ∈
W 2,1[0, 1] with y(t) > 0 for t ∈ (0, 1).

Proof. The result follows from Theorem 2.2 once we notice that we can
take ψr(t) = q(t)g(r)
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Remark 2.4. If g(y) = y−α with α > 0 and for x ≥ 0 we have τ(x) ≤
Axp + B with A,B, p ≥ 0, then condition (2.15) reduces to

∫ 1

0

G(s, s)q(s)

[
AMp + B + Mα2

(∫ 1

0

G(s, x)q(x) dx

)−α
]

ds ≤ M.

Of course, if α < 1 and p < 1, then this inequality is satisfied for M large.

It is also possible to improve Theorem 2.1 if f is non-singular in the
dependent variable, i.e. f : [0, 1]× [0,∞) → R.

Theorem 2.4. Suppose the following conditions are satisfied:




f : [0, 1]× [0,∞) → R with

t 7→ f(t, y) measurable for every y ∈ [0,∞)

y 7→ f(t, y) continuous for a.e. t ∈ (0, 1)





(2.16)





∀ r > 0 ∃ hr : [0, 1] → R with

hr ≥ 0 a.e. on [0, 1], hr ∈ L1[0, 1]

0 ≤ f(t, y) ≤ hr(t) a.e. on [0, 1] ∀ y ∈ [0, r]





(2.17)

and

∃ M > 0 with M ≥
∫ 1

0

G(s, s)hM (s) ds (2.18)

where G is as in Theorem 2.1. Then problem (1.1) has a solution y ∈ W 2,1[0, 1]
with y(t) ≥ 0 for t ∈ [0, 1].

Proof. Let the constant M be chosen as in (2.18), let

Q =
{

u ∈ L1[0, 1] : 0 ≤ u(t) ≤ hM (t) for a.e. t ∈ [0, 1]}

and let F be as in Theorem 2.1. It is easy to check (as in Theorem 2.1) that
F : Q → Q is weakly sequentially continuous

If we are not particularly interested in non-negative solutions, it is easy
to modify Theorem 2.4 and to consider maps f : [0, 1] × R → R. Our next
result replaces (2.18) with a less restrictive condition, and for completeness
we discuss the existence of a solution which is not necessarily non-negative.

Theorem 2.5. Let 1 < p < ∞ and suppose the following conditions are
satisfied: 




f : [0, 1]× R→ R with

t 7→ f(t, y) measurable ∀ y ∈ R
y 7→ f(t, y) continuous for a.e. t ∈ (0, 1)





(2.19)
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∀ r > 0 ∃ hr : [0, 1] → R with

hr ≥ 0 a.e. on [0, 1], hr ∈ Lp[0, 1]

|f(t, y)| ≤ hr(t) a.e. on [0, 1] ∀ |y| ≤ r





(2.20)

{
∃ M > 0 with ‖y′′‖Lp[0,1] ≤ M ∀ solutions y ∈ W 2,1[0, 1] to

y′′ + λf(t, y) = 0 a.e. on [0, 1] and y(0) = y(1) = 0 ∀ λ ∈ (0, 1)

}
. (2.21)

Then problem (1.1) has a solution y ∈ W 2,1[0, 1].

Proof. Let the constant M be as in condition (2.21) and

Q =
{
u ∈ Lp[0, 1] : ‖u‖Lp[0,1] ≤ M + 1

}
.

Also, let M1 = [M + 1]
( ∫ 1

0
[G(s, s]qds

)1/q where G is as in Theorem 2.1 and
1
p + 1

q = 1. Now let

C =
{

u ∈ Lp[0, 1] : |u(t)| ≤ hM1(t) a.e. on [0, 1]
}

.

