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Abstract. The author first establishes the reduced T1 theorems for Besov and
Triebel-Lizorkin spaces on spaces of homogeneous type. Using these T1 theorems,
the author proves that an operator of Bessel potential type can be used as the lifting
operator of these spaces.
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1. Introduction

Recently, in [15], for some p0 ∈ (0, 1) the inhomogeneous Besov spaces Bs
pq(X)

with p0 < p ≤ ∞ and 0 < q ≤ ∞ and the Triebel-Lizorkin spaces F s
pq(X) with

p0 ≤ p < ∞ and p0 < q ≤ ∞ on spaces of homogeneous type were introduced.
Some special cases of these spaces have been introduced in [10, 11] before.
Moreover, recently some new characterizations on Besov and Triebel-Lizorkin
spaces and their applications were given in [14, 24, 25]. In particular, in
[24] it was proved that the Besov spaces on d-sets introduced by Triebel via
traces in [21] and, equivalently, via quarkonial decompositions in [22] are the
same as those Besov spaces introduced in [10] by regarding d-sets as spaces of
homogeneous type. The same is also true for the Besov and Triebel-Lizorkin
spaces on Lipschitz manifolds introduced by Triebel in [23] via the localization
principle and the real interpolation method and those spaces introduced in [15]
via regarding the Lipschitz manifold as a space of homogeneous type.
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The main purpose of this paper is to establish the reduced T1 theorems
for the Besov spaces Bs

pq(X) when p0 < p ≤ ∞ and 0 < q ≤ ∞ and for the
Triebel-Lizorkin spaces F s

pq(X) when p0 < p < ∞ and p0 < q ≤ ∞. To be
precise, we will first establish the T1 theorem for Triebel-Lizorkin spaces by
using the discrete Calderón reproducing formulae in [12] and the Plancherel-
Pôlya inequalities in [5]. Then by use of the real interpolation theorems in
[25] we will obtain the T1 theorem for the Besov spaces. The T1 theorems for
the homogeneous Besov spaces Ḃs

pq(X) and Triebel-Lizorkin spaces Ḟ s
pq(X)

are also stated, parts of which were obtained in [4, 25]. As an application
of the T1 theorems on Bs

pq(X) and F s
pq(X) we will show that an operator of

Bessel potential type can be used as the lifting operator of these spaces, which
generalizes the corresponding results on these spaces with p, q > 1 in [14] to
the general cases considered here by a simpler method.

Let us now recall some definitions and notation on spaces of homogeneous
type. A quasi-metric ρ on a set X is a function ρ : X×X → [0,∞) satisfying

ρ(x, y) = 0 if and only if x = y

ρ(x, y) = ρ(y, x) for all x, y ∈ X

ρ(x, y) ≤ A
[
ρ(x, z) + ρ(z, y)

]
(x, y, z ∈ X) for some constant A ∈ [1,∞).

Any quasi-metric defines a topology, for which the balls

B(x, r) =
{
y ∈ X : ρ(y, x) < r

}

for all x ∈ X and all r > 0 form a basis.
In what follows, we set

diam X = sup
{
ρ(x, y) : x, y ∈ X

}
.

We also make the following conventions. We denote by f ∼ g that there is a
constant C > 0 independent of the main parameters such that C−1g < f <
Cg. Throughout the paper we will denote by C a positive constant which
is independent of the main parameters, but it may vary from line to line.
Constants with subscripts, such as C0, do not change in different occurrences.
We denote N ∪ {0} simply by Z+, and for any q ∈ [1,∞] we denote by q′ its
conjugate index, namely 1

q + 1
q′ = 1.

Definition 1.1 [14]. Let d > 0 and 0 < θ ≤ 1. A space of homogeneous
type (X, ρ, µ)d,θ is a set X together with a quasi-metric ρ and a non-negative
Borel regular measure µ on X with supp µ = X and there exists a constant
C0 > 0 such that, for all 0 < r < diam X and all x, x′, y ∈ X,

µ(B(x, r)) ∼ rd (1.1)
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and ∣∣ρ(x, y)− ρ(x′, y)
∣∣ ≤ C0ρ(x, x′)θ

[
ρ(x, y) + ρ(x′, y)

]1−θ
. (1.2)

In particular, when diam X < ∞, spaces of homogeneous type in Defini-
tion 1.1 cover the boundaries of bounded Lipschitz domains in Rn, the n-torus
in Rn, C∞-compact Riemannian manifolds, Lipschitz manifolds of compact
case in [23], and compact d-sets which include various kinds of fractals (see
[19, 21, 22, 24]); while when diamX = ∞, spaces of homogeneous type in Def-
inition 1.1 specifically include Euclidean spaces, the boundaries of unbounded
Lipschitz domains in Rn, and Lipschitz manifolds of the non-compact case in
[23]. Moreover, the spaces of homogeneous type in Definition 1.1 are just the
variants of the spaces of homogeneous type introduced by Coifman and Weiss
in [2]. In fact, if we choose d = 1, Macias and Segovia in [16] have proved that,
in the sense of equivalent topology, (X, ρ, µ)d,θ are the spaces of homogeneous
type in the sense of Coifman and Weiss, whose definitions only require that ρ
is a quasi-metric without property (1.2) and µ satisfies the doubling condition
which is weaker than (1.1).

We now recall the definition of the spaces of test functions on X from [13]
(see also [8]).

Definition 1.2. Fix γ > 0 and θ ≥ β > 0. A function f defined on X
is said to be a test function of type (x0, r, β, γ) with x0 ∈ X and r > 0, if f
satisfies the conditions

(i) |f(x)| ≤ C rγ

(r+ρ(x,x0))d+γ

(ii) |f(x) − f(y)| ≤ C
( ρ(x,y)

r+ρ(x,x0)

)β rγ

(r+ρ(x,x0))d+γ for ρ(x, y) ≤ 1
2A [r +

ρ(x, x0)].

If f is a test function of type (x0, r, β, γ), we write f ∈ G(x0, r, β, γ), and the
norm of f in G(x0, r, β, γ) is defined by

‖f‖G(x0,r,β,γ) = inf
{
C : Properties (i) and (ii) hold

}
.

Now fix x0 ∈ X and let G(β, γ) = G(x0, 1, β, γ). It is easy to see that

G(x1, r, β, γ) = G(β, γ)

with equivalent norms for all x1 ∈ X and r > 0. Furthermore, it is easy
to check that G(β, γ) is a Banach space with respect to the norm in G(β, γ).
Also, let the dual space (G(β, γ))′ be all linear functionals L from G(β, γ) to
C with the property that there exists a finite constant C ≥ 0 such that, for
all f ∈ G(β, γ),

|L(f)| ≤ C‖f‖G(β,γ).

