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Abstract. We lay the foundations of a mathematical theory of homogenization
structures and show how the latter arises in the homogenization of partial differen-
tial equations. We find out that the concept of a homogenization structure turns
out to be exactly the right tool that is needed to systematically extend homogeniza-
tion theory beyond the classical periodic setting. This permits to work out various
outstanding nonperiodic homogenization problems that were out of reach till then
for lack of an appropriate mathematical framework. The classical Gelfand represen-
tation theory is one of our main tools and our basic approach is an adaptation of
the two-scale convergence method.
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1. Introduction

The behaviour of a medium depends essentially on the manner in which the
latter is structured. This is true of inhomogeneous media in physics, contin-
uum mechanics, chemistry, biology, etc, and even of human societies from var-
ious points of view such as health, economics, etc. One branch of mathematics
that specializes in studying behaviours is homogenization theory in its broad-
est interpretation (see, e.g., [3, 5, 12, 20, 21, 34 - 37]). Generally speaking,
homogenization theory deals with inhomogeneous media governed by partial
differential equations whose coefficients are of the form aα(x, x

ε ) (x ∈ Ω) where
ε > 0, Ω is a bounded open set in RN representing a sample of the medium
under consideration, and aα is a real or complex function (x, y) → aα(x, y)
on Ω × RN , the properties of the medium being described by means of the
finite family {aα} (for example, aα are the elasticity coefficients of an inho-
mogeneous elastic solid). The aim is to pass to the limit in the equation (or
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system of equations) when ε → 0, the main result sought being the so-called
homogenized equation (or system) which gives the effective (or macroscopic)
behaviour of the medium. However, in general such an undertaking is hope-
less without further information on the behaviour, in y = (y1, . . . , yN ) ∈ RN

(x arbitrarily fixed in Ω) of the family {aα}. In other words, we have the
need to require the family {aα} to be suitably structured in y ∈ RN . The
classical case is when the medium is assumed to have a periodic structure,
that is, when for any fixed x ∈ Ω the functions aα(x, ·) (α ranging over a
finite set) are periodic (with the same group of periods). Such an assump-
tion, still termed a periodicity hypothesis, sends back to a well known powerful
theory, namely classical periodic homogenization theory for which there is a
huge bibliography (see, e.g., [4, 5, 14, 36, 37], and especially the bibliogra-
phy of [14]). However, there seems to be no doubt that for the greater part
of inhomogeneous media the right structure hypothesis is far from being the
periodicity hypothesis (see Subsection 5.3). Unfortunately, except the case
of almost periodic homogenization problems (see, e.g., [13, 22, 23, 27, 34]),
a great number of non-stochastic homogenization problems beyond the pe-
riodic setting remains unsolved. The real reason for it is that there is lack
of an appropriate mathematical framework for the study of non-stochactic
non-periodic homogenization problems.

Though the use of the word structure in the literature of homogenization
goes back to the seventies of last century [5], the common understanding of
terms such as periodic structure, almost periodic structure, etc., has remained
strictly intuitive till then. This is a serious gap in homogenization theory in
so far as, by all appearance, the development of the said theory beyond the
beaten track of the periodic setting depends essentially on the way the word
structure is understood from the mathematical point of view.

In this paper we assign a self-contained mathematical meaning to the
word structure in the context of homogenization. We call a homogenization
structure the mathematical tool thus constructed. We lay the foundations of
a mathematical theory of homogenization structures and show how it arises
in the homogenization of partial differential equations. Of course, all that
requires new tools among which are the notion of a homogenization algebra
and the underlying concept of mean value.

It should be mentioned that the use of so-called homogenization algebras
goes back to [20] and [38] under the names of algebras with mean values and
ergodic algebras. However, the present paper seems to be the first work in
which systematic utilization of such algebras leads, be means of the Gelfand
representation theory and two-scale convergence, to a general mathematical
framework on the model of the classical periodic homogenization theory. In-
deed, the new homogenization context proposed in this work is framed in such
a way that there is a total analogy between the results obtained here and those
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provided by periodic homogenization theory, at least as far as elliptic partial
differential equations are concerned. Also, attention is drawn to the paper
of Bourgeat et al. [12] in which stochastic two-scale mean convergence is in-
troduced and used for the first time. The general approach presented here is
quite likely to inspire a new limiting process generalizing stochastic two-scale
mean convergence.

The remaining sections of this paper is framed as follows. Section 2 is de-
voted to the study of homogenization algebras. The study of homogeinization
structures proper begins with Section 3, where among many other things a bi-
jective correspondence between homogenization algebras and homogenization
structures is established. The basic theory of homogenization structures con-
tinues in Section 4 with the study of Σ-convergence following the direct line
of two-scale convergence [2]. Section 5 is devoted to drawing attention to the
close connection between the theory of homogenization structures and that of
partial differential equations. Specifically, in Section 5 we apply some of the
preceding results to the homogenization of a second order linear elliptic equa-
tion beyond the classical periodic setting. The usual periodicity hypothesis
is here replaced by an abstract hypothesis covering various concrete structure
hypotheses. Finally, by way of illustration, a few concrete cases are studied.

Except where otherwise stated, we will be concerned with vector spaces
over C (the set of complex numbers) and with scalar functions assuming val-
ues in C. For basic concepts and notation concerning integration theory
we refer to [7, 8] (see also [17]). If X is a locally compact space and F
is a Banach space, then we use C(X;F ) and B(X; F ) to denote the space
of all continuous mappings of X into F and the space of those functions
in C(X; F ) that are bounded, respectively. It will always be assumed that
B(X; F ) is equipped with the supremum norm ‖u‖∞ = supx∈X ‖u(x)‖ (u ∈
B(X; F )), where ‖ · ‖ denotes the norm on F . For shortness we will write
C(X) = C(X;C) and B(X) = B(X;C). Likewise Lp(X) = Lp(X;C) and
Lp

loc(X) = Lp
loc(X;C) (1 ≤ p ≤ +∞) where X is assumed to be provided

with a positive Radon measure. In this connection RN (the N -dimensional
numerical space) and its open sets are each provided with the Lebesgue mea-
sure dx = dx1 · · · dxN . Points in RN are denoted by x = (x1, ..., xN ) or
y = (y1, ..., yN ) which we sometimes express by writing RN

x or RN
y in place of

RN .

The concept of a homogenization structure turns out to be exactly the
right tool that is needed to systematically extend homogenization theory be-
yond the classical periodic setting. The author hopes that the present paper
will encourage the study, in the framework of homogenization, of those phys-
ical problems whose natural setting is reasonably excluded from the usual
scope of periodic homogenization.
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2. Homogenization algebras

We begin by introducing an appropriate notion of mean value on RN
y (1 ≤

N ∈ N).

2.1 Mean value on RNy . First of all, a function u ∈ B(RN
y ) is said to be

ponderable if there exists a complex number M(u) such that uε → M(u) in
L∞(RN

x )-weak* as ε → 0, where

uε(x) = u
(

x
ε

)
(x ∈ RN ). (2.1)

We denote by Π∞(RN
y ) or simply Π∞ the set of all functions u ∈ B(RN

y ) that
are ponderable. It is an easy exercise to verify that Π∞ is a Banach space
under the supremum norm. Furthermore, the notion of ponderable functions
yields a mapping M : Π∞ → C whose main properties are summarized below
(see [28]):

(1) M is a positive continuous linear form on Π∞ with M(1) = 1.
(2) M is translation invariant, i.e. if u ∈ Π∞, then τhu ∈ Π∞ and

M(τhu) = M(u) for all h ∈ RN where τhu(y) = u(y − h) (y ∈ RN ).
This leads to the following

Definition 2.1. The linear form M : Π∞ → C is called the mean value
on RN

y , and the complex number M(u) is called the mean of u ∈ Π∞.

