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for Local and Global Solvability of
Non-Diagonal Degenerate Systems
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Abstract. Cross-diffusion has been widely considered either in the mechanical de-
scription of diffusion or in the stochastic point process description of interacting
populations, in the mathematical modelling of spatially structured epidemic or eco-
logical systems and for the geographical diffusion of innovation. In this paper, spe-
cific attention is devoted to blowing-up solutions of some systems which may reflect
either failures in the modelling or genuine phenomena like aggregation of popula-
tions. Furthemore, necessary conditions for local and global existence of solutions
to the considered systems are presented.
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1. Introduction

The role of spatial heterogeneities and dispersal for chemical reacting species
or biological interacting populations in the linear or nonlinear regime has been
the subject of a sizeable literature (see, e.g., the authorative books of Aris
[1] and Cussler [10]). In particular, cross-diffusion in modelling interactions
among different species has attracted special attentions. Apart the above
quoted books, one can cite [16, 18, 32 - 34] in physical chemistry, [7, 23] in
epidemics, [19, 29] in ecology and population dynamics, [21] in biology and
very recently [8] in economics. The recent papers [20, 23, 30, 31] on reaction-
diffusion systems with ”non-diagonal” diffusion matrices are devoted to global
existence and large time behaviour.
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In the present article we consider the system

ut(x, t) = ∆(|u|n−1u) + α∆(|v|m−1v) + f(x, t)|v|p + w1(x, t)

vt(x, t) = ∆(|v|l−1v) + g(x, t)|u|q + w2(x, t)

}

for (x, t) ∈ RN × R+, subject to the initial distributions
(
u(x, 0), v(x, 0)

)
=

(
u0(x), v0(x)

)
(x ∈ RN ),

the constant α may be positive or negative, f and g are given non-negative
functions, and the functions w1 and w2 may represent some ”noises”. The
cross-term α∆(|v|m−1v) gives a measure of the flux of one component engen-
dered by the concentration gradient of the second component.

Before announcing our main results, let us dwell for a while on the mod-
elling part [12]. Consider, for example, two substances (species, chemicals,
etc.) that are activating or inhibating each other according to some law of
reaction and diffusing in a spatial domain by Fick’s law, but the diffusion of
one of the substances is influenced also by the other one and vice versa. The
density of the two substances at time t and place x are denoted by u(x, t)
and v(x, t), respectively. On the one hand, the substance u flows from places
where its density is high towards places where the density is low. On the other
hand, v has an attracting or repelling effect on u, so that u flows towards high,
respectively low density places of v. In this situation the flow vector of u is
given by

Ju = −d11(u, v)∇u− d12(u, v)∇v

where d11(u, v) > 0 and d12(u, v) ≤ 0, resp. ≥ 0 according as v attracts, resp.
repels u. Similarly, the flow of v is given by

Jv = −d21(u, v)∇u− d22(u, v)∇v

where d22(u, v) > 0 and d21(u, v) ≤ 0, resp. ≥ 0 according as u attracts, resp.
repels v. Then we obtain the reaction-diffusion system

ut = ∇(d11(u, v)∇u + d12(u, v)∇v) + U(u, v)

vt = ∇(d21(u, v)∇u + d22(u, v)∇v) + V (u, v)

}
(1)

where U(u, v) and V (u, v) are the reaction terms. In the particular case

d11 = nun−1, d22 = lvl−1, d12 = d21 = 0, U = vp, V = uq

we obtain the system
ut = ∆(un) + vp

vt = ∆(vl) + uq

}
. (2)
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Note that this system describes the processes of diffusion of heat and burning
in two-component continuous media with nonlinear conductivity and volume
energy release. The functions u and v can thus be treated as temperatures
of interacting components of a combustible mixture [15]. When the cross-
diffusion d12(u, v) obeys to a similar law as d11 and d22, say d12(u, v) =
mvm−1, we obtain the system

ut = ∆(un) + ∆(vm) + vp

vt = ∆(vl) + uq

}
(3)

which concerns the present paper. With an aim of giving more general results,
we consider the case where the reaction terms also depend on t and x.

Section 2 is motivated by paper [5] in which Baras and Kersner showed
that the problem

ut = ∆u + h(x)up

u(x, 0) = u0(x) ≥ 0

}

has no non-negative local weak solution if the initial data satisfies

lim
|x|→+∞

up−1
0 h(x) = +∞,

and any possible non-negative local weak solution blows up at a finite time if

lim
|x|→+∞

up−1
0 h(x)|x|2 = +∞.

We show similar results for a degenerated nonlinear parabolic system with
triangular diffusion matrix.

Section 3 deals with Fujita’s type results. Its aim is not only to generalize
the results in [9] to triangular diffusion matrix systems but also to weaken the
assumptions on the data. Indeed, we require non-negative integrability of the
initial data and of the non-homogeneous forcing terms while [9] requires their
positivity.
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2. Necessary conditions for local and global solvability

Consider the system

(P)





ut(x, t) = ∆(|u|n−1u)±∆(|v|m−1v)

+ f(x, t)|v|p + w1(x, t)

vt(x, t) = ∆(|v|l−1v) + g(x, t)|u|q + w2(x, t)

u(x, 0) = u0(x)

v(x, 0) = v0(x)

in QT = RN × (0, T )

in QT

in RN

in RN

where p, q, m, n, l ≥ 1 and 0 < T ≤ +∞, with the following hypotheses on the
data:

(H1) (0, 0) ≤ (f, g) ∈ Lp′

loc(QT )× Lq′

loc(QT ), where (p′, q′) = ( p
p−1 , q

q−1 ).