We denote by 〈h, f〉 the natural pairing of elements h ∈ (G(β, γ))′ and f ∈
G(β, γ). It is also easy to see that f ∈ G(x0, r, β, γ) with x0 ∈ X and r > 0 if
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and only if f ∈ G(β, γ). Thus, for all h ∈ (G(β, γ))′, 〈h, f〉 is well defined for
all f ∈ G(x0, r, β, γ) with x0 ∈ X and r > 0.

It is well-known that even when X = Rn, G(β1, γ) is not dense in G(β2, γ)
if β1 > β2, which will bring us some inconvenience. To overcome this defect,
in what follows we let G̊(β, γ) be the completion of the space G(θ, θ) in G(β, γ)
when 0 < β, γ < θ.

To state the definition of the inhomogeneous Besov spaces Bs
pq(X) and

the inhomogeneous Triebel-Lizorkin spaces F s
pq(X) studied in [15] we need

the following approximations to the identity which were first introduced in
[8].

Definition 1.3. A sequence {Sk}∞k=0 of linear operators is said to be
an approximation to the identity of order ε ∈ (0, θ] if there exist constants
C1, C2 > 0 such that, for all k ∈ Z+ and all x, x′, y, y′ ∈ X, the kernel Sk(x, y)
of Sk is a function from X ×X into C satisfying the following conditions:

(i) Sk(x, y) = 0 if ρ(x, y) ≥ C12−k and ‖Sk‖L∞(X×X) ≤ C22dk.

(ii)
∣∣Sk(x, y)− Sk(x′, y)

∣∣ ≤ C22k(d+ε)ρ(x, x′)ε.

(iii)
∣∣Sk(x, y)− Sk(x, y′)

∣∣ ≤ C22k(d+ε)ρ(y, y′)ε.

(iv)
∣∣[Sk(x, y)−Sk(x, y′)

]−[
Sk(x′, y)−Sk(x′, y′)

]∣∣ ≤ C22k(d+2ε)ρ(x, x′)ερ(y, y′)ε.

(v)
∫

X
Sk(x, y) dµ(y) = 1.

(vi)
∫

X
Sk(x, y) dµ(x) = 1.

Remark 1.1. By a construction similar to Coifman’s one in [3] one can
construct an approximation to the identity of order θ with compact supports
as in Definition 1.3 for the spaces of homogeneous type from Definition 1.1.

We also need the following construction of Christ in [1], which provides
an analogue of the grid of Euclidean dyadic cubes on a space of homogeneous
type.

Lemma 1.1. Let X be a space of homogeneous type. Then there exist
a collection {Qk

α ⊂ X : k ∈ Z+, α ∈ Ik} of open subsets, where Ik is some
(possibly finite) index set, and constants δ ∈ (0, 1) and C3, C4 > 0 such that:

(i) µ(X \ ∪αQk
α) = 0 for each fixed k and Qk

α ∩Qk
β = ∅ if α 6= β.

(ii) For any α, β, k, l with l ≥ k, either Ql
β ⊂ Qk

α or Ql
β ∩Qk

α = ∅.
(iii) For each (k, α) and each l < k there is a unique β such that Qk

α ⊂ Ql
β.

(iv) diam (Qk
α) ≤ C3δ

k.
(v) Each Qk

α contains some ball B(zk
α, C4δ

k), where zk
α ∈ X.

In fact, we can think of Qk
α as being essentially a cube of diameter rough δk

with center zk
α. In what follows we always suppose δ = 1

2 (see [13] for how to
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remove this restriction). Also, we will denote by Qk,ν
τ

(
ν = 1, 2, . . . , N(k, τ)

)

the set of all cubes Qk+j
τ ′ ⊂ Qk

τ , where j is a fixed large positive integer.
Denote by yk,ν

τ a point in Qk,ν
τ . For any dyadic cube Q and any f ∈ L1

loc(X)
we set

mQ(f) = 1
µ(Q)

∫

Q

f(x) dµ(x)

and we also let a+ = max(a, 0).

Definition 1.4. Let s ∈ (−θ, θ), {Sk}∞k=0 be as in Definition 1.3 with
order θ, D0 = S0 and Dk = Sk − Sk−1 for k ∈ N. Suppose β and γ satisfying

max
(
0,−s + d( 1

p − 1)+
)

< β < θ and 0 < γ < θ. (1.3)

Let j ∈ N be fixed and large enough and {Q0,ν
τ : τ ∈ I0, ν = 1, . . . , N(0, τ)}

be as above. The inhomogeneous Besov space Bs
pq(X) for max

(
d

d+θ , d
d+θ+s

)
<

p ≤ ∞ and 0 < q ≤ ∞ is the collection of all f ∈ (G̊(β, γ)
)′ such that

‖f‖Bs
pq(X) =

{ ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)]p

} 1
p

+
{ ∞∑

k=1

[
2ks‖Dk(f)‖Lp(X)

]q
} 1

q

< ∞.

The inhomogeneous Triebel-Lizorkin space F s
pq(X) for max

(
d

d+θ , d
d+θ+s

)
<

p < ∞ and max
(

d
d+θ , d

d+θ+s

)
< q ≤ ∞ is the collection of all f ∈ (G̊(β, γ)

)′
such that

‖f‖F s
pq(X) =

{ ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(f)|)]p

} 1
p

+
∥∥∥∥
{ ∞∑

k=1

[
2ks|Dk(f)|]q

} 1
q
∥∥∥∥

Lp(X)

< ∞.

Here, for k ∈ Z+ and a suitable f ,

Dk(f)(x) =
∫

X

Dk(x, y)f(y) dµ(y).

It was proved in [15] that Definition 1.4 is independent of the choices of
large positive integers j, approximations to the identity and the pairs (β, γ)
as in (1.3).
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2. T1 theorems

In what follows, for η ∈ (0, θ] we let Cη
0 (X) be the set of all functions having

compact support such that

‖f‖Cη
0 (X) = sup

x 6=y

|f(x)− f(y)|
ρ(x, y)η

< ∞.

Endow Cη
0 (X) with the natural topology and let (Cη

0 (X))′ be its dual space.

Definition 2.1. A continuous complex-valued function K on

Ω =
{
(x, y) ∈ X ×X : x 6= y

}

is called an inhomogeneous Calderón-Zygmund kernel of type (ε, σ) if there
exist ε ∈ (0, θ], σ > 0 and C5 > 0 such that

|K(x, y)| ≤ C5ρ(x, y)−d for ρ(x, y) 6= 0 (2.1)

|K(x, y)| ≤ C5ρ(x, y)−d−σ for ρ(x, y) ≥ 1 (2.2)

|K(x, y)−K(x′, y)| ≤ C5ρ(x, x′)ερ(x, y)−d−ε for ρ(x, x′) ≤ ρ(x,y)
2A (2.3)

|K(x, y)−K(x, y′)| ≤ C5ρ(y, y′)ερ(x, y)−d−ε for ρ(y, y′) ≤ ρ(x,y)
2A .(2.4)

We remark that (2.2) is natural when one considers the boundedness of
Calderón-Zygmund operators on inhomogeneous function spaces, which was
pointed by Meyer in [17: Chapter 10/Theorem 2].