We are now in a position to frame the notion of a homogenization algebra
on RN

y .

2.2 Generalities on homogenization algebras. We begin with the fol-
lowing definition.

Definition 2.2. By a homogenization algebra on RN
y is meant any closed

subalgebra A of B(RN
y ) with the following properties:

(HA)1 A with the supremum norm is separable.
(HA)2 A contains the constants.
(HA)3 If u ∈ A, then u ∈ A (u the conjugate of u).
(HA)4 A ⊂ Π∞.

For brevity we will often write H-algebra in place of homogenization alge-
bra. We shall always assume that an H-algebra A on RN

y is equipped with the
supremum norm. It is clear that A is then a commutative C∗-algebra with
identity. The spectrum of A is denoted by ∆(A), ∆(A) being provided with
the Gelfand topology, i.e. the relative weak ∗ topology on A′ (topological dual
of A). Thus topologized, ∆(A) is a metrizable compact space (the compacity
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is a classical result, see, e.g., [24: p. 71], and the metrizability follows by
property (HA)1). We denote by G the Gelfand transformation on A, that is
the mapping G : A → C(∆(A)) such that if u ∈ A, then G(u)(s) = 〈s, u〉 for
s ∈ ∆(A), where the brackets denote the duality between A′ and A. As is
classically known (see, e.g., [24: p. 277] and [15: p. 482]), G is an isometric
isomorphism of the C∗-algebra A onto the C∗-algebra C(∆(A)).

The appropriate Radon measure on ∆(A) will be the so-called M -measure
for A, denoted below by β.

Proposition2.1. There exists a unique Radon measure β on ∆(A) such
that

M(u) =
∫

∆(A)

G(u)(s) dβ(s) (2.2)

for all u ∈ A. Furthermore, β is positive and of total mass 1.

Proof. The mapping ϕ → M(G−1(ϕ)), ϕ ∈ C(∆(A)), is a continuous
linear form on C(∆(A)) and so there is a Radon measure β on ∆(A) satisfying
(2.2) for u ∈ A. Furthermore, β is positive (since M is positive and G−1 is
order preserving) and of total mass 1. The unicity of β being evident, the
proof is complete

There is no serious difficulty in proving the next useful

Proposition 2.2. Let 0 < p < +∞. For u ∈ A, we have |u|p ∈ A with

G(|u|p) = |G(u)|p and M(|u|p) =
∫

∆(A)

|G(u)(s)|pdβ(s).

We present next a few examples of H-algebras.

Example 2.1. Let S be a network in RN , i.e. S is a discrete subgroup
of RN of rank N (such an S is still called a réseau, see [16: p. 111] and [9:
Chapter VII/§1]). Let PS(RN

y ) = {Ψ ∈ C(RN
y ) : Ψ is S-periodic}, where by Ψ

to be S-periodic we mean that for each k ∈ S we have Ψ(y +k) = Ψ(y) for all
y ∈ RN . It is easy to check that PS(RN

y ) is an H-algebra on RN
y . Here we have

M(u) = 1
meas(Y )

∫
Y

u(y) dy (u ∈ PS(RN
y )), where Y is a closed parallelepiped

in RN
y centered at the origin of RN (see [27]).

Remark 2.1. It is customary to say “u is Y -periodic” in place of “u is
S-periodic”. But that is a detail.

Example 2.2. Let AP (RN
y ) be the space of all almost periodic continuous

complex functions on RN
y (see [19: Chapter 5] and [24: Chapter 10]). Let R

be a countable subgroup of RN (being not necessarily a discrete subgroup of
RN ). Let APR(RN

y ) = {ψ ∈ AP (RN
y ) : Sp(ψ) ⊂ R} with Sp(ψ) = {k ∈ RN :

m(γkψ) 6= 0}, where γk(y) = exp(2iπk · y), m is the mean value for AP (RN ).
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The space APR(RN
y ) is an H-algebra on RN

y (see [27]). In the particular case
when R is a network in RN , we have APR(RN

y ) = PR∗(RN
y ) (Example 2.1),

where R∗ = {k ∈ RN : k · y ∈ Z for any y ∈ R} [9: Chapter VIII/p. 7].

Remark 2.2. We have AP (RN ) ⊂ Π∞ with M(u) = m(u) for u ∈
AP (RN ) (see [28]).

Example 2.3. Let B∞(RN
y ) be the space of all u ∈ C(RN

y ) with lim|y|→∞ u(y) =
ζ ∈ C (ζ depending on u), where |y| denotes the Euclidean norm of y in RN .
This is an H-algebra. Indeed, properties (HA)2 and (HA)3 are evident, prop-
erty (HA)1 follows by classical arguments (see [9: Chapter X/p.25] and [9:
Chapter IX/p.18]) and property (HA)4 follows by [28: Proposition 3.3 and
Theorem 4.2].

Example 2.4. Let R be as in Example 2.2. We define B∞,R(RN
y ) to

be the closure in B(RN
y ) of the space of all finite sums

∑
finite ϕiui with

ϕi ∈ B∞(RN
y ) and ui ∈ APR(RN

y ). The space B∞,R(RN
y ) is an H-algebra on

RN
y (use [28: Example 3.4 and Theorem 4.2]).

Remark 2.3. B∞,R(RN
y ) coincides with the closure in B(RN

y ) of the space
of all finite sums

∑
k∈F ϕkγk with ϕk ∈ B∞(RN

y ), γk defined in Example 2.2
and F ranging over the finite subsets of R.

2.3 Basic spaces attached to an H-algebra. In this subsection we present
two basic spaces associated to a given H-algebra. In what follows, A denotes
an H-algebra on RN

y .

The space Xp
A(RN

y ). Let 1 ≤ p < +∞. We first introduce the space Ξp

of all u ∈ Lp
loc(RN

y ) for which the sequence (uε)0<ε≤1 is bounded in Lp
loc(RN

x )
with uε given by (2.1). This is clearly a vector subspace of Lp

loc(RN
y ). By

letting

‖u‖Ξp = sup
0<ε≤1

( ∫

BN

|u(x
ε )|pdx

)1/p

(u ∈ Ξp)

where BN is the open unit ball of RN
x , we define a norm under which Ξp is a

Banach space. This being so, we define Xp
A(RN

y ) (or simply Xp
A, or even Xp

when there is no danger of confusion) to be the closure of A in Ξp. We provide
Xp

A with the Ξp-norm, which makes it a Banach space.
The following propositions and corollaries can be proved exactly as in [27]

(see [27: Proposition 2.7, Theorem 2.1 and its corollaries]).

Proposition 2.3. The mean value M , viewed as defined on A, extends
by continuity to a (unique) continuous linear form (still denoted by M) on
Xp

A. Furthermore, given u ∈ Xp
A and a fixed bounded open set Ω in RN

x , we
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have uε → M(u) in Lp(Ω) weak as ε → 0, where uε is considered as defined
on Ω.

Proposition 2.4. The Gelfand transformation G : A → C(∆(A)) extends
by continuity to a (unique) continuous linear mapping, still denoted by G, of
Xp

A into Lp(∆(A)).