(H2) wi ∈ L1(QT ) and
∫

QT
widxdt ≥ 0 (i = 1, 2).

(H3) (u0, v0) ∈ L1(RN )× L1(RN ), with
∫
RN u0dx ≥ 0 and

∫
RN v0dx ≥ 0.

In the sequel, if T = +∞, the domain QT will be denoted by Q.

Definition 1. A pair of functions (u, v) is called a weak solution of prob-
lem (P) in QT if

(i) u, v : QT → R
(ii) (u, v) ∈ Lq

loc(QT )× Lp
loc(QT )

(iii) For any ϕ ∈ D(RN × [0, T ]) vanishing at t = T if T < +∞ or for any
ϕ ∈ D(Q) if T = +∞ one has

∫

QT

(
uϕt +

(|u|n−1u± |v|m−1v
)
∆ϕ + (f |v|p + w1)ϕ

)
dxdt

+
∫

RN

u0(x)ϕ(x, 0) dx = 0(4)
∫

QT

(
vϕt + |v|l−1v∆ϕ + g|u|qϕ + w2ϕ

)
dxdt +

∫

RN

v0(x)ϕ(x, 0) dx = 0.(5)

We attempt to get insight into the relationship between local and global
solvability of problem (P) on the one hand, and the behaviour at infinity of
the data f, g, w1, w2, u0, v0 on the other hand.

In this section we will confine ourselves to the case

f(x, t) = tαF (x)

g(x, t) = tβG(x)
and

w1(x, t) = tγ1W1(x)

w2(x, t) = tγ2W2(x)

where F and G are positive and continuous functions, u0 and v0 are non-
negative and integrable functions. We add the following assumption:
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(H4)





p > max{l, m, l + α, m + α}
q > max{n, n + β}
min{m,n, l} > 1.

2.1 Necessary conditions for local solvability. Before stating our first
result, we need to assume that, for R sufficiently large, the estimates

∫

|x|≤2R

G(x)−
1

q−n dx = o
(
R

2q
q−n

)
(6)

∫

|x|≤2R

F (x)−
1

p−l dx = o
(
R

2p
p−l

)
(7)

∫

|x|≤2R

F (x)−
1

p−m dx = o
(
R

2p
p−m

)
(8)

hold.

Theorem 1. If problem (P) has a non-negative local solution defined in
QT with T < +∞, then the estimates

lim inf
|x|→+∞

u0(x)F(x) ≤ K1

T δ
lim inf
|x|→+∞

v0(x)F(x) ≤ K1

T δ
(9)

lim inf
|x|→+∞

W1(x)F(x) ≤ K2

T 1+γ1+δ
lim inf
|x|→+∞

W2(x)F(x) ≤ K3

T 1+γ2+δ
(10)

hold, where F(x) = F
p′
p (x) G

q′
q (x)

F
p′
p (x)+G

q′
q (x)

and T δ = min
(
T

α+1
p−1 , T

β+1
q−1

)
and the con-

stants K1, K2,K3 will be specified in the proof.

Proof. Let (u, v) be a non-negative weak solution of problem (P) in QT .
For any ϕ ∈ D([0, T ]× RN ) with ϕ ≥ 0 and ϕ(·, T ) ≡ 0 one has

∫

QT

(
uϕt +

(
un ± vm

)
∆ϕ + fvpϕ + w1ϕ

)
dxdt +

∫

RN

u0(x)ϕ(x, 0) dx = 0
∫

QT

(
vϕt + vl∆ϕ + guqϕ + w2ϕ

)
dxdt +

∫

RN

v0(x)ϕ(x, 0) dx = 0.

Then
∫

RN

u0ϕ(0) +
∫

QT

fvpϕ +
∫

QT

w1ϕ ≤
∫

QT

(
u|ϕt|+ (un + vm)(−∆ϕ)+

)

∫

RN

v0ϕ(0) +
∫

QT

guqϕ +
∫

QT

w2ϕ ≤
∫

QT

(
v|ϕt|+ vl(−∆ϕ)+

)
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where ϕ(0) ≡ ϕ(·, 0) and (−∆ϕ)+ = max(0,−∆ϕ). Furthermore, Young’s
inequality gives

∫

QT

u|ϕt| ≤ 1
2

∫

QT

uq(gϕ) + c1

∫

QT

|ϕt|
q

q−1 (gϕ)−
1

q−1

∫

QT

un(−∆ϕ)+ ≤ 1
2

∫

QT

uq(gϕ) + c2

∫

QT

(−∆ϕ)
q

q−n

+ (gϕ)−
1

q−n .