Definition 2.2. A continuous linear operator T : Cη
0 (X) → (Cη

0 (X))′ is
an inhomogeneous Calderón-Zygmund singular integral operator of type (ε, σ)
if there is an inhomogeneous standard kernel K of the type (ε, σ) such that

〈Tf, g〉 =
∫

X

∫

X

K(x, y)f(y)g(x) dµ(x)dµ(y)

for all f, g ∈ Cη
0 (X) with disjoint supports.

We also need the following weak boundedness property.

Definition 2.3. A Calderón-Zygmund singular integral operator T is said
to have the weak boundedness property, if there are η ∈ (0, θ] and C6 > 0 such
that

|〈Tf, g〉| ≤ C6r
d+2η‖f‖Cη

0 (X)‖g‖Cη
0 (X)

for all f, g ∈ Cη
0 (X) with diam(supp f) ≤ r and diam(supp g) ≤ r, and we

denote this by T ∈ WBP .

In what follows we let T ∗ be the dual operator of T . The following theorem
is the main theorem in this section.
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Theorem 2.1. Let ε ∈ (0, θ] and |s| < ε be such that max( d
d+ε , d

d+s+ε ) <

p < ∞ and max( d
d+ε , d

d+s+ε ) < q ≤ ∞. Suppose T ∈ WBP is an inho-
mogeneous Calderón-Zygmund singular integral operator of type (ε, σ) with
σ > d( 1

p−1)+ and T1 = 0 = T ∗1, and its kernel K satisfies (2.1) - (2.4). Then
T is bounded on F s

pq(X) with an operator norm not larger than C max(C5, C6).

To prove Theorem 2.1 we need to use the discrete Calderón reproducing
formulas in [12] and the Plancherel-Pôlya inequality in [5].

Lemma 2.1 [12]. Suppose {Dk}∞k=0 is the same as in Definition 1.4.
Then there exist functions D̃Q0,ν

τ
with τ ∈ I0 and ν = 1, . . . , N(0, τ) and D̃k

with k ∈ N such that, for any fixed yk,ν
τ ∈ Qk,ν

τ with k ∈ N, τ ∈ Ik and
ν ∈ {1, . . . , N(k, τ)} and all f ∈ (G(β1, γ1))′ with 0 < β1 < θ and 0 < γ1 < θ,

f(x) =
∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )D̃Q0,ν

τ
(f) mQ0,ν

τ
(D0(x, ·))

+
∞∑

k=1

∑

τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )D̃k(f)(yk,ν

τ )Dk(x, yk,ν
τ )

where the series converge in (G(β′1, γ
′
1))

′ for β1 < β′1 < θ and γ1 < γ′1 < θ.
Here D̃k with k ∈ N satisfies for any given ε ∈ (0, θ) the following conditions:

(i) |D̃k(x, y)| ≤ C 2−kε

(2−k+ρ(x,y))d+ε .

(ii)
∣∣D̃k(x, y) − D̃k(x, y′)

∣∣ ≤ C
( ρ(y,y′)

2−k+ρ(x,y)

)ε 2−kε

(2−k+ρ(x,y))d+ε for ρ(y, y′) ≤
1

2A

(
2−k +ρ(x, y)

)
.

(iii)
∫

X
D̃k(x, y) dµ(x) =

∫
X

D̃k(x, y) dµ(y) = 0 and diam(Q0,ν
τ ) ∼ 2−j for

τ ∈ I0 and ν = 1, . . . , N(0, τ) with some j ∈ N.

Further, D̃Q0,ν
τ

for τ ∈ I0 and ν = 1, . . . , N(0, τ) satisfies the following
conditions:

(iv)
∫

X
D̃Q0,ν

τ
(x) dµ(x) = 1.

(v) |D̃Q0,ν
τ

(x)| ≤ C 1
(1+ρ(x,y0,ν

τ ))d+ε
.

(vi)
∣∣D̃Q0,ν

τ
(x) − D̃Q0,ν

τ
(y)

∣∣ ≤ C
( ρ(x,y)

1+ρ(x,y0,ν
τ )

)ε 1
(1+ρ(x,y0,ν

τ ))d+ε
for ρ(x, y) ≤

1
2A (1 + ρ(x, y0,ν

τ )).

(vii) D̃Q0,ν
τ

(f) =
∫

X
D̃Q0,ν

τ
(y)f(y) dµ(y).

Moreover, j can be any fixed large positive integer and the constant C in
properties (v) and (vi) is independent of j.

The following Plancherel-Pôlya inequality was given in the proof of the
main theorem in [5] (see also [15]).
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Lemma 2.2. With the notation as in Lemma 2.1,
{ ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )

∣∣D̃Q0,ν
τ

(f)
∣∣p

} 1
p

+
{ ∞∑

k=1

2ksq

( ∑

τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )

[
sup

z∈Qk,ν
τ

∣∣D̃k(f)(z)
∣∣
]p) q

p
} 1

q

≤ C‖f‖Bs
pq(X)

when max
(

d
d+θ , d

d+θ+s

)
< p ≤ ∞ and 0 < q ≤ ∞, and

{ ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )

∣∣D̃Q0,ν
τ

(f)
∣∣p

} 1
p

+
∥∥∥∥
{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑
ν=1

[
2ks sup

z∈Qk,ν
τ

∣∣D̃k(f)(z)
∣∣χQk,ν

τ
(·)

]q} 1
q
∥∥∥∥

Lp(X)

≤ C‖f‖F s
pq(X)

when max
(

d
d+θ , d

d+θ+s

)
< p < ∞ and max

(
d

d+θ , d
d+θ+s

)
< q ≤ ∞.

In what follows we will denote m
Q0,ν′

τ′
(D0(x, ·)) simply by D

Q0,ν′
τ′

(x) for

τ ′ ∈ I0 and ν′ = 1, . . . , N(0, τ ′). The following estimates are basic.

Lemma 2.3. With the notation as in Lemma 2.1,
(i) for k ∈ Z+, τ ′ ∈ I0 and ν′ = 1, . . . , N(0, τ ′),

∣∣DkTD
Q0,ν′

τ′
(x)

∣∣ ≤ C2−kε(1 + k)
1(

1 + ρ(x, y0,ν′
τ ′ )

)d+σ1
(2.5)

where σ1 = σ when k = 0 and σ1 = ε when k ∈ N,
(ii) for k ∈ Z+, k′ ∈ N, τ ′ ∈ Ik′ and ν′ = 1, . . . , N(k′, τ ′),

∣∣DkTDk′(x, yk′,ν′

τ ′ )
∣∣ ≤ C2−|k−k′|ε(1 + |k − k′|) 2−(k∧k′)ε

(
2−(k∧k′) + ρ(x, yk′,ν′

τ ′ )
)d+ε

.