The mapping G : Xp
A → Lp(∆(A)) derived from Proposition 2.4 is referred

to as the canonical mapping of Xp
A into Lp(∆(A)). It is important to note that

(2.2) holds for u ∈ Xp
A.

Proposition 2.4 has the following two important corollaries (proceed as in
[27]).

Corollary 2.1. Let 1 < p, q < +∞ with 1
p + 1

q = 1
r ≤ 1. If u ∈ Xp = Xp

A

and v ∈ Xq, then uv ∈ Xr and G(uv) = G(u)G(v).

Corollary 2.2. The following assertions are true:

(i) If u ∈ Xp, then u ∈ Xp and G(u) = G(u).
(ii) If u ∈ Xp, then |u|p ∈ X1 and G(|u|p) = |G(u)|p.
(iii) If Ψ ∈ A and u ∈ Xp, then Ψu ∈ Xp and G(Ψ)G(u) = G(Ψu).
(iv) If u ∈ X1 and u ≥ 0 a.e., then G(u) ≥ 0 a.e.
(v) If u ∈ X1 ∩ L∞, then G(u) ∈ L∞(∆(A)) and ‖G(u)‖L∞(∆(A)) ≤

‖u‖L∞ .

The space H1
#(∆(A)). The aim here is to construct a Sobolev-type space

generalizing the space

H1
#(Y ) =

{
w ∈ H1(Y ) : w is Y -periodic and

∫
Y

w(y) dy = 0
}

(Y as in Example 2.1) of the periodic homogenization theory. First, given an
integer m ≥ 1, let

Am =
{

Ψ ∈ A ∩ Cm(RN
y ) : Dα

y Ψ ∈ A for |α| ≤ m
}

where Dα
y Ψ = ∂|α|Ψ

∂y
α1
1 ···∂y

αN
N

. Endowed with the norm ‖Ψ‖m = sup|α|≤m ‖Dα
y Ψ‖∞,

Am is a Banach space. Furthermore, let A∞ = ∩m≥1A
m. We provide A∞

with the locally convex topology defined by the family of norms ‖·‖m (m ≥ 1),
which makes it a Fréchet space (to show this is a routine exercise). Finally,
we put

D(∆(A)) =
{

ϕ ∈ C(∆(A)) : G−1(ϕ) ∈ A∞
}

Dm(∆(A)) =
{

ϕ ∈ C(∆(A)) : G−1(ϕ) ∈ Am
}

(1 ≤ m ∈ N).
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Definition 2.3. The mapping ∂i = G ◦ ∂
∂yi

◦ G−1 (usual composition) of
D1(∆(A)) into C(∆(A)) is called the partial derivative of index i (1 ≤ i ≤ N)
on ∆(A). The function ∂iϕ ∈ C(∆(A)) is called the partial derivative of index
i of ϕ ∈ D1(∆(A)).

More generally, ∂α = G ◦ Dα
y ◦ G−1 is the partial derivative of index

α ∈ NN on ∆(A). On providing Dm(∆(A)) (m ≥ 1) with the norm ‖ϕ‖m =
sup|α|≤m ‖∂αϕ‖∞ and D(∆(A)) with the locally convex topology defined by
the family of norms ‖ · ‖m (m ≥ 1), we easily see that Dm(∆(A)) is a
Banach space and D(∆(A)) is a Fréchet space and that, furthermore, G con-
sidered as defined on Am is an isometric isomorphism of Am onto Dm(∆(A)).
The topological dual of D(∆(A)), denoted by D′(∆(A)), is endowed with the
strong dual topology. By a distribution on ∆(A) we shall mean an element
of D′(∆(A)). The derivative of index i (1 ≤ i ≤ N) of T ∈ D′(∆(A)) is de-
fined to be the distribution ∂iT on ∆(A) given by 〈∂iT, ϕ〉 = −〈T, ∂iϕ〉 (ϕ ∈
D(∆(A))). The transformation T → ∂iT maps continuously and linearly
D′(∆(A)) into itself.

Before we proceed any further, let us point out the following fundamental

Proposition 2.5. Let ϕ ∈ Dm(∆(A)) (m ≥ 1). For any multi-index α
with 1 ≤ |α| ≤ m,

∫
∆(A)

∂αϕ(s) dβ(s) = 0.

Proof. The proof in [27: Proposition 4.2] carries over mutatis mutandis
to the present general context

In the sequel we assume that A∞ is dense in A (this amounts to saying
that D(∆(A)) is dense in C(∆(A))), as will always be the case in practice.
Then we see immediately that we may identify a function u ∈ L1(∆(A)) with
the distribution

Tu ∈ D′(∆(A)), 〈Tu, ϕ〉 =
∫

∆(A)

u(s)ϕ(s) dβ(s)
(
ϕ ∈ D(∆(A))

)
.

Hence Lp(∆(A)) ⊂ D′(∆(A)) with continuous embedding, 1 ≤ p ≤ +∞.
Consequently, we may define

H1(∆(A)) =
{

u ∈ L2(∆(A)) : ∂iu ∈ L2(∆(A)) (1 ≤ i ≤ N)
}

.

This is a Hilbert space with the norm

‖u‖H1(∆(A)) =
(
‖u‖2L2(∆(A)) +

N∑

i=1

‖∂iu‖2L2(∆(A))

)1/2

.
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However, in practice, instead of H1(∆(A)) we will consider its closed
subspace

H1(∆(A))/C =
{

u ∈ H1(∆(A))
∣∣∣
∫
∆(A)

u dβ = 0
}

equipped with the seminorm

‖u‖H1(∆(A))/C =
( N∑

i=1

‖∂iu‖2L2(∆(A))

)1/2

.

So topologized, H1(∆(A))/C is a pre-Hilbert space which is in general non-
separated and non-complete (see [27: Proposition 4.4]).

Definition 2.4. We define H1
#(∆(A)) as separated completion of H1(∆(A))/C,

and J to be the canonical mapping of H1(∆(A))/C into H1
#(∆(A)) (see [10:

Chapter II,§3, no7], [11: Chapter I, §1, no4] and [17: pp. 61 - 62]).

Remark 2.4. H1
#(∆(A)) is a Hilbert space and the following classical

properties hold:

1) J is linear

2) J(H1(∆(A))/C) is dense in H1
#(∆(A))

3) ‖J(u)‖H1
#(∆(A)) = ‖u‖H1(∆(A))/C

(
u ∈ H1(∆(A))/C

)

4) If F is a Banach space and if l is a continuous linear mapping of
H1(∆(A))/C into F , then there exists a unique continuous linear mapping L
of H1

#(∆(A)) into F such that l = L ◦ J .

By this remark we get at once the next

Proposition 2.6. For any given index i (1 ≤ i ≤ N), let the distri-
bution derivative ∂i be viewed as a mapping of H1(∆(A))/C into L2(∆(A)).
Then there exists a unique continuous linear mapping, still denoted by ∂i,
of H1

#(∆(A)) into L2(∆(A)) such that ∂iJ(v) = ∂iv for v ∈ H1(∆(A))/C.
Furthermore,

‖u‖H1
#(∆(A)) =

( N∑

i=1

‖∂iu‖2L2(∆(A))

)1/2

for u ∈ H1
#(∆(A)).