Hence ∫

RN

u0ϕ(0) +
∫

QT

(fvpϕ + w1ϕ)

≤
∫

QT

(
v|ϕt|+ (vl + vm)(−∆ϕ)+

)
+ A(ϕ, g, T )

where
A(ϕ, g, T ) = c1X1(ϕ, g, T ) + c2X2(ϕ, g, T )

with
X1(ϕ, g, T ) =

∫

QT

|ϕt|
q

q−1 (gϕ)−
1

q−1

X2(ϕ, g, T ) =
∫

QT

(−∆ϕ)
q

q−n

+ (gϕ)−
1

q−n .

Similarly, Young’s inequality allows us to obtain
∫

QT

(
v|ϕt|+ (vl + vm)(−∆ϕ)+

) ≤
∫

QT

fvpϕ + B(ϕ, f, T )

where

B(ϕ, f, T ) = c3X3(ϕ, f, T ) + c4X4(ϕ, f, T ) + c5X5(ϕ, f, T )

with
X3(ϕ, f, T ) =

∫

QT

|ϕt|
p

p−1 (fϕ)−
1

p−1

X4(ϕ, f, T ) =
∫

QT

(−∆ϕ)
p

p−l

+ (fϕ)−
l

p−l

X5(ϕ, f, T ) =
∫

QT

(−∆ϕ)
p

p−m

+ (fϕ)−
m

p−m .

Finally, we have ∫

RN

u0ϕ(0) +
∫

QT

w1ϕ ≤
5∑

i=1

ciXi. (11)
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Following the same idea, we show that there are constants di > 0 (i = 1, ..., 5)
so that ∫

RN

v0ϕ(0) +
∫

QT

w2ϕ ≤
5∑

i=1

diXi. (12)

At this stage, the test function ϕ is chosen as

ϕ(x, t) =
[
η
( t

T

)]s

Φ
( x

R

)

where

i) Φ ∈ D(RN ), 0 ≤ Φ ≤ 1, supp Φ ⊂ {1 < |x| < 2} and −∆Φ ≤ Φ

ii) η ∈ D(R+), 0 ≤ η ≤ 1, and η(r) =
{

1 if r ≤ 1
2

0 if r ≥ 1
iii) s = max(p′, q′) and R > 0.

The choice of this test function is inspired by the paper of P. Baras and R.
Kersner [5]. It allows us to obtain interesting estimations connecting the initial
data and the reaction terms. Consequently, the integrals Xi (i = 1, ..., 5) are
convergent. More precisely,

X1 ≤ sq′‖η′‖q′
∞

T q′
T 1− β

q−1

1− β
q−1

∫

RN

Φ
( x

R

)
G(x)−

q′
q dx

=
(q − 1)sq′‖η′‖q′

∞
q − (β + 1)

T−
β+1
q−1

∫

RN

Φ
( x

R

)
G(x)−

q′
q dx

and similarly

X2 ≤ q − n

q − (β + n)
T

q−(β+n)
q−n R−

2q
q−n

∫

RN

Φ
( x

R

)
G(x)−

1
q−n dx

X3 ≤ (p− 1)sp′‖η′‖p′
∞

p− (α + 1)
T−

α+1
p−1

∫

RN

Φ
( x

R

)
F (x)−

p′
p dx

X4 ≤ p− l

p− (α + l)
T

p−(α+l)
p−l R−

2p
p−l

∫

RN

Φ
( x

R

)
F (x)−

1
p−l dx

X5 ≤ p−m

p− (α + m)
T

p−(α+m)
p−m R−

2p
p−m

∫

RN

Φ
( x

R

)
F (x)−

1
p−m dx.

Let

K1 = max
{

c1
(q − 1)sq′‖η′‖q′

∞
q − (β + 1)

, c2
(p− 1)sp′‖η′‖p′

∞
p− (α + 1)

}
.
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In view of (11) and the above estimates we see that∫

RN

u0(x)Φ
( x

R

)
≤ K1

∫

RN

G(x, T )Φ
( x

R

)
+ X2 + X4 + X5 (13)

(T
2 )1+γ1

1 + γ1

∫

RN

W1(x)Φ
( x

R

)
≤ K1

∫

RN

G(x, T )Φ
( x

R

)
+ X2 + X4 + X5 (14)

where
G(x, T ) = F (x)−

p′
p T−

α+1
p−1 + G(x)−

q′
q T−

β+1
q−1 .

Hence,{
inf
|x|>R

u0(x)
G(x, T )

} ∫

RN

G(x, T )Φ
( x

R

)
≤ K1

∫

RN

G(x, T )Φ
( x

R

)
+X2 +X4 +X5.

Finally, using estimates (6) - (8) we have limR→+∞ inf |x|>R
u0(x)
G(x,T ) ≤ C or

lim inf
|x|→+∞

u0(x)F(x) ≤ K1

min
(
T

α+1
p−1 , T

β+1
q−1

) . (15)

The second estimate in (9) and the estimates in (10) can be obtained in the
same manner by setting K2 = (1 + γ1)K121+γ1 and K3 = (1 + γ2)K121+γ2 .
This completes the proof

Consequences.
1. If max{α, β} < −1 and lim inf |x|→+∞ u0(x)F(x) 6= 0, then problem

(P) has no non-negative local solution.
2. If problem (P) has a non-negative global solution, then we have the

implications

min{α, β} > −1 =⇒ lim inf
|x|→+∞

u0(x)F(x) = lim inf
|x|→+∞

v0(x)F(x) = 0

min{α, β, γ1, γ2} > −1 =⇒ lim inf
|x|→+∞

W1(x)F(x) = lim inf
|x|→+∞

W2(x)F(x) = 0.