(2.6)

Proof. We first show (2.5) with k = 0. We consider two cases.

Case 1: ρ(x, y0,ν′

τ ′ ) ≥ 6A3C7, where C7 = max(1, C3). In this case we
write∣∣D0TD

Q0,ν′
τ′

(x)
∣∣

=
∣∣∣∣
∫

X

∫

X

D0(x, u)K(u, v)D
Q0,ν′

τ′
(v) dµ(u)dµ(v)

∣∣∣∣

≤ 1

µ(Q0,ν′
τ ′ )

∫

Q0,ν′
τ′

∫

X

∫

X

|D0(x, u)| 1
ρ(u, v)d+σ

|D0(v, y)| dµ(u)dµ(v)dµ(y)

≤ C

ρ(x, y0,ν′
τ ′ )d+σ
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which is a desired estimate.
Case 2: ρ(x, y0,ν′

τ ′ ) < 6A3C7. In this case let ψ̄0 ∈ C∞0 (R) be a radial
function with 0 ≤ ψ̄0(x) ≤ 1, ψ̄0(x) = 1 for x ∈ (0, 6) and ψ̄0(x) = 0 for

x > 12. We now define ψ0(x) = ψ̄0

(ρ(x,y0,ν′
τ′ )

A3C7

)
and ψ1(x) = 1 − ψ0(x). We

then write
D0TD

Q0,ν′
τ′

(x) =
〈
D0(x, ·)ψ0(·), TD

Q0,ν′
τ′

〉
+

〈
D0(x, ·)ψ1(·), TD

Q0,ν′
τ′

〉

=: E1 + E2.

Since T ∈ WBP , we have |E1| ≤ CC6. For any given x, since supp
(
D0(x, ·)ψ1(·)

)∩
supp D

Q0,ν′
τ′

(·) = ∅, we can estimate |E2| by

|E2| ≤ C
1

µ(Q0,ν′
τ ′ )

∫

Q0,ν′
τ′

∫

X

∫

X

∣∣D0(x, u)D0(v, y)
∣∣ dµ(u)dµ(v)dµ(y) ≤ C.

Thus Cases 1 and 2 tell us (2.5) for k = 0.
Let us show that (2.5) is also true when k ∈ N. We still consider two

cases.
If ρ(x, y0,ν′

τ ′ ) ≥ 12A3C7, then by (2.3) we have∣∣DkTD
Q0,ν′

τ′
(x)

∣∣

=
∣∣∣∣
∫

X

∫

X

Dk(x, u)
[
K(u, v)−K(x, v)

]
D

Q0,ν′
τ′

(v) dµ(u)dµ(v)
∣∣∣∣

≤ C

µ(Q0,ν′
τ ′ )

∫

Q0,ν′
τ′

∫

X

∫

X

|Dk(x, u)| ρ(x, u)ε

ρ(u, v)d+ε
|D0(v, y)| dµ(u)dµ(v)dµ(y)

≤ C2−kε 1

ρ(x, y0,ν′
τ ′ )d+ε

which is a desired estimate.
In what follows we let ψ̄1(x) = 1 − ψ̄0(x). If ρ(x, y0,ν′

τ ′ ) < 12A3C7, then
by T1 = 0 and

∫
X

Dk(x, u) dµ(u) = 0 we can write

DkTD
Q0,ν′

τ′
(x)

=
∫

X

∫

X

Dk(x, u)K(u, v)
[
D

Q0,ν′
τ′

(v)−D
Q0,ν′

τ′
(x)

]
dµ(u)dµ(v)

=
∫

X

∫

X

Dk(x, u)K(u, v)
[
D

Q0,ν′
τ′

(v)−D
Q0,ν′

τ′
(x)

]
ψ̄0

( ρ(v, x)
2A3C72−k

)
dµ(u)dµ(v)

+
∫

X

∫

X

Dk(x, u)
[
K(u, v)−K(x, v)

][
D

Q0,ν′
τ′

(v)−D
Q0,ν′

τ′
(x)

]

× ψ̄1

( ρ(v, x)
2A3C72−k

)
dµ(u)dµ(v)

=: G1 + G2.
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For G1, letting ψ(u) = Dk(x, u) and

φ(v) =
[
D

Q0,ν′
τ′

(v)−D
Q0,ν′

τ′
(x)

]
ψ̄0

( ρ(v, x)
2A3C72−k

)
,

by T ∈ WBP we obtain

|G1| ≤ C62−k(d+2η)‖φ‖Cη
0 (X)‖ψ‖Cη

0 (X)

≤ C2−k(d+2η)2k(η−ε)2k(d+η)

≤ CC62−kε

where we choose η ∈ (0, ε]. To estimate G2 we first point that it is easy to see
the estimate

∣∣D
Q0,ν′

τ′
(v)−D

Q0,ν′
τ′

(x)
∣∣ ≤ C

( ρ(v, x)
1 + ρ(v, x)

)ε

.

From this it is easy to deduce

|G2| ≤ C

∫

X

∫

{v∈X: ρ(x,v)>12A3C72−k}
|Dk(x, u)|

× ρ(x, u)ε

ρ(v, x)d+ε

( ρ(v, x)
1 + ρ(v, x)

)ε

dµ(v)dµ(u)

≤ C2−kε

∫

{v∈X: ρ(x,v)>12A3C7}

1
ρ(v, x)d+ε

dµ(v)

+ C2−kε

∫

{v∈X: 12A3C72−k<ρ(x,v)≤12A3C7}

1
ρ(v, x)d

dµ(v)

≤ C2−kε(1 + k).

Thus (2.5) always holds.

We now prove (2.6) in the case of k′ ≥ k. We still need to consider two
cases.

Case 1: ρ(x, yk′,ν′

τ ′ ) ≥ 12A3C72−k. In this case, by
∫

X
Dk′(v, yk′,ν′

τ ′ ) dµ(v) =
0 we have

∣∣DkTDk′(x, yk′,ν′

τ ′ )
∣∣

=
∣∣∣∣
∫

X

∫

X

Dk(x, u)
[
K(u, v)−K(u, yk′,ν′

τ ′ )
]
Dk′(v, yk′,ν′

τ ′ ) dµ(u)dµ(v)
∣∣∣∣

≤ C

∫

X

∫

X

|Dk(x, u)|ρ(v, yk′,ν′

τ ′ )ε

ρ(u, v)d+ε

∣∣Dk′(v, yk′,ν′

τ ′ )
∣∣ dµ(u)dµ(v)

≤ C2−(k′−k)ε 2−kε

ρ(x, yk′,ν′
τ ′ )d+ε
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which is a desired estimate.