82 G. Nguetseng

3. Homogenization structures

3.1 Definitions and connection with H-algebras. We start with the
following preliminary notion.

Definition 3.1. By a structural representation on RN
y is meant any subset

Γ of B(RN
y ) with the following properties:

(HS)1 Γ is a group under multiplication in B(RN
y ).

(HS)2 Γ is countable.

(HS)3 If γ ∈ Γ, then γ ∈ Γ.

(HS)4 Γ ⊂ Π∞.

Now, in the collection of all structural representations on RN
y we consider

the binary relation ∼ defined by

Γ ∼ Γ′ ⇐⇒ CLS(Γ) = CLS(Γ′)

where CLS(Γ) denotes the closed vector subspace of B(RN
y ) spanned by Γ.

This is evidently an equivalence relation.

Definition 3.2. Every equivalence class modulo ∼ is called a homoge-
nization structure on RN

y .

For brevity we will sometimes write H-structure instead of homogenization
structure. If Σ is an H-structure on RN

y , by a representation of Σ is understood
any equivalence class representative Γ ∈ Σ. We then say that Σ is represented
by Γ. Reciprocally, for any structural representation Γ on RN

y there exists one
and only one H-structure on RN

y of which Γ is a representation.

We denote by HS the collection of all H-structures on RN
y and by HA the

collection of all H-algebras on RN
y . Our next purpose is to establish a bijective

correspondence between HS and HA. Before we can do this, however, we
require the following

Lemma 3.1. Let A ∈ HA and denote by reg (A) the multiplicative group
of all regular (or invertible) elements of A. Then reg (A) is total in A.

Proof. Since reg [C(∆(A))] = G(reg (A)), we see immediately that the
lemma is proved if we can check that reg [C(∆(A))] is total in C(∆(A)). But
this follows by the Stone-Weierstrass theorem

We turn now to the proof of the claimed result.

Theorem 3.1. For each Σ ∈ HS, let J (Σ) = CLS(Γ), where Γ is a
representation of Σ. Then:
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(i) J (Σ) is an H-algebra on RN
y depending only on Σ (and not on the

chosen representation Γ of Σ).

(ii) The mapping Σ → J (Σ) is a bijection of HS onto HA.

Proof. Let Σ ∈ HS. Fix freely any Γ ∈ Σ. It is an easy task to show
that the set J (Σ) = CLS(Γ) is an H-algebra on RN

y that depends only on Σ
and not on the chosen Γ ∈ Σ. This yields a mapping Σ → J (Σ) of HS into
HA which is clearly injective.

Only the surjectivity remains to be shown. Fix freely any A ∈ HA.
Consider reg (A) (see Lemma 3.1) with the metric µ(u, v) = ‖u− v‖∞ (u, v ∈
reg (A)). According to property (HA)1 (Definition 2.2), reg (A) is separable.
So, let R be a dense countable set in reg (A), and let R = {u : u ∈ R} ⊂
reg (A)). Finally, define Γ to be the set of all γ ∈ reg (A) of the form γ =
ϕα1

1 ϕα2
2 · · ·ϕαn

n (where the integer n ≥ 1 depends on γ) with αi ∈ Z and ϕi ∈
R∪R for 1 ≤ i ≤ n. It is easily checked that Γ is a structural representation
on RN

y , that Γ is dense in reg (A) and thus is total in A, according to Lemma
3.1. Consequently, denoting by Σ the (unique) H-structure on RN

y represented
by Γ, we have A = J (Σ) and so the surjectivity is established

Definition 3.3. The H-algebra J (Σ) is called the image of the H-structure
Σ on RN

y .

3.2 Some examples of H-structures. In this subsection we present some
fundamental examples of H-structures on RN

y .

Example 3.1 (The trivial H-structure Σ0). Let Γ be the set of all con-
stant mappings γ : RN

y → C assuming values in Q∗ (the non-zero rationals).
The set Γ is a structural representation on RN

y . By the trivial H-structure on
RN

y is meant the H-structure Σ0 on RN
y represented by Γ. We have J (Σ0) = C

(the constant complex functions on RN
y ).

Example 3.2 (Periodic H-structures). Let R be a network in RN
y . Let

Γ = {γk : k ∈ R} where γk(y) = exp(2iπk · y) (y ∈ RN ). The set Γ is a
structural representation on RN

y . The H-structure on RN
y represented by Γ is

denoted by ΣR and referred to as the periodic H-structure represented by R.
We have J (ΣR) = PR∗(RN

y ) (see Examples 2.1 and 2.2).

Example 3.3 (Almost periodic H-structures). Let R be a countable
subgroup of RN

y . The set Γ = {γk : k ∈ R} is a structural representation on
RN

y . We define ΣR to be the (unique) H-structure on RN
y of which Γ is one

representation. ΣR is referred to as the almost periodic H-structure on RN
y

represented by R. We have here J (ΣR) = APR(RN
y ) (Example 2.2).
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Remark 3.1. A periodic H-structure on RN
y is none other than an almost

periodic H-structure represented by a network in RN
y .

Example 3.4 (The H-structure of the convergence at infinity, Σ∞). By
this is understood the H-structure Σ∞ on RN

y whose image is the H-algebra
B∞(RN

y ) in Example 2.3 (the existence and uniqueness of Σ∞ follows by The-
orem 3.1).

Example 3.5 (The H-structures Σ∞,R). Let R be as in Example 3.3.
We define Σ∞,R to be the H-structure on RN

y whose image is the H-algebra
B∞,R(RN

y ) (Example 2.4).

3.3 Comparison of H-structures. In HS we consider the binary relation
¹ defined by

Σ ¹ Σ′ ⇐⇒ J (Σ) ⊂ J (Σ′).

This is an order in HS (according to Theorem 3.1, we have J (Σ) = J (Σ′) if
and only if Σ = Σ′). In the sequel we set (see Subsection 2.3)

Xp
Σ = Xp

J (Σ) (3.1)

for Σ ∈ HS and 1 ≤ p < +∞. The following simple comparison results are
worth mentioning.

(1) Σ0 ¹ Σ for any Σ ∈ HS.
(2) If Σ ¹ Σ′, then Xp

Σ ⊂ Xp
Σ′ (1 ≤ p < +∞).

(3) If R1 and R2 are two countable subgroups of RN
y and if ΣRi (i = 1, 2)

is as in Example 3.3, then ΣR1 ¹ ΣR2 amounts to R1 ⊂ R2.

3.4 Product H-structures. Let m ∈ N, let {Nj}1≤j≤m be a finite family
of positive integers, and N = N1 + · · ·+ Nm, so that

RN = RN1 × · · · × RNm . (3.2)

In the sequel M denotes the mean value on RNj as well.

Remark 3.2. Let uj ∈ Π∞(RNj ) (1 ≤ j ≤ m). The tensor product
⊗m

j=1uj lies in Π∞(RN ) and further M(⊗N
j=1uj) =

∏m
j=1 M(uj).

Now we put
m⊙

j=1

Gj =
{
g : g = ⊗m

j=1gj (gj ∈ Gj)
} (

Gj ⊂ B(RNj )
)
.

On the other hand, we recall that ⊗m
j=1Gj denotes the vector subspace of

B(RN ) spanned by ¯m
j=1Gj . Before we can introduce the notion of a product

of H-structures, we need the following preliminary
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Proposition 3.1. Consider a family {Σj}1≤j≤m, where Σj is an H-
structure on RNj . There exists one and only one H-structure Σ on RN with
the following property

(P)

{
If Γj is a representation of Σj (1 ≤ j ≤ m),

then Γ = ¯n
j=1Γj is such one of Σ.