3. In the limit case min{α, β} = −1, if lim inf |x|→+∞ u0(x)F(x) > K1,
there is no non-negative global solution.

Proof. Assertions 1 and 2 can be seen from (15) by letting T → 0 and
T → +∞, respectively

2.2 Necessary conditions for global solvability. Before stating the main
results of this subsection, we need to introduce some notations and hypotheses.
Namely, let

a = min
{α + 1

p− 1
,
β + 1
q − 1

}
and H = min

{
F

p′
p , G

q′
q , F

1
p−l , F

1
p−m , G

1
q−n

}
.

Further, we assume the hypothesis

(H5) min{α, β} > −1.
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Theorem 2. If problem (P) has a non-negative global solution, then there
exists a constant θ > 0 for which the limits

lim inf
|x|→+∞

u0(x)H(x)|x|aθ and lim inf
|x|→+∞

v0(x)H(x)|x|aθ (16)

are bounded where the real number θ will be specified in the proof.

Proof. Inequality (13) implies that there is a constant C > 0 such that
∫

RN

u0(x)Φ
( x

R

)
≤ CH(R, T )

∫

RN

1
H(x)

Φ
( x

R

)
(17)

where
H(R, T ) =

Tα1

Rβ1
+

Tα2

Rβ2
+

Tα3

Rβ3
+

1
Tα4

+
1

Tα5

with

α1 =
p− (α + l)

p− l

α2 =
p− (α + m)

p−m

α3 =
q − (β + n)

q − n

α4 =
1 + α

p− 1

α5 =
1 + β

q − 1

and

β1 =
2p

p− l

β2 =
2p

p−m

β3 =
2q

q − n
.

Note that under hypotheses (H4) - (H5) all parameters αi and βi are positive.
Now we have to minimize the function H with respect to T . For this one has

∂H
∂T

(R, T ) =
1
T
L(R, T )

where

L(R, T ) = α1
Tα1

Rβ1
+ α2

Tα2

Rβ2
+ α3

Tα3

Rβ3
− α4

1
Tα4

− α5
1

Tα5
. (18)

Then ∂H
∂T (R, T ) = 0 if and only if L(R, T ) = 0. Moreover, it is clear that the

function L is strictly increasing in T > 0 and limT→0+ L(R, T ) = −∞ and
limT→+∞ L(R, T ) = +∞, which imply that for any R > 0 there is a unique
T∗(R) > 0 such that L(R, T∗(R)) = 0. The implicit function theorem asserts
that the function T∗ is smooth in R and

dT∗
dR

(R) = −
∂L
∂R
∂L
∂T

(R, T∗(R)) > 0.
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Hence T∗ is strictly increasing in R and we easily see that limR→+∞ T∗(R) =
+∞. Finally,

∂2H
∂T 2

(R, T∗(R)) = − 1
T 2∗ (R)

L(R, T∗(R)) +
1

T∗(R)
∂L
∂T

(R, T∗(R))

=
1

T∗(R)
∂L
∂T

(R, T∗(R))

> 0

implies that for any fixed R > 0 the function H has a unique minimum at
(R, T∗(R)).

Now we have to determine the asymptotic behaviour of T∗(R) as R → +∞.
Recall that a = min(α4, α5) and that the pair (R, T∗(R)) verifies the identity

α1
Tα1∗ (R)

Rβ1
+ α2

Tα2∗ (R)
Rβ2

+ α3
Tα3∗ (R)

Rβ3
= α4

1
Tα4∗ (R)

+ α5
1

Tα5∗ (R)
.

Then there is an ` > 0 such that

lim
R→+∞

{
α1

Tα1+a
∗ (R)

Rβ1
+ α2

Tα2+a
∗ (R)

Rβ2
+ α3

Tα3+a
∗ (R)

Rβ3

}
= `.

Setting ki = βi

a+αi
(i = 1, 2, 3), θ = min{k1, k2, k3} and Θ =

{
i ∈ {1, 2, 3} :

ki = θ
}
, we have

3∑

i=1

αi

(
T∗(R)
Rki

)a+αi

=
∑

i∈Θ

αi

(
T∗(R)

Rθ

)a+αi

+ ε(R, T ). (19)

Since the functions R → T
αi+a
∗ (R)

Rβi
(i ∈ {1, 2, 3}) are bounded uniformly with

respect to R, we conclude that

lim
R→+∞

∑

i∈Θ

αi

(T∗(R)
Rθ

)a+αi

= ` and lim
R→+∞

ε(R, T ) = 0.

Set
P (X) =

∑

i∈Θ

αiX
a+αi .

It is clear that the function P is strictly increasing and P (0) = 0. Hence

lim
R→+∞

T∗(R)
Rθ

= lim
R→+∞

P−1 ◦ P
(T∗(R)

Rθ

)
= P−1(`) > 0
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because P−1 is continuous, and consequently T∗(R) ∼ P−1(`)Rθ for R large
enough.