Case 2: ρ(x, yk′,ν′

τ ′ ) < 12A3C72−k. In this case, by T ∗1 = 0 we obtain

DkTDk′(x, yk′,ν′

τ ′ )

=
∫

X

∫

X

[
Dk(x, u)−Dk(x, yk′,ν′

τ ′ )
]
K(u, v)Dk′(v, yk′,ν′

τ ′ ) dµ(u)dµ(v)

=
∫

X

∫

X

[
Dk(x, u)−Dk(x, yk′,ν′

τ ′ )
]
ψ̄0

( ρ(u, yk′,ν′

τ ′ )
2A3C72−k′

)

×K(u, v)Dk′(v, yk′,ν′

τ ′ ) dµ(u)dµ(v)

+
∫

X

∫

X

[
Dk(x, u)−Dk(x, yk′,ν′

τ ′ )
]
ψ̄1

( ρ(u, yk′,ν′

τ ′ )
2A3C72−k′

)

×K(u, v)Dk′(v, yk′,ν′

τ ′ ) dµ(u)dµ(v)

=: H1 + H2.

To estimate H1 let

ψ(u) =
[
Dk(x, u)−Dk(x, yk′,ν′

τ ′ )
]
ψ̄0

( ρ(u, yk′,ν′

τ ′ )
2A3C72−k′

)

and φ(v) = Dk′(v, yk′,ν′

τ ′ ). By T ∈ WBP we have

|H1| ≤ C2−(d+2η)k′‖ψ‖Cη
0 (X)‖φ‖Cη

0 (X)

≤ C2−(d+2η)k′2kd−(k′−k)ε+k′η2k′(d+η)

≤ C2−(k′−k)ε2kd

where we choose η ∈ (0, ε]. To estimate H2 we first note that

∣∣Dk(x, u)−Dk(x, yk′,ν′

τ ′ )
∣∣ ≤ C2kd ρ(u, yk′,ν′

τ ′ )ε

(
2−k + ρ(u, yk′,ν′

τ ′ )
)ε .
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is easy to see. From this and
∫

X
Dk′(v, yk′,ν′

τ ′ ) dµ(v) = 0 it follows that

|H2| =
∣∣∣∣
∫

X

∫

X

[
Dk(x, u)−Dk(x, yk′,ν′

τ ′ )
]
ψ̄1

( ρ(u, yk′,ν′

τ ′ )
2A3C72−k′

)

× [
K(u, v)−K(u, yk′,ν′

τ ′ )
]
Dk′(v, yk′,ν′

τ ′ ) dµ(u)dµ(v)
∣∣∣∣

≤ C2kd−k′ε
∫

X

∫

{u: ρ(u,yk′,ν′
τ′ )≥12A3C72−k′}

ρ(u, yk′,ν′

τ ′ )ε

(
2−k + ρ(u, yk′,ν′

τ ′ )
)ε

× 1

ρ(u, yk′,ν′
τ ′ )d+ε

|Dk′(v, yk′,ν′

τ ′ )| dµ(u)dµ(v)

≤ C2kd−k′ε
∫

{u: ρ(u,yk′,ν′
τ′ )≥12A3C72−k}

1

ρ(u, yk′,ν′
τ ′ )d+ε

dµ(u)

+ C2−(k′−k)ε+kd

∫

{u: 12A3C72−k′≤ρ(u,yk′,ν′
τ′ )<12A3C72−k}

1

ρ(u, yk′,ν′
τ ′ )d

dµ(u)

≤ C(1 + k′ − k)2−(k′−k)ε+kd

which is a desired estimate. Thus (2.6) is true when k′ ≥ k. The proof of
(2.6) when k′ < k is similar. We leave the details to the reader (see also [4]).
This finishes the proof of Lemma 2.3

The following lemma can be found in [13: pp. 93].

Lemma 2.4. Let 0 < r ≤ 1, k, η ∈ Z+ with η ≤ k and, for any dyadic
cube Qk,ν

τ ,
|fQk,ν

τ
(x)| ≤ (

1 + 2ηρ(x, yk,ν
τ )

)−d−γ

where yk,ν
τ is any point in Qk,ν

τ and γ > d( 1
r − 1). Then

∑

τ∈Ik

N(k,τ)∑
ν=1

|λQk,ν
τ
| |fQk,ν

τ
(x)| ≤ C2

(k−η)d
r

[
M

( ∑

τ∈Ik

N(k,τ)∑
ν=1

|λQk,ν
τ
|rχQk,ν

τ

)
(x)

] 1
r

where C is independent of x, k and η, and M is the Hardy-Littlewood maximal
operator on X.

Proof of Theorem 2.1. By Definition 1.4 we can have

‖Tf‖F s
pq(X) ≤

{ ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )

[
mQ0,ν

τ
(|D0(Tf)|)]p

} 1
p

+
∥∥∥∥
{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑
ν=1

2ksq sup
z∈Qk,ν

τ

|Dk(Tf)(z)|qχQk,ν
τ

} 1
q
∥∥∥∥

Lp(X)

=: J1 + J2.
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By noting that µ(Q0,ν
τ ) ∼ C and Lemma 2.1 we have

J1 ≤ C

{ ∑

τ∈I0

N(0,τ)∑
ν=1

[ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

∣∣D̃
Q0,ν′

τ′
(f)

∣∣ sup
z∈Q0,ν

τ

∣∣D0TD
Q0,ν′

τ′
(z)

∣∣
]p} 1

p

+ C

{ ∑

τ∈I0

N(0,τ)∑
ν=1

[ ∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk′,ν′

τ ′ )
∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣

× sup
z∈Q0,ν

τ

∣∣D0TDk′(z, yk′,ν′

τ ′ )
∣∣
]p} 1

p

=: J1
1 + J2

1 .

When p ≤ 1, by (2.5), the following well-known inequality

( ∑

i

|ai|
)p

≤
∑

i

|ai|p (2.7)

for p ≤ 1 and ai ∈ C and by Lemma 2.2 we obtain

J1
1 ≤ C

{ ∑

τ∈I0

N(0,τ)∑
ν=1

[ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

∣∣D̃
Q0,ν′

τ′
(f)

∣∣p 1
(
1 + ρ(y0,ν

τ , y0,ν′
τ ′ )

)(d+σ)p

]} 1
p

≤ C

{ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

∣∣D̃
Q0,ν′

τ′
(f)

∣∣p
∫

X

1(
1 + ρ(x, y0,ν′

τ ′ ))(d+σ)p
dµ(x)

} 1
p

≤ C

{ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

∣∣D̃
Q0,ν′

τ′
(f)

∣∣p
} 1

p

≤ C‖f‖F s
pq(X)

where we used the fact that 1 + ρ(y0,ν
τ , y0,ν′

τ ′ ) ∼ 1 + ρ(x, y0,ν
τ ) for all x ∈ Q0,ν

τ ,
µ(Q0,ν

τ ) ∼ C, Lemma 1.1 and σ > d( 1
p − 1).