Proof. Let Γj be a representation of Σj (1 ≤ j ≤ m). It is an easy
exercise to check that Γ = ¯m

j=1Γj is a structural representation on RN . Let Σ
be the H-structure on RN of which Γ is one representation. Let us show that Σ
is the claimed H-structure. To this end consider any further family {Γ′j}1≤j≤m

with Γ′j ∈ Σj . Clearly, the set Γ′ = ¯m
j=1Γ

′
j is a structural representation

on RN and we have CLS(Γ) = CLS(Γ′), since CLS(Γ′j) = CLS(Γj) for
1 ≤ j ≤ m. Hence Σ satisfies property (P), and it is evident that Σ is the
only H-structure on RN with that property

This leads us to the following

Definition 3.4. The H-structure Σ of Proposition 3.1 is referred to as
the product of the H-structures Σj (1 ≤ j ≤ m), and is denoted by

∏m
j=1 Σj =

Σ1 × · · · × Σm.

The next result will play a fundamental role.

Proposition 3.2. Let {Σj}1≤j≤m, where Σj is an H-structure on RNj .
Then ⊗m

j=1J (Σj) is dense in J (
∏m

j=1 Σj).

Proof. Let Γ = ¯m
j=1Γj , where Γj is a representation of Σj . Set Σ =∏m

j=1 Σj . Clearly, 〈Γ〉 ⊂ ⊗m
j=1J (Σj) ⊂ J (Σ), where 〈Γ〉 stands for the vector

subspace of B(RN ) spanned by Γ. But according to Proposition 3.1, J (Σ) =
CLS(Γ). Therefore, the proposition follows

Now, let Σj (1 ≤ j ≤ m) be as in Proposition 3.2. Set Σ = Σ1×· · ·×Σm,
Aj = J (Σj) and A = J (Σ). Our main purpose in the sequel is to establish
the equality

∆(A) = ∆(A1)× · · · ×∆(Am) (3.3)

where × denotes the usual Cartesian product. We need the following

Lemma 3.2. Let fj ∈ B(RNj ) for 1 ≤ j ≤ m. There exists a constant
c > 0 such that

∣∣∣∣
m∏

j=1

fj(zj)−
m∏

j=1

fj(yj)
∣∣∣∣ ≤ c

m∑

j=1

∣∣fj(zj)− fj(yj)
∣∣ (3.4)

for all yj , zj ∈ RNj (1 ≤ j ≤ m).
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Proof. This can be be shown by induction on m ≥ 1. The case m = 1
is trivial. Next, assume that m > 1, and suppose there is some constant
c(m− 1) > 0 such that

∣∣∣∣
m−1∏

j=1

fj(zj)−
m−1∏

j=1

fj(yj)
∣∣∣∣ ≤ c(m− 1)

m−1∑

j=1

∣∣fj(zj)− fj(yj)
∣∣

for yj , zj ∈ RNj . If yj , zj ∈ RNj , then by the equality

m∏

j=1

fj(zj)−
m∏

j=1

fj(yj)

=
[ m−1∏

j=1

fj(zj)−
m−1∏

j=1

fj(yj)
]
fm(zm) +

[
fm(zm)− fm(ym)

] m−1∏

j=1

fj(yj)

we are quickly led to (3.4) with c = c(m) > max
(∏m−1

j=1 ‖fj‖∞, c(m −
1)‖fm‖∞

)

At the present time, define

ẙ = (δy1 , . . . , δym) for y = (y1, . . . , ym) ∈ RN = RN1 × · · · × RNm

where δyj is the Dirac measure on RNj at yj , and then set

D =
{

ẙ : y = (y1, . . . , ym) ∈ RN (with (3.2))
}

.

Of course, D ⊂ ∏m
j=1 ∆(Aj). In the sequel the compact space ∆(A) is pro-

vided with its natural uniform structure [10: Chapter II, p. 27], and the
same is true of each compact space ∆(Aj) (1 ≤ j ≤ m). The product space
∆(A1) × · · · × ∆(Am) is provided with the corresponding product uniform
structure, and D is viewed as a uniform subspace of ∆(A1) × · · · × ∆(Am)
(see [10: Chapter II]).

We are now in a position to prove (3.3).

Theorem 3.2. The mapping h : D → ∆(A) defined by h(ẙ) = δy for y ∈
RN = RN1 × · · · ×RNm is uniformly continuous, and it extends by continuity
to a homeomorphism H of ∆(A1)× · · · ×∆(Am) onto ∆(A).

Proof. The first point is to show the uniform continuity of h. Let V be a
vicinity of the uniform structure of ∆(A). Of course, we may assume without
loss of generality that

V =
{

(r, s) : r, s ∈ ∆(A) with |〈r, ϕ〉 − 〈s, ϕ〉| ≤ α for all ϕ ∈ B
}
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where B is a non-empty finite subset of A, α > 0, and 〈·, ·〉 denotes the duality
between A′ and A. This being so, fix freely ϕ ∈ B. In view of Proposition 3.2,
we have ‖ϕ− f‖∞ ≤ α

4 for some suitable f =
∑n

i=1(⊗m
j=1uij) with uij ∈ Aj .

Hence
|ϕ(y)− ϕ(z)| ≤ |f(y)− f(z)|+ α

2

for y = (y1, . . . , ym) and z = (z1, . . . , zm) in RN (with decomposition (3.2)).
But

|f(y)− f(z)| ≤
n∑

i=1

∣∣∣∣
m∏

j=1

uij(yj)− uij(zj)
∣∣∣∣

≤
n∑

i=1

ci

m∑

j=1

∣∣uij(yj)− uij(zj)
∣∣ (Lemma 3.2)

where ci > 0. Letting c = max1≤i≤n ci, we deduce that

|ϕ(y)− ϕ(z)| ≤ c

n∑

i=1

m∑

j=1

∣∣uij(yj)− uij(zj)
∣∣ + α

2

for any y = (y1, . . . , ym) and z = (z1, . . . , zm) as above. Hence

|ϕ(y)− ϕ(z)| ≤ α (3.5)

for y = (y1, . . . , ym) and z = (z1, . . . , zm) in RN (with (3.2)) such that
(δyj , δzj ) ∈ W j

ϕ (1 ≤ j ≤ m) where

W j
ϕ =

{
(r, s) : r, s ∈ ∆(Aj) with |〈r, uij〉 − 〈s, uij〉| ≤ α

2mnc (1 ≤ i ≤ n)
}

.

Now, let prj denote the natural projection of ∆(A1)×· · ·×∆(Am) onto ∆(Aj).
Let qj = prj × prj , i.e. qj is the mapping

qj :
[
∆(A1)× · · · ×∆(Am)

]× [
∆(A1)× · · · ×∆(Am)

] → ∆(Aj)×∆(Aj)

qj(r, s) =
(
prj(r), prj(s)

)
for all r, s ∈ ∆(A1)× · · · ×∆(Am).

Finally, let

W =
m⋂

j=1

q−1
j (W j) with W j =

⋂

ϕ∈B

W j
ϕ.

The set W is a vicinity of the uniform structure of
∏m

j=1 ∆(Aj) and we have,
thanks to (3.5),

(
h(ẙ), h(̊z)

) ∈ V whenever (ẙ, z̊) ∈ W . This shows that h is
uniformly continuous.