Finally, using (17), there is a constant K > 0 such that, for R large
enough, ∫

RN

u0(x)Φ
( x

R

)
≤ K

Raθ

∫

RN

1
H(x)

Φ
( x

R

)
. (20)

Using the fact that supp (Φ) ⊂ {x ∈ RN : 1 < |x| < 2}, we conclude for R
large enough that

{
inf
|x|>R

u0(x)H(x)|x|aθ

} ∫

RN

|x|−aθ

H(x)
Φ

( x

R

)

≤ K

Raθ

∫

RN

|x|aθ|x|−aθ

H(x)
Φ

( x

R

)

≤ (2R)aθK

Raθ

∫

RN

|x|−aθ

H(x)
Φ

( x

R

)
.

Whence the boundedness of lim inf |x|→+∞ u0(x)H(x)|x|aθ is established. The
boundedness of the second limit is similar as above. This achieves the proof

Before stating the last result of this section, we will assume γj > −1 (j =
1, 2) and distinguish the following two hypotheses

(H6) min{α1, α2, α3} > γj + 1

(H7) max{α1, α2, α3} < γj + 1

for j = 1 or j = 2.

Theorem 3. Assume hypotheses (H4) - (H5) and either hypothesis (H6)
or hypothesis (H7) holds. If problem (P) has a non-negative global solution,
then there are constants aj and θj such that the limits

lim inf
|x|→+∞

Wj(x)H(x)|x|ajθj (j = 1, 2) (21)

are bounded.

Proof. As before, inequalities () and () imply that there is a constant
C > 0 such that for j = 1, 2 one has

T γj+1

∫

RN

Wj(x)Φ
( x

R

)
≤ CH(R, T )

∫

RN

1
H(x)

Φ
( x

R

)
. (22)

First, if hypotheses (H4), (H5) and (H6) hold, consider the function
H̃(R, T ) = H(R,T )

T γj+1 . The situation then is similar to that of Theorem 2 with H̃
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instead of H. Following its proof we obtain θj = θ and aj = a + 1 + γj where
a and θ are defined in that proof.

Second, if hypotheses (H4), (H5) and (H7) hold, let θj be the unique
positive real number defined by

min
{
βi + θj(γj + 1− αi) : i ∈ {1, 2, 3}} = (γj + 1 + a)θj .

It follows from (22) that there is a constant C > 0 such that
∫

RN

Wj(x)Φ
( x

R

)
≤ C

R(a+γj+1)θ4,j

∫

RN

1
H(x)

Φ
( x

R

)
.

Proceeding as in the end of the last proof, we show that

lim inf
|x|→+∞

Wj(x)H(x)|x|(a+γj+1)θj (23)

is bounded. This achieves the proof

The next section deals with the non-existence of global (non-trivial) solu-
tions to problem (P) from a different angle: We will present results of Fujita’s
type. These results will take into account the dimension N instead of the
behaviour at infinity of the data and of the non-homogeneous terms. We re-
fer the interested reader to the valuable surveys by Levine [25], Bandle and
Brunner [4] and Deng and Levine [11] for some background.

3. Necessary conditions for global solvability:
Fujita’s type results

The hypotheses considered in this section are (H1) - (H3). In order to simplify
the presentation, we initially set f ≡ g ≡ 1.

The aim of the following lemma is to show that if problem (P) has a
global non-trivial solution (u, v), then neither u nor v is trivial. This result
will be used in Theorems 4 and 5 to show that any non-trivial weak solution
of problem (P) blows up in finite time (under some hypotheses relating the
exponents of the non-linearities and the dimension N).

Lemma 1. Let (u, v) be a weak solution of problem (P) in Q. Then, if
u ≡ 0 or v ≡ 0, one has u ≡ v ≡ 0.

Proof. We show this lemma in a general way in order to use some con-
tained results in the sequel. Let ϕR ∈ D(RN × [0,+∞[) be a non-negative
function such that

ϕR(x, t) = Φλ
( t + |x|2

R

)
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where λ > 1, R > 0 and Φ ∈ D([0, +∞)) is the ”standard cut-off function”,
i.e.

0 ≤ Φ(r) ≤ 1 and Φ(r) =
{

1 if 0 ≤ r ≤ 1
0 if r ≥ 2.

(24)

Then equation (5) gives

∫

Q

ϕR|u|qdxdt + a(R)

≤
∫

Q

(|v| |ϕRt|+ |v|l|∆ϕR|) dxdt

≤
( ∫

Q

|v|pϕRdxdt

) 1
p
( ∫

Q

|ϕRt|
p

p−1 ϕ
− 1

p−1
R dxdt

) p−1
p

+
( ∫

Q

|v|pϕRdxdt

) l
p
( ∫

Q

|∆ϕR|
p

p−l ϕ
− l

p−l

R dxdt

) p−l
p

and (4) gives also

∫

Q

ϕR|v|pdxdt + b(R)