When 1 < p ≤ ∞, from (2.5), the Hölder inequality and Lemma 2.2 it
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follows that

J1
1 ≤ C

{ ∑

τ∈I0

N(0,τ)∑
ν=1

[ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

∣∣D̃
Q0,ν′

τ′
(f)

∣∣p 1(
1 + ρ(y0,ν

τ , y0,ν′
τ ′ )

)d+σ

]

×
[ ∫

X

1(
1 + ρ(y0,ν

τ , y)
)d+σ

dµ(y)
] p

p′
} 1

p

≤ C

{ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

∣∣D̃
Q0,ν′

τ′
(f)

∣∣p
∫

X

1(
1 + ρ(x, y0,ν′

τ ′ )
)d+σ

dµ(x)
} 1

p

≤ C

{ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

∣∣D̃
Q0,ν′

τ′
(f)

∣∣p
} 1

p

≤ C‖f‖F s
pq(X).

By (2.6) - (2.7), the Hölder inequality, the Fefferman-Stein vector-valued
inequality in [6], Lemma 2.4, the arbitrariness of yk′,ν′

τ ′ and Lemma 2.2 we
obtain

J2
1 ≤ C

{ ∑

τ∈I0

N(0,τ)∑
ν=1

∫

X

χQ0,ν
τ

(x)
[ ∞∑

k′=1

(1 + k′)2−k′(ε+d+s)

×
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k′s
∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣ 1(

1 + ρ(x, yk′,ν′
τ ′ )

)d+ε

]p

dµ(x)
} 1

p

≤ C

{ ∫

X

( ∞∑

k′=1

(1 + k′)2−k′(ε+d+s− d
r )

×
[
M

( ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k′sr
∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣rχ

Qk′,ν′
τ′

)] 1
r
)p

dµ(x)
} 1

p

≤ C

∥∥∥∥
{ ∞∑

k′=1

[
M

( ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k′sr
∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣rχ

Qk′,ν′
τ′

)] q
r
} 1

q
∥∥∥∥

Lp(X)

≤ C

∥∥∥∥
{ ∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k′sq
∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣qχ

Qk′,ν′
τ′

} 1
q
∥∥∥∥

Lp(X)

≤ C‖f‖F s
pq(X)

where we choose max
(

d
d+s+ε , d

d+ε

)
< r < min(1, p, q). So far we have obtained

a desired estimate for J1.
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Let us now estimate J2 by writing

J2 ≤ C

∥∥∥∥
{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑
ν=1

2ksq

[ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

∣∣D̃
Q0,ν′

τ′
(f)

∣∣

× sup
z∈Qk,ν

τ

∣∣DkTD
Q0,ν′

τ′
(z)

∣∣
]q

χQk,ν
τ

} 1
q
∥∥∥∥

Lp(X)

+ C

∥∥∥∥
{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑
ν=1

2ksq

[ ∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk′,ν′

τ ′ )
∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣

× sup
z∈Qk,ν

τ

∣∣DkTDk′(z, yk′,ν′

τ ′ )
∣∣
]q

χQk,ν
τ

} 1
q
∥∥∥∥

Lp(X)

=: J1
2 + J2

2 .

Estimate (2.5), Lemma 2.4, the Fefferman-Stein vector-valued inequality in
[6] and Lemma 2.2 tell us that

J1
2 ≤ C

∥∥∥∥
{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑
ν=1

kq2k(s−ε)q

×
[ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

∣∣D̃
Q0,ν′

τ′
(f)

∣∣ 1(
1 + ρ(yk,ν

τ , y0,ν′
τ ′ )

)d+ε

]q

χQk,ν
τ

} 1
q
∥∥∥∥

Lp(X)

≤ C

∥∥∥∥
{ ∞∑

k=1

kq2k(s−ε)q

} 1
q
{

M

( ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

∣∣D̃
Q0,ν′

τ′
(f)

∣∣rχ
Q0,ν′

τ′

)} 1
r
∥∥∥∥

Lp(X)

≤ C

{ ∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

µ(Q0,ν′

τ ′ )
∣∣D̃

Q0,ν′
τ′

(f)
∣∣p

} 1
p

≤ C‖f‖F s
pq(X)

where we choose r ∈ (
d

d+ε ,min(p, 1)
)
. From (2.6), Lemma 2.4, (2.7), the

Fefferman-Stein vector-valued inequality in [6], the arbitrariness of yk′,ν′

τ ′ and
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Lemma 2.2 it follows that

J2
2 ≤ C

∥∥∥∥
{ ∞∑

k=1

∑

τ∈Ik

N(k,τ)∑
ν=1

2ksq

[ ∞∑

k′=1

(
1 + |k − k′|) 2(k∧k′)d−|k−k′|ε−k′d−k′s

×
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k′s
∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣ 1(

1 + 2k∧k′ρ(·, yk′,ν′
τ ′ )

)d+ε

]q

χQk,ν
τ

} 1
q
∥∥∥∥

Lp(X)

≤ C

∥∥∥∥
{ ∞∑

k=1

[ ∞∑

k′=1

(
1 + |k − k′|) 2(k∧k′)d−|k−k′|ε−k′d+(k−k′)s+[k′−(k∧k′)] d

r

×
(

M

[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k′sr
∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣rχ

Qk′,ν′
τ′

]) 1
r
]q} 1

q
∥∥∥∥

Lp(X)

≤ C

∥∥∥∥
{ ∞∑

k=1

[ k∑

k′=1

(
1 + k − k′

)
2(k−k′)(s−ε)

×
(

M

[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k′sr
∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣rχ

Qk′,ν′
τ′

]) 1
r
]q} 1

q
∥∥∥∥

Lp(X)

+ C

∥∥∥∥
{ ∞∑

k=1

[ ∞∑

k′=k+1

(
1 + k′ − k

)
2(k−k′)(d+s+ε− d

r )

×
(

M

[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k′sr
∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣rχ

Qk′,ν′
τ′

]) 1
r
]q} 1

q
∥∥∥∥

Lp(X)

≤ C

∥∥∥∥
{ ∞∑

k′=1

(
M

[ ∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k′sr
∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣rχ

Qk′,ν′
τ′

]) q
r
} 1

q
∥∥∥∥

Lp(X)

≤ C

∥∥∥∥
{ ∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

2k′sq
∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣qχ

Qk′,ν′
τ′

} 1
q
∥∥∥∥

Lp(X)

≤ C‖f‖F s
pq(X)

where we choose max( d
d+s+ε , d

d+ε ) < r < min(1, p, q). This finishes the proof
of Theorem 2.1

To establish a similar theorem for the Besov spaces Bs
pq(X) we need the

following real interpolation theorems from [25].