Finally, let F be as in Theorem 2.1. First we show that F : Q → C. To see
this let y ∈ Q so that ‖y‖Lp[0,1] ≤ M + 1. Notice that for t ∈ [0, 1]

|Φ(y)(t)| =
∣∣∣∣
∫ 1

0

G(t, s)y(s) ds

∣∣∣∣ ≤
∫ 1

0

G(s, s)|y(s)| ds

so that
|Φ(y)|0 = sup

t∈[0,1]

|Φ(y)(t)|

≤ ‖y‖Lp[0,1]

( ∫ 1

0

[G(s, s)]qds

) 1
q

≤ [M + 1]
( ∫ 1

0

[G(s, s)]qds

) 1
q

= M1.

This together with condition (2.20) yields |Fy(t)| = |f(t, Φ(y)(t))| ≤ hM1(t)
a.e. on [0, 1], so Fy ∈ C. It is easy to check (as in Theorem 2.1) that
F : Q → C is weakly sequentially continuous.

The result follows from Theorem 1.2 once we check condition (1.2). For
this take a sequence {(xj , λj)}∞j=1 in Q × [0, 1] with λj → λ and xj ⇀ x,
with x = λFx for 0 ≤ λ < 1. The argument used to prove (2.8) implies
limj→∞ Fxj = Fx in Lp[0, 1]. Now given ε > 0 (say ε < 1

3 ), there exists



Integrable Singularities 51

j0 ∈ N with ‖Fxj‖Lp[0,1] ≤ ‖Fx‖Lp[0,1] + ε for j ≥ j0. This together with
x = λFx and ‖x‖Lp[0,1] ≤ M (see condition (2.21)) yields

‖λjFxj‖Lp[0,1] ≤ |λj − λ| ‖Fx‖Lp[0,1] + ‖x‖Lp[0,1] + ε

≤ |λj − λ| ‖hM1‖Lp[0,1] + M + ε

for j ≥ j0. Now since λj → λ, there exists j0 ≤ j1 ∈ N with ‖λjFxj‖Lp[0,1] ≤
M + 1 for j ≥ j1. As a result, λjFxj ∈ Q for j ∈ N sufficiently large, so
condition (1.2) holds. Thus we may apply Theorem 1.2 to get the conclusion

All the results in this paper easily extend to higher order boundary value
problems. To see this we consider the Fredholm integral equation (which
includes all higher order boundary value problems)

y(t) =
∫ 1

0

k(t, s)f(s, y(s)) ds for t ∈ [0, 1]. (2.22)

Essentially the same reasoning as in Theorem 2.1 (see Remark 2.3) establishes
the following result.

Theorem 2.6. Let 1 ≤ p ≤ ∞ and let q be the conjugate to p. Suppose
the following conditions are satisfied:

{
For all t ∈ [0, 1], kt(s) = k(t, s) ≥ 0 for a.e. s ∈ [0, 1]

and for a.e. t ∈ [0, 1], kt(s) > 0 for a.e. s ∈ [0, 1]

}
(2.23)

{
kt ∈ Lp[0, 1] for each t ∈ [0, 1] and

the map t 7→ kt is continuous from [0, 1] to Lp[0, 1]

}
. (2.24)

Also, assume condition (2.1) holds and suppose the following conditions are
satisfied: 




∀ r > 0 ∃ ψr : [0, 1] → R with

ψr > 0 a.e. on [0, 1], ψr ∈ Lq[0, 1]

f(t, y) ≥ ψr(t) a.e. on [0, 1] ∀ y ∈ (0, r]





(2.25)





∀ r > 0 ∃ hr : [0, 1] → R with

hr ≥ 0 a.e. on [0, 1], hr ∈ Lq[0, 1]

f(t, y) ≤ hr(t) for a.e. t ∈ [0, 1] and y ∈ [∫ 1

0
k(t, s)ψr(s) ds, r

]





(2.26)

and

∃ M > 0 with M ≥ sup
t∈[0,1]

∫ 1

0

k(t, s)hM (s) ds. (2.27)

Then equation (2.22) has a solution y ∈ C[0, 1] with y(t) > 0 for a.e. t ∈ [0, 1].
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