≤
∫

Q

(
|u| |ϕRt|+ |u|n|∆ϕR|+ |v|m|∆ϕR|

)
dxdt

≤
( ∫

Q

|u|qϕRdxdt

) 1
q
( ∫

Q

|ϕRt|
q

q−1 ϕ
− 1

q−1
R dxdt

) q−1
q

+
( ∫

Q

|u|qϕRdxdt

)n
q
( ∫

Q

|∆ϕR|
q

q−n ϕ
− n

q−n

R dxdt

) q−n
q

+
( ∫

Q

|v|pϕRdxdt

)m
p
( ∫

Q

|∆ϕR|
p

p−m ϕ
− m

p−m

R dxdt

) p−m
p

where

a(R) =
∫

RN

v0(x)ϕR(x, 0) dx +
∫

Q

w2(x, t)ϕR(x, t) dxdt

b(R) =
∫

RN

u0(x)ϕR(x, 0) dx +
∫

Q

w1(x, t)ϕR(x, t) dxdt.
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If we set

X(R) =
( ∫

Q

|u|qϕRdxdt

) 1
q

Y (R) =
( ∫

Q

|v|pϕRdxdt

) 1
p

A =
( ∫

Q

|ϕRt|
p

p−1 ϕ
− 1

p−1
R dxdt

) p−1
p

B =
( ∫

Q

|∆ϕR|
p

p−l ϕ
− l

p−l

R dxdt

) p−l
p

C =
( ∫

Q

|ϕRt|
q

q−1 ϕ
− 1

q−1
R dxdt

) q−1
q

D =
( ∫

Q

|∆ϕR|
q

q−n ϕ
− n

q−n

R dxdt

) q−n
q

E =
( ∫

Q

|∆ϕR|
p

p−m ϕ
− m

p−m

R dxdt

) p−m
rp

,

we then have the system of inequalities

Xq(R) + a(R) ≤ AY (R) + BY l(R)

Y p(R) + b(R) ≤ CX(R) + DXn(R) + EY m(R)

}
. (25)

It is easy to see that if λ is selected sufficiently large, then all integrals A, ..., E
are convergent.

On the one hand, if v ≡ 0, then Xq(R) is a bounded and increasing
function of R. Using the monotone convergence theorem, we deduce that |u|q
is in L1(Q) and

lim
R→+∞

(
Xq(R) + a(R)

)
=

∫

Q

|u|qdxdt +
∫

RN

v0(x) dx +
∫

Q

w2(x, t) dxdt

= 0.

Then we have necessarily
∫

Q

|u|qdxdt =
∫

RN

v0(x) dx =
∫

Q

w2(x, t) dxdt = 0,

which implies that u ≡ 0 (and also v0 ≡ 0, w2 ≡ 0) and consequently (u, v) ≡
(0, 0). On the other hand, if u ≡ 0, then there is a constant C0 > 0 such that
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Y p(R) ≤ C0 + EY m(R). Since m < p, there is a constant C1 > 0 such that
Y (R) ≤ C1. Similarly, the function |v|p is in L1(Q). Note that instead of (25)
we have more precisely the system of inequalities

Xq(R) + a(R) ≤ AỸ (R) + BỸ l(R)

Y p(R) + b(R) ≤ CX̃(R) + DX̃n(R) + EỸ m(R)

}
(26)

where

X̃(R) =
( ∫

ΩR

|u|qϕRdxdt

) 1
q

and Ỹ (R) =
( ∫

ΩR

|v|pϕRdxdt

) 1
p

and ΩR =
{
(x, t) ∈ Q : R ≤ t + |x|2 ≤ 2R

}
. Indeed, as before, equation (5)

gives
∫

Q

ϕR|u|qdxdt + a(R)

≤
∫

Q

(|v| |ϕRt|+ |v|l|∆ϕR|
)
dxdt

=
∫

ΩR

(|v| |ϕRt|+ |v|l|∆ϕR|
)
dxdt

≤
( ∫

ΩR

|v|pϕRdxdt

) 1
p
( ∫

ΩR

|ϕRt|
p

p−1 ϕ
− 1

p−1
R dxdt

) p−1
p

+
( ∫

ΩR

|v|pϕRdxdt

) l
p
( ∫

ΩR

|∆ϕR|
p

p−l ϕ
− l

p−l

R dxdt

) p−l
p

.

This implies
Xq(R) + a(R) ≤ AỸ (R) + BỸ l(R).

Similarly, we obtain the second inequality

Y p(R) + b(R) ≤ CX̃(R) + DX̃n(R) + EỸ m(R).

Now we return to system (26). Using the dominated convergence theorem,
we obtain limR→+∞ Ỹ (R) = 0. Hence,

lim
R→+∞

(
Y p(R) + b(R)

)
=

∫

Q

|v|pdxdt +
∫

RN

u0(x) dx +
∫

Q

w1(x, t) dxdt

= 0

which implies, as before, that v ≡ 0 (and also u0 ≡ 0, w1 ≡ 0). This completes
the proof
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The following lemma gives a generalization of Lemma 1.

Lemma 2. Using the same notations as before, if X(R) or Y (R) is
bounded, then u ≡ v ≡ 0.