Lemma 2.5. Let κ ∈ (0, 1), s0, s1 ∈ (−θ, θ) with s0 6= s1 and s =
(1− κ)s0 + κs1.
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(i) If max
(

d
d+θ , d

d+s0+θ , d
d+s1+θ

)
< p ≤ ∞ and 0 < q0, q1, q ≤ ∞, then

(
Bs0

p,q0
(X), Bs1

p,q1
(X

)
κ,q

= Bs
pq(X).

(ii) If max
(

d
d+θ , d

d+s0+θ , d
d+s1+θ

)
< p < ∞ and max

(
d

d+θ , d
d+si+θ

)
< qi ≤

∞ for i = 0, 1 and 0 < q ≤ ∞, then

(
F s0

p,q0
(X), F s1

p,q1
(X)

)
κ,q

= Bs
pq(X).

The following is the T1 theorem for the Besov spaces Bs
pq(X).

Theorem 2.2. Let ε ∈ (0, θ], |s| < ε, max
(

d
d+ε , d

d+s+ε

)
< p ≤ ∞ and

0 < q ≤ ∞. Suppose T ∈ WBP , T1 = 0 = T ∗1, is an inhomogeneous
Calderón-Zygmund singular integral operator of type (ε, σ) with σ > d( 1

p−1)+
and its kernel K satisfies (2.1) − (2.4). Then T is bounded on Bs

pq(X) with
an operator norm not larger than C max(C5, C6).

Proof. The case p < ∞ is a simple corollary of Theorem 2.1 and Lemma
2.5. To show the case p = ∞, by Lemma 2.5 we only need to show that T is
bounded on Bs

∞∞(X) for |s| < ε. To see this we write

‖Tf‖Bs∞∞(X) ≤ C sup
τ∈I0

ν=1,...,N(0,τ)

mQ0,ν
τ

(|D0(Tf)|)

+ C sup
k∈N

2ks sup
τ∈Ik

ν=1,...,N(k,τ)

sup
z∈Qk,ν

τ

|Dk(Tf)(z)|

=: H1 + H2.

By Lemma 2.1, (2.5) and (2.6), the arbitrariness of yk′,ν′

τ ′ and Lemma 2.2 we



70 Dachun Yang

obtain

H1 ≤ C sup
τ′∈I0

ν=1,...,N(0,τ′)

∣∣D̃
Q0,ν′

τ′
(f)

∣∣ sup
τ∈I0

ν=1,...,N(0,τ)

∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

1(
1 + ρ(y0,ν

τ , y0,ν′
τ ′ )

)d+σ

+ C sup
τ∈I0

ν=1,...,N(0,τ)

∞∑

k′=1

(1 + k′) 2−k′ε
∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk′,ν′

τ ′ )
∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣

× 1(
1 + ρ(y0,ν

τ , yk′,ν′
τ ′ )

)d+ε

≤ C sup
τ′∈I0

ν=1,...,N(0,τ′)

∣∣D̃
Q0,ν′

τ′
(f)

∣∣ + C sup
k′∈N

2k′s sup
τ′∈I

k′
ν′=1,...,N(k′,τ′)

∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣

× sup
τ∈I0

ν=1,...,N(0,τ)

∞∑

k′=1

(1 + k′) 2−k′(s+ε)

∫

X

1(
1 + ρ(y0,ν

τ , y)
)d+ε

dµ(y)

≤ C sup
τ′∈I0

ν=1,...,N(0,τ′)

∣∣D̃
Q0,ν′

τ′
(f)

∣∣ + C sup
k′∈N

2k′s sup
τ′∈I

k′
ν′=1,...,N(k′,τ′)

∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣

≤ C‖f‖Bs∞∞(X).

From Lemma 2.1, (2.5) and (2.6), the arbitrariness of yk′,ν′

τ ′ and Lemma 2.2
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it also follows that

H2 ≤ C sup
k∈N

k2k(s−ε) sup
τ∈Ik

ν=1,...,N(k,τ)

∑

τ ′∈I0

N(0,τ ′)∑

ν′=1

∣∣D̃
Q0,ν′

τ′
(f)

∣∣ 1(
1 + ρ(yk,ν

τ , y0,ν′
τ ′ )

)d+ε

+ C sup
k∈N

2ks sup
τ∈Ik

ν=1,...,N(k,τ)

∞∑

k′=1

∑

τ ′∈Ik′

N(k′,τ ′)∑

ν′=1

µ(Qk′,ν′

τ ′ )
∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣

× (
1 + |k − k′|) 2−|k−k′|ε 2−(k∧k′)ε

(
2−(k∧k′) + ρ(yk,ν

τ , yk′,ν′
τ ′ )

)d+ε

≤ C sup
τ′∈I0

ν′=1,...,N(0,τ′)

∣∣D̃
Q0,ν′

τ′
(f)

∣∣ sup
k∈N

k 2k(s−ε)

× sup
τ∈Ik

ν=1,...,N(k,τ)

∫

X

1(
1 + ρ(yk,ν

τ , y)
)d+ε

dµ(y)

+ sup
k′∈N

2k′s sup
τ′∈I

k′
ν′=1,...,N(k′,τ′)

∣∣D̃k′(f)(yk′,ν′

τ ′ )
∣∣ sup

k∈N

∞∑

k′=1

(
1 + |k − k′|) 2(k−k′)s−|k−k′|ε

×
∫

X

2−(k∧k′)ε

(
2−(k∧k′) + ρ(yk,ν

τ , y)
)d+ε

dµ(y)

≤ C‖f‖Bs∞∞(X).

This proves Theorem 2.2

Now we assume µ(X) = ∞. The homogeneous Besov spaces Ḃs
pq(X) for

s ∈ (−θ, θ), max
(

d
d+θ , d

d+θ+s

)
< p ≤ ∞ and 0 < q ≤ ∞ and the Triebel-

Lizorkin spaces Ḟ s
pq(X) for s ∈ (−θ, θ), max

(
d

d+θ , d
d+θ+s

)
< p < ∞ and

max
(

d
d+θ , d

d+θ+s

)
< q ≤ ∞ have been introduced by Han in [7]. By using the

homogeneous discrete Calderón reproducing formulas in [9] and some argu-
ments similar to those for Theorems 2.1 and 2.2 we can show the following T1
theorems for the homogeneous Besov and Triebel-Lizorkin spaces on spaces of
homogeneous type. We omit the details.

Theorem 2.3. Let ε ∈ (0, θ] and |s| < ε. Suppose T ∈ WBP , T1 =
0 = T ∗1, is a standard Calderón-Zygmund operator of type ε and its kernel K
satisfies (2.1), (2.3)− (2.4). Then:

(i) T is bounded on Ḃs
pq(X) with an operator norm not larger than C max(C5, C6)

if max
(

d
d+ε , d

d+s+ε

)
< p ≤ ∞ and 0 < q ≤ ∞.