Consequently, since D is dense in ∆(A1)× · · · ×∆(Am) [indeed, it is well
known that the range of the mapping z → δz of RNj into ∆(Aj) is dense in
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∆(Aj)], the mapping h extends by continuity to a continuous mapping H of
∆(A1) × · · · ×∆(Am) into ∆(A) (see [10: Chapter II, p. 29]). Thus, thanks
to a well-known argument, the theorem is proved if we can verify that H is
bijective.

We begin by showing the surjectivity. Let s ∈ ∆(A). Observing that
h(D) is dense in ∆(A), we see that there exists a sequence (ζn)n≥0 ⊂ RN

(RN factorized as in (3.2)) such that h(ζ̊n) → s in ∆(A) as n → ∞. Fur-
thermore, since ∆(A1) × · · · × ∆(Am) is compact and metrizable, we can
extract a subsequence, still denoted by (ζn) for simplicity, such that ζ̊n → r
in ∆(A1)× · · · ×∆(Am) as n →∞. Hence H(r) = s, which shows that H is
surjective.

It remains to check that H is injective. First of all, let uj ∈ Aj (1 ≤
j ≤ m). If y = (y1, . . . , ym) ∈ RN (with (3.2)), then the classical equality
δy = ⊗m

j=1δyj shows that
〈

H(ẙ),
m⊗

j=1

uj

〉
=

m∑

j=1

〈δyj , uj〉.

By combining the continuity of H with the fact that D is dense in ∆(A1) ×
· · · ×∆(Am), we deduce that

〈
H(s),

m⊗

j=1

uj

〉
=

m∏

j=1

〈sj , uj〉 for s = (s1, . . . , sm) ∈
m∏
=1

∆(Aj). (3.6)

Having made this point, we now consider s = (s1, . . . , sm) and r = (r1, . . . , rm)
in ∆(A1)× · · · ×∆(Am) such that H(s) = H(r). Then

m∏

j=1

〈sj , uj〉 =
m∏

j=1

〈rj , uj〉 for any uj ∈ Aj . (3.7)

Fix freely an integer i (1 ≤ i ≤ m) and let ψ ∈ Ai. In (3.7) take ui = ψ and
uj = 1 if j 6= i. Since 〈rj , 1〉 = 〈sj , 1〉 = 1, it follows 〈si, ψ〉 = 〈ri, ψ〉. Hence
s = r. Therefore H is injective and so the proof is complete

Thanks to Theorem 3.2, ∆(A) may be identified (by means of H) with
∆(A1)×· · ·×∆(Am). Thus, we are justified in setting equality (3.3), and it is
worth noting that the use of the said equality will be systematic throughout.

Theorem 3.2, or rather its concrete version (3.3) has the following two
corollaries of considerable interest.

Corollary 3.1. We have G( ⊗m
j=1 uj

)
= ⊗m

j=1G(uj) for uj ∈ Aj where
the same G denotes the Gelfand transformation on Aj as well.

Proof. This follows directly by (3.6)
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Corollary 3.2. Let β anf βj be the M -measures for A and Aj, respec-
tively. Then β = ⊗m

j=1βj.

Proof. By combining Corollary 3.1 with Remark 3.2 and use of (2.2) we
are immediately led to

∫

∆(A)

( m⊗

j=1

ϕj

)
(s) dβ(s) =

m∏

j=1

∫

∆(Aj)

ϕj(sj) dβj(sj)

for ϕj ∈ C(∆(Aj)), thereby proving the corollary (see [7: p. 82/Theorem 1])

The notion of a product H-structure will prove to be particularly adapted
for tackling homogenization problems (in time) for evolution partial differen-
tial equations beyond the classical periodic setting. But this is outside the
scope of the present study.

We wish to describe two examples of product H-structures.

Example 3.6 (Product of almost periodic H-structures). Let ΣRj be the
almost periodic H-structure on RNj represented by a countable subgroup Rj

of RNj (see Example 3.3), 1 ≤ j ≤ m, and let ΣR1×···×Rm be the almost
periodic H-structure on RN = RN1 × · · · × RNm represented by the product
R1 × · · · × Rm. Then ΣR1×···×Rm = ΣR1 × · · · × ΣRm .

Example 3.7. We consider the product H-structure Σ = Σ1 × Σ∞ on
RN1+1 = RN1 × R, where Σ1 is an H-structure on RN1 and Σ∞ is the H-
structure on R defined as in Example 3.4. Our main purpose is to identify Σ.
Let A1 = J (Σ1) and introduce the space B∞(R;A1) of all ψ ∈ B(R;A1) such
that

lim
|τ |→+∞

‖ψ(τ)− l1(ψ)‖∞ = 0

where l1(ψ) ∈ A1. B∞(R; A1) is a Banach space under the B(RN1+1)-
norm, and the correspondence ψ → l1(ψ) is a continuous linear mapping
of B∞(R; A1) into A1. We will denote by B0(R; A1) the space of all ψ ∈
B∞(R;A1) with l1(ψ) = 0. Note that B0(R; A1) coincides with the closure of
A1 ⊗ K(R) in B(RN1+1) (see, e.g., [7: pp. 45 - 46]) where K(R) is the space
of all continuous complex functions on R with compact supports.

Proposition 3.3. We have J (Σ) = B∞(R; A1).

Proof. We clearly have A1 ⊗ B∞(R) ⊂ B∞(R;A1). Therefore, since
A1 ⊗ B∞(R) is dense in A = J (Σ) (Proposition 3.2), it follows that J (Σ) ⊂
B∞(R;A1). To show the inverse inclusion, observe that each ψ ∈ B∞(R; A1)
is (uniquely) expressible in the form

ψ = l1(ψ)⊗ 1 + ψ0

(
ψ0 ∈ B0(R; A1)

)
. (3.8)

Hence B∞(R; A1) ⊂ J (Σ), which completes the proof
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Having identified Σ, let us prove an isomorphism result we will need later.
The same G will denote the Gelfand transformation on A1 = J (Σ1), on A =
J (Σ) and on B∞(R), as well.

Proposition 3.4. The mapping

L1 : C(∆(A)) → C(∆(A1)), L1(G(ψ)) = G(`1(ψ)) (ψ ∈ A)

extends by continuity to an isometric isomorphism, still denoted by L1, of
L2(∆(A)) onto L2(∆(A1)).

Proof. We begin by observing that

‖L1(ψ̂)‖L2(∆(A1)) = ‖ψ̂‖L2(∆(A)) (ψ ∈ A) (3.9)

where ψ̂ = G(ψ). Indeed, given ψ ∈ A, from (3.8) we have

M(|ψ|2) = M
(|`1(ψ)|2 ⊗ 1

)
+ 2Re M

(
[`1(ψ)⊗ 1]ψ0

)
+ M(|ψ0|2)

where M denotes the mean value on RN1+1,RN1 and R, as well. But the last
two terms on the right reduce to zero because M vanishes on B0(R; A1), and
on the other hand we have M(|`1(ψ)|2 ⊗ 1) = M(|`1(ψ)|2) (see Remark 3.2).
Therefore M(|ψ|2) = M(|`1(ψ)|2). Hence (3.9) follows, according to (2.2).
Consequently, thanks to the density of C(∆(A)) in L2(∆(A)), the mapping
L1 extends by continuity to an isometry, still called L1, of L2(∆(A)) into
L2(∆(A1)).