Proof. If X(R) or Y (R) is bounded, it follows via (25) that X(R) and
Y (R) are bounded. Then (|u|q, |v|p) is in L1(Q)× L1(Q). Finally, using (26)
and the dominated convergence theorem, we obtain the result

Theorem 4. Assume that p > max{m, l} and q > n with 1 < min{m, n, l}.
If one of the conditions

a) p+1
q+1 < min

(
l−1
n−1 , p

n , m
n

)
and N

2 ≤ 1+p
p−n+pq−pn

b) m
n < p+1

q+1 < min
(

l−1
n−1 , p

n

)
and N

2 ≤ p
p−m − pq−1

p−n+pq−pn

c) l−1
n−1 < p+1

q+1 < p
n , p+1

q+1 6= m
n , p+l

q+n > m
n

N
2 ≤ p

p−m − pq−1
p−n+pq−pn

d) l−1
n−1 < p+1

q+1 < p
n , p+1

q+1 6= m
n , p+l

q+n < m
n , N

2 ≤ p(n+q)
pq−nl − pq−1

p−n+pq−pn

is satisfied, then problem (P) has no non-trivial global weak solution.

Proof. Let (u, v) be a non-trivial weak solution of problem (P) and ϕR ∈
D(RN × [0, +∞)) be a non-negative function such that

ϕR(x, t) = Φλ
( t + |x|δ

Rδ

)

where λ > 1, δ > 0, R > 0 and Φ ∈ D([0,+∞)) is the cut-off function defined
before. Following the same method described in the previous proof, we deduce
the two systems (25) and (26). We precise that the different terms appearing
in those two systems depend on δ. Using the fact that limR→+∞ a(R) ≥ 0
and limR→+∞ b(R) ≥ 0 and applying Young’s inequality in system (25) one
has, for some 0 < ε < 1

(1− ε)Y pq ≤ c1,ε(ACq)
pq

pq−1 + c2,ε(BCq)
pq

pq−l

+ c3,ε(Eq)
p

p−m + c4,ε(AnDq)
pq

pq−n + c5,ε(BnDq)
pq

pq−nl

(1− ε)Xpq ≤ c′1,ε(A
pC)

pq
pq−1 + c′2,ε(A

pD)
pq

pq−n + c′3,ε(B
pCl)

pq
pq−l

+ c′4,ε(B
pDl)

pq
pq−nl + c′5,εA

pE
p

p−m + c′6,εB
pE

lp
p−m .

At this stage we introduce the scaled variables τ = R−δt and y = R−1x. It is
easy to check that for R large enough

A ≤ c1R
α1 , B ≤ c2R

α2 , C ≤ c3R
α3 , D ≤ c4R

α4 , E ≤ c5R
α5
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where
α1 =

(
N + δ − δp

p− 1

)p− 1
p

α2 =
(
N + δ − 2p

p− l

)p− l

p

α3 =
(
N + δ − δq

q − 1

)q − 1
q

α4 =
(
N + δ − 2q

q − n

)q − n

q

α5 =
(
N + δ − 2p

p−m

)p−m

p
.

Finally, we have the system of inequalities

(1− ε)Y (R)pq ≤ cε

{
Rr1(δ) + Rr2(δ) + Rr3(δ) + Rr4(δ) + Rr5(δ)

}

(1− ε)Xpq ≤ c′ε
{

Rs1(δ) + Rs2(δ) + Rs3(δ) + Rs4(δ) + Rs5(δ) + Rs6(δ)
}





(27)
where

r1(δ) = Nq +
q(−δ − δp)

pq − 1

r2(δ) = Nq +
q(−lδ − 2p)

pq − l

r3(δ) = Nq +
q(−δn + δpq − δpn− 2pq)

pq − n

r4(δ) = Nq +
q(δpq − δnl − 2pn− 2pq)

pq − nl

r5(δ) = Nq +
q(δp− δm− 2p)

p−m

s1(δ) = Np +
p(−δq − δ)

pq − 1

s2(δ) = Np +
p(−δn− 2q)

pq − n

s3(δ) = Np +
p(δpq − lqδ − lδ − 2pq)

pq − l

s4(δ) = Np +
p(δpq − δnl − 2pq − 2lq)

pq − nl

s5(δ) = Np− 2
p

p−m

s6(δ) = Np +
p(δp− δm− 2l − 2p + 2m)

p−m
.
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The parameter δ is fixed now such that r1(δ) = r3(δ), i.e.

δ = δ1 = 2
pq − 1

p(q + 1)− n(p + 1)
with p(q + 1)− n(p + 1) > 0.

Therefore,

r1(δ1)− r2(δ1) = 2
(n + pn + q − lq − l − p)pq

(pq − l)(−p + n− pq + pn)

r1(δ1)− r4(δ1) = −2
(n + pn + q − lq − l − p)npq

(−p + n− pq + pn)(−pq + nl)

r1(δ1)− r5(δ1) = 2
(n + pn−m− qm)pq

(−p + n− pq + pn)(p−m)
.