(ii) T is bounded on Ḟ s
pq(X) with an operator norm not larger than C max(C5, C6)

if max
(

d
d+ε , d

d+s+ε

)
< p < ∞ and max

(
d

d+ε , d
d+s+ε

)
< q ≤ ∞.
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Here we say a kernel K(x, y) is a standard Calderón-Zygmund kernel of
type ε if it satisfies (2.1), (2.3) and (2.4). Moreover, we say an operator
T is a standard Calderón-Zygmund singular integral operator of type ε if it
corresponds to a standard Calderón-Zygmund kernel of type ε as in Definition
2.2. We point that, differently from the cases Bs

pq(X) and F s
pq(X), we do not

need the kernel K to satisfy (2.2) in Theorem 2.3. We should also remark
that if 0 < s < ε, T ∈ WBP with T1 = 0 and its kernel K only satisfies (2.1)
and (2.3), then T is also bounded on Ḃs

pq(X) and Ḟ s
pq(X) for p and q as in

Theorem 2.3. This was proved by Deng and Han in [4]. There they also gave
a direct proof of the case Ḃs

pq(X) instead of using real interpolation.

3. An application

In this section, we will consider the boundedness of the following operator of
Bessel potential type Iα on Besov and Triebel-Lizorkin spaces.

Definition 3.1. Let {Dl}∞l=0 be as in Definition 1.4 and α ∈ R. Then
the operator Iα for f ∈ G(β, γ) with 0 < β ≤ θ and 0 < γ is defined by

Iα(f)(x) =
∞∑

l=0

2−lαDl(f)(x)

where x ∈ X.

Operators of this type were first studied by Nahmod in [18]. Definition
3.1 was given in [14]. Let ϕ ∈ S(Rn) with ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if
|x| ≥ 3

2 and let
Sk(x, y) = [ϕ(2−k·)]∨(x− y)

for k ∈ Z+. Then {Sk}∞k=0 is an approximation to the identity on Rn without
compact support (see [15]). Let S−1 = 0. In this case we have

Iα(f)∧(ξ) =
∞∑

l=0

2−lα[Sl − Sl−1]∧(ξ)f̂(ξ)

=
∞∑

l=0

2−lα[ϕ(2−lξ)− ϕ(2−l+1ξ)]f̂(ξ)

∼ (1 + |ξ|2)−α
2 f̂(ξ).

Thus Iα is equivalent to the Bessel potential operator in the sense of Fourier
transforms.
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Theorem 3.1. Let |α| < θ, |s| < θ and |s + α| < θ.

(i) If max
(

d
d+θ , d

d+θ+s , d
d+θ+s+α

)
< p ≤ ∞, 0 < q ≤ ∞ and d( 1

p − 1)+ <

θ − α, then Iα is bounded from Bs
pq(X) into Bs+α

pq (X).

(ii) If max
(

d
d+θ , d

d+θ+s , d
d+θ+s+α

)
< p < ∞, max

(
d

d+θ , d
d+θ+s , d

d+θ+s+α

)
<

q ≤ ∞ and d( 1
min(p,q) − 1)+ < θ − α, then Iα is bounded from F s

pq(X) into
F s+α

pq (X).

Theorem 3.1 when p, q > 1 was obtained in [14] by using the atom and
molecule characterizations of these spaces. Moreover, by using Theorems 2.1
and 2.2 we can establish the converse of Theorem 3.1.

Theorem 3.2. Let |α| < θ, |s| < θ and |s + α| < θ.

(i) If max
(

d
d+θ , d

d+θ+s , d
d+θ+s+α

)
< p ≤ ∞, 0 < q ≤ ∞ and d( 1

p −
1)+ < θ + α, then there are α0(s) ∈ (0, θ) and a constant C > 0 such that if
|α| < α0(s), then

‖f‖Bs
pq(X) ≤ C‖Iα(f)‖Bs+α

pq (X)

for all f ∈ Bs
pq(X).

(ii) If max
(

d
d+θ , d

d+θ+s , d
d+θ+s+α

)
< p < ∞, max

(
d

d+θ , d
d+θ+s , d

d+θ+s+α

)
<

q ≤ ∞ and d( 1
min(p,q) − 1)+ < θ + α, then there are α0(s) ∈ (0, θ) and a con-

stant C > 0 such that, if |α| < α0(s), then

‖f‖F s
pq(X) ≤ C‖Iα(f)‖F s+α

pq (X)

for all f ∈ F s
pq(X).

Proof. Let T = I − I−αIα and K(x, y) its kernel. In [14] it was proved
that there are α1, δ, δ1 ∈ (0, θ) and constants C8, C9 > 0 such that if |α| < α1,
then K is an inhomogeneous kernel of type (ε, σ) in terms of Definition 2.1
with

C5 ≤ C82−δN + C9

∑

|l|≤N

|1− 2lα|2−|l|δ1

for any N ∈ N where ε ∈ (0, θ) and σ > 0 can be any numbers, the constants
C8 and C9 are independent of N and α, but C8 may depend on α1 and δ.
Also, α1 and δ can be any positive number less than θ. Moreover, T ∈ WBP
with

C6 ≤ C82−δN + C9

∑

|l|≤N

|1− 2lα|2−|l|δ1 .

Thus by Theorems 2.1 and 2.3 we know that T is bounded on Bs
pq(X) and

F s
pq(X) with an operator norm not larger than C10 = C max(C5, C6). Now if

we choose α1 small enough, then we can have C10 < 1. This just means that
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if α1 is small enough, then I−αIα is an invertible operator on Bs
pq(X) and

F s
pq(X). Then, by Theorem 3.1,

‖f‖Bs
pq(X) =

∥∥(I−αIα)−1I−αIα

∥∥
Bs

pq(X)
≤ C‖I−αIα‖Bs

pq(X) ≤ C‖Iα(f)‖Bs+α
pq (X)

for all f ∈ Bs
pq(X) and

‖f‖F s
pq(X) =

∥∥(I−αIα)−1I−αIα

∥∥
F s

pq(X)
≤ C‖I−αIα‖F s

pq(X) ≤ C‖Iα(f)‖F s+α
pq (X)

for all f ∈ F s
pq(X). This proves Theorem 3.2

From Theorems 3.1 and 3.3 we see that Iα can be used as a lifting operator
for the spaces Bs

pq(X) and F s
pq(X) (see also [20] for the Rn case). Finally, we

point that Theorem 3.2 for p, q > 1 was obtained in [14] by using the atom and
molecule characterizations of these spaces, which however is more complicated
than the proof given here.
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[23] Triebel, H.: Function spaces in Lipschitz domains and on Lipschitz manifolds.
Characteristic functions as pointwise multipliers. Revista Mat. Complutense
15 (2002), 1 – 50.

[24] Yang, D.: Besov spaces and applications on homogeneous type spaces and frac-
tals. Studia Math. (submitted).

[25] Yang, D.: Real interpolations for Besov and Triebel-Lizorkin spaces on spaces
of homogeneous type (submitted).

Received 13.02.2002