Thus, it only remains to check that this isometry is surjective. From the
obvious equality `1(f ⊗ 1) = `1(f) (f ∈ A1) we see that

C(∆(A1)) = L1[G(A1 ⊗ C)] ⊂ L1[L2(∆(A))] ⊂ L2(∆(A1)).

We deduce that L1[L2(∆(A))] is dense in L2(∆(A1)). Therefore L1[L2(∆(A))] =
L2(∆(A1)), since the space on the left is closed in that of the right (recall that
L1 is an isometry)

3.5 Summable families of H-structures. Let {Σi}1≤i≤m be a finite family
of H-structures on RN . For each i, we set Ai = J (Σi) and we denote by
A1 + . . . + Am the space of all finite sums

∑m
i=1 ψi with ψi ∈ Ai.

Definition 3.5. The family Σi (1 ≤ i ≤ m) is said to be summable if
the vector space A1 + . . . + Am is stable under pointwise multiplication.

The following proposition is obvious and the proof is therefore omitted.
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Proposition 3.5. Suppose the family {Σi}1≤i≤m is summable. Let A be
the closure of A1 + . . . + Am in B(RN ). Then A is an H-algebra on RN .

This leads to the following

Definition 3.6. Suppose the family {Σi}1≤i≤m is summable. Then the
H-structure Σ on RN whose image is the H-algebra A of Proposition 3.5 (see
Theorem 3.1) is called the sum of the (summable) family {Σi}1≤i≤m and is
denoted by Σ1 + . . . + Σm.

Now we consider a pair {Σ1, Σ2} of H-structures on RN . In the sequel
we use the same G to denote the Gelfand transformation on A1 = J (Σ1) and
A2 = J (Σ2), as well. Let

A1/C =
{
ψ ∈ A1 : M(ψ) = 0

}
.

We assume the following:

A1/C is stable under multiplication (3.10)
If ϕ ∈ A1/C and ψ ∈ A2, then ϕψ ∈ A1/C (3.11)
(A1/C) ∩A2 = {0}. (3.12)

With (3.12) in mind, we let V = (A1/C)⊕A2 (direct sum) and we define the
mapping `2 : V → V to be the projection (of V) on A2 along A1/C. Thus,
A1/C = {ψ ∈ V : `2ψ = 0} and A2 = {ψ ∈ V : ψ = `2ψ} (range of `2), and
each ψ ∈ V is uniquely expressible in the form

ψ = ψ0 + `2ψ with ψ0 ∈ A1/C. (3.13)

Our goal is to establish the following

Proposition 3.6. Let (3.10)−(3.12) be satisfied. Then the family {Σ1, Σ2}
is summable. Furthermore, if we set A = J (Σ1+Σ2) and if the Gelfand trans-
formation on A is also denoted by G, then the mapping

L2 : G(V) → C(∆(A2)), L2(G(ψ)) = G(`2(ψ)) (ψ ∈ V)

extends by continuity to an isometric isomorphism L of L2(∆(A)) onto L2(∆A2)).

Proof. According to (3.10) - (3.11), the space V is stable under mul-
tiplication. Hence the summability of the family {Σ1,Σ2} follows by the
trivial equality A1 + A2 = (A1/C) + A2. For the rest we proceed as in the
proof of Proposition 3.4: Let ψ ∈ V. Starting from (3.13) and using the fact
that the functions |ψ0|2, ψ0`2(ψ) and ψ0`2(ψ) lie in A1/C (thanks to (3.10) -
(3.11)), one arrives at M(|ψ|2) = M(|`2(ψ)|2). Therefore ‖L2(ψ̂)‖L2(∆(A2)) =
‖ψ̂‖L2(∆(A)) for all ψ ∈ V where ψ̂ = G(ψ). Consequently, noting that G(V) is
dense in L2(∆(A)) (since V is dense in A) we see that L2 extends by continu-
ity to an isometry, denoted by L, of L2(∆(A)) into L2(∆(A2)). Furthermore,
by simple arguments similar to those we used in proving Proposition 3.4, it is
easily checked that L is surjective. This completes the proof
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This situation is worth illustrating.

Example 3.8. Let Σ1 = Σ∞ (Example 3.4), and let Σ2 be an H-structure
on RN with the following property:

0 ≤ u ∈ J (Σ2) =⇒ {
M(u) = 0 ⇒ u = 0

}
. (3.14)

Then (3.10) - (3.12) are fulfilled. Indeed, we have A1/C = B0(RN ), and
it is therefore apparent that (3.10) - (3.11) are satisfied. As regards (3.12),
let ψ ∈ (A1/C) ∩ A2. Then |ψ|2 ∈ (A1/C) ∩ A2 thanks to (3.11) (use also
Proposition 2.2). Hence M(|ψ|2) = 0. Therefore ψ = 0, according to (3.14).
This shows (3.12).

As a consequence of the preceding example, we have the following

Proposition 3.7. Let ΣR and Σ∞ be as in Examples 3.3−3.4. The pair
{Σ∞, ΣR} is summable and we have Σ∞ + ΣR = Σ∞,R (see Example 3.5).

Proof. If a function 0 ≤ u ∈ A2 = J (ΣR) satisfies M(u) = 0, since β2

(the M -measure for A2) is the Haar measure on ∆(A2) (thus, the support
of β2 is exactly ∆(A2)) [27: Proposition 2.6], then G(u)(s) = 0 for all s ∈
∆(A2) (use (2.2)). Hence u = 0. Therefore, the summability of {Σ∞, ΣR}
follows by Example 3.8 with Σ2 = ΣR. Furthermore, it is easily seen that
B∞(RN ) + APR(RN ) coincides with the space of all finite sums

∑
ϕiui with

ϕi ∈ B∞(RN ) and ui ∈ APR(RN ), hence Σ∞ + ΣR = Σ∞,R

However, it would not be out of interest to exhibit a non-summable family
of H-structures.

Proposition 3.8. Let R1 and R2 be two countable subgroups of RN such
that the union R1∪R2 is not a subgroup of RN . Then the pair {ΣR1 ,ΣR2} (see
Example 3.3) is not summable.

Proof. If k1 ∈ R1 and k2 ∈ R2 are such that k1 +k2 lies outside R1∪R2,
then γk1γk2 lies off APR1(RN ) + APR2(RN ). The proposition follows

4. Σ-convergence

Throughout this section, Ω denotes a bounded open set in RN
x .

4.1 Preliminaries. For u ∈ C(Ω×RN
y ), and in particular for u ∈ C(Ω;B(RN

y )),
let

uε(x) = u(x, x
ε ) (x ∈ Ω) (4.1)

where ε > 0. This gives a function uε ∈ C(Ω). Of course, we may also take u
in C(Ω;B(RN

y )) (Ω the closure of Ω in RN
x ). Later on we will have the need to
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give meaning to the right side of (4.1) for certain functions u ∈ L1
loc(Ω×RN

y ).
Specifically, we wish to define u|∆ε

, i.e the trace of u on ∆ε = {(x, y) : y =
x
ε (x ∈ Ω)}, in the following two cases:

1) u ∈ Lp(Ω;B(RN
y )) (1 ≤ p ≤ +∞)

2) u ∈ C(Ω; L∞(RN
y )).

This is a delicate question because the set ∆ε is negligible in RN
x × RN

y for
Lebesgue measure (see, e.g., [6: p. 33]). Nevertheless, we have the following
two trace results (for further details, including the proofs, see [27] or [29]).