Note that if p+1
q+1 < min

{
l−1
n−1 , p

n , m
n

}
(case (a) in Theorem 1), then r1(δ1) =

max1≤i≤5 ri(δ1). In this case, if N
2 ≤ (1+ p)(p−n+ pq−pn), then r1(δ1) ≤ 0

and there is a constant C such that

Y (R)pq =
( ∫

Q

|v|pϕRdxdt

)q

=
( ∫

QR

|v|pϕRdxdt

)q

≤ C

where QR = {(x, t) ∈ Q : 0 ≤ t + |x|δ1 ≤ 2Rδ1}. According to Lemma 1, we
deduce that u ≡ v ≡ 0. This contradicts our assumption. Assertions b) - d)
can be showed in the same manner

Theorem 5. Assume that p > max{m, l} and q > n, with 1 < min{m,n, l}.
If one of the conditions

a) (m + 1)− l > p+1
q+1 > max

{
l−1
n−1 , l

q

}
, N

2 ≤ q+1
pq+q−ql−l

b) p+1
q+1 > max

{
l−1
n−1 , l

q , (m + 1)− l
}
, N

2 ≤ pq−1
−pq−q+ql+l + l+p−m

p−m

c) l
q < p+1

q+1 < min
{

l−1
n−1 , (m + 1)− l

}
, N

2 ≤ pq−1
−pq−q+ql+l + q(p+l)

pq−nl

d) l−1
n−1 > p+1

q+1 > max
{

l
q , (m + 1)− l

}
, N

2 ≤ min
{
N1, N2

}

is satisfied where

N1 =
pq − 1

−pq − q + ql + l
+

q(p + l)
pq − nl

N2 =
pq − 1

−pq − q + ql + l
+

l + p−m

p−m
,

then problem (P) has no non-trivial global weak solution.
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Proof. We follow the proof of Theorem 4 and choose the parameter δ
such that s1(δ) = s3(δ), i.e.

δ = δ2 =
2(pq − 1)

q(p + 1)− l(q + 1)
with q(p + 1)− l(q + 1) > 0.

If

(m + 1)− l > (p + 1)(q + 1) > max
{

(l − 1)(n− 1),
l

q

}

(case (a) in Theorem 2), then s1(δ2) = max1≤i≤6 si(δ2). In this case, if N
2 ≤

(q + 1)(pq + q − ql − l), then s1(δ2) ≤ 0 and there is a constant C such that

Xpq(R) =
( ∫

Q

|u|qϕRdxdt

)p

=
( ∫

QR

|u|qϕRdxdt

)p

≤ C.

The result of Lemma 1 completes the proof. Assertions b) - d) can be proved
similarly

Comments.

1) Note that in Section 3 the positivity of the solutions of problem (P)
is not guaranteed even if the data are positive. It is then natural that the
initial data u0(x) and v0(x) may change signs as well as the non-homogeneous
terms w1(x, t) and w2(x, t). Now, our hypotheses are weaker than those in
the literature, i.e. the data may change signs but must have non-negative
integral. This difficulty was first solved in the scalar case in [22].

2) We are now able to treat the case where f ≥ 0, g ≥ 0, f ∼ tγ1 |x|θ1 and
g ∼ tγ2 |x|θ2 for t and |x| large enough. A slight change in the proof (Theorem
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4 and Theorem 5) shows that we have systems (25) - (26) with

X(R) =
( ∫

Q

|u|qϕRg dxdt

) 1
q

Y (R) =
( ∫

Q

|v|pϕRf dxdt

) 1
p

A =
( ∫

Q

|ϕRt|
p

p−1 (ϕRf)−
1

p−1 dxdt

) p−1
p

B =
( ∫

Q

|∆ϕR|
p

p−l (ϕRf)−
l

p−l dxdt

) p−l
p

C =
( ∫

Q

|ϕRt|
q

q−1 (ϕRg)−
1

q−1 dxdt

) q−1
q

D =
( ∫

Q

|∆ϕR|
q

q−n (ϕRg)−
n

q−n dxdt

) q−n
q

E =
( ∫

Q

|∆ϕR|
p

p−m (ϕRf)−
m

p−m dxdt

) p−m
p

.

This naturally changes the αi (i = 1, ..., 5) into

α1 =
(
N + δ − δp

p− 1
) + β1

)p− 1
p

α2 =
(
N + δ − 2p

p− l
+ β2

)p− l

p

α3 =
(
N + δ − δq

q − 1
+ β3

)q − 1
q

α4 =
(
N + δ − 2q

q − n
+ β4

)q − n

q

α5 =
(
N + δ − 2p

p−m
+ β5

)p−m

p

where

β1 = −θ1 + γ1δ

p− 1

β2 = −l
θ1 + γ1δ

p− l

β3 = −θ2 + γ2δ

q − 1

β4 = −n
θ2 + γ2δ

q − n

β5 = −m
θ1 + γ1δ

p−m
.

3) This work can be easily generalized to higher order systems with tri-
angular diffusion matrices under the same type of hypotheses.

4) The method described above can also be used for the more general
system

ut(x, t) = |x|α{
(−∆)

α1
2 (ϕ(u)) + (−∆)

α2
2 (ψ(v))

}
+ f(x, t)k(u) + w1(x, t)

vt(x, t) = |x|β(−∆)
α3
2 (χ(v)) + g(x, t)l(v) + w2(x, t)

}
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where −(−∆)
αi
2 is the fractional power of the Laplacian. A suitable choice of

the functions ϕ,ψ, χ are required.

5) If parabolic problem (P) is replaced by the hyperbolic one, i.e. (ut, vt)
is replaced by (utt, vtt), our study remains valid. The non-negativity assump-
tions on (u0, v0) are set on (u0t

, v0t
) and the test function changes slightly;

for example, ϕR(x, t) = Φλ
( t2+|x|2

R

)
with λ >> 1.
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