Proposition 4.1. Let 1 ≤ p ≤ +∞. There exists a linear operator u →
uε of Lp(Ω;B(RN

y )) into Lp(Ω) with the following properties :

(i) ‖uε‖Lp(Ω) ≤ ‖u‖Lp(Ω;B(RN
y )) for all u ∈ Lp(Ω;B(RN

y )).

(ii) If u ∈ C(Ω;B(RN
y )), then uε is given by (4.1) (as is customary,

C(Ω;B(RN
y )) may be viewed as a subspace of Lp(Ω;B(RN

y ))).

Proposition 4.2. For each u of the form u = Σi∈Iϕi⊗ui with ϕi ∈ C(Ω)
and ui ∈ L∞(RN

y ), I being a finite set, let uε = Σi∈Iϕiu
ε
i (uε

i defined as
in (2.1)). This gives a mapping u → uε of C(Ω) ⊗ L∞(RN

y ) into L∞(Ω)
that extends by continuity to a continuous linear mapping, still denoted by
u → uε, of C(Ω; L∞(RN

y )) into L∞(Ω) with the property that ‖uε‖L∞(Ω) ≤
supx∈Ω ‖u(x)‖L∞(RN

y ) for all u ∈ C(Ω; L∞(RN
y )).

Having made this point, let Σ be an H-structure on RN , and let A = J (Σ).
For u ∈ L1

loc(Ω;A), let ũ(x) = M(u(x)) (x ∈ Ω), where M denotes the mean
value on RN

y . This defines a function ũ ∈ L1
loc(Ω), hence a linear transfor-

mation u → ũ of L1
loc(Ω; A) into L1

loc(Ω) that maps continuously C(Ω; A) into
B(Ω) and Lp(Ω;A) into Lp(Ω) (1 ≤ p ≤ +∞). Furthermore, with (4.1) and
Proposition 4.1 in mind, we have

Proposition 4.3. As ε → 0, we have uε → ũ in L∞(Ω)-weak ∗ for
u ∈ C(Ω; A), and uε → ũ in Lp(Ω)-weak for u ∈ Lp(Ω; A) (1 ≤ p < +∞).

Proof. This follows by a simple adaptation of [27: Proofs of Propositions
1.9 and 1.10]

For u ∈ Lp(Ω;Xp
Σ) (see (3.1)) with 1 ≤ p < +∞ we set GΩ(u) = G◦u (usual

composition), where we recall that G denotes the Gelfand transformation on
A as well as the canonical mapping of Xp into Lp(∆(A)) (Subsection 2.3).
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This defines a linear transformation GΩ that maps continuously

Lp(Ω;Xp
Σ) → Lp(Ω×∆(A))

Lp(Ω;A) → Lp(Ω×∆(A))

C(Ω; Xp
Σ) → C(Ω; Lp(∆(A)))

C(Ω; A) → C(Ω×∆(A)).

For convenience we will most of the time write

û = GΩ(u). (4.2)

Observe that we may therefore still put û = G(u) if u ∈ Xp
Σ.

Finally, we will need the following definition: By a fundamental sequence
we will mean any ordinary sequence of real numbers 0 < εn ≤ 1 (n ∈ N) with
εn → 0 as n →∞.

Remark 4.1. Given ζ ∈ C and a sequence of complex numbers (ζε)ε>0,
ζε → ζ as ε → 0 if and only if ζεn → ζ as n → ∞ for any fundamental
sequence (εn).

4.2 The Σ-convergence in Lp(Ω). Let p ∈ R with p ≥ 1, and let 1
p′ = 1− 1

p .
Let E be a subset of R∗+ = (0, +∞) whose closure in R = R ∪ {−∞,+∞}
contains 0. For example, E may be the whole R∗+, or a fundamental sequence.
There are many other examples of such an E.

Finally, let Σ be an H-structure on RN
y , and let A = J (Σ).

Definition 4.1. A sequence (uε)ε∈E ⊂ Lp(Ω) is said to be weakly Σ-
convergent in Lp(Ω) if there exists u0 ∈ Lp(Ω×∆(A)) such that, as E 3 ε → 0,
we have

∫

Ω

uε(x)fε(x) dx →
∫ ∫

Ω×∆(A)

u0(x, s)f̂(x, s) dxdβ(s) (4.3)

for every f ∈ Lp′(Ω; A), where f̂ = GΩ(f) (see (4.2)).

We express this by writing uε → u0 in Lp(Ω)-weak Σ, and we refer to u0

as the weak Σ-limit of the sequence (uε)ε∈E (the unicity of u0 is evident).

Example 4.1. If u ∈ Lp(Ω; A), then according to Proposition 4.3 we
have uε → û in Lp(Ω)-weak Σ. This is true in particular for u ∈ A, hence also
for u ∈ Xp = Xp

Σ by density.

Now, we wish to record the main results related to weak Σ-convergence.
The proofs of Propositions 4.4 and 4.5 and of Theorem 4.1 below are quite the
same as in the case of an almost periodic H-structure [27] and are therefore
not worth repeating.
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Proposition 4.4. Suppose a sequence (uε)ε∈E ⊂ Lp(Ω) is weakly Σ-
convergent in Lp(Ω) to some u0 ∈ Lp(Ω × ∆(A)). Then as E 3 ε → 0,
uε → ũ0 in Lp(Ω)-weak where ũ0(x) =

∫
∆(A)

u0(x, s) dβ(s) (x ∈ Ω).

Theorem 4.1. Assume that 1 < p < +∞. Then the space Lp(Ω) is
Σ-reflexive in the following sense: Given a fundamental sequence E and a
sequence (uε)ε∈E which is bounded in Lp(Ω), a subsequence E′ can be extracted
from E such that the sequence (uε)ε∈E′ is weakly Σ-convergent in Lp(Ω).

In the sequel we set Xr,∞ = Xr∩L∞(RN
y ) (1 ≤ r < +∞), where Xr = Xr

Σ.
We equip Xr,∞ with the L∞-norm, which makes it a Banach space.

Proposition 4.5. Let 1 < p < +∞. Suppose a sequence uε ∈ Lp(Ω) (ε ∈
E) is weakly Σ-convergent in Lp(Ω) to some u0 ∈ Lp(Ω × ∆(A)). Then, as
ε → 0 (ε ∈ E), (4.3) holds for f ∈ C(Ω; Xp′,∞).

Combining this with Example 4.1, we quickly deduce the following

Corollary 4.1. For u ∈ C(Ω; Xp,∞) with 1 < p < +∞ the sequence
(uε)ε>0 is weakly Σ-convergent in Lp(Ω) to û.

Proposition 4.4 points out a close connection between the weak Σ-convergence
and usual weak convergence in Lp(Ω). Besides, observe that the latter is none
other than the weak Σ0-convergence in Lp(Ω), Σ0 being defined in Example
3.1. Theorem 4.1 provides a justification of the concept of weak Σ-convergence.
Note that this theorem was already available in the particular case where Σ
is a periodic H-structure (see [2, 30]).

Let us turn now to the concept of strong Σ-convergence. Based on the
density of GΩ(Lp(Ω;A)) = Lp(Ω; C(∆(A))) in Lp(Ω × ∆(A)), we can frame
the following

Definition 4.2. A sequence (uε)ε∈E ⊂ Lp(Ω) is said to be strongly Σ-
convergent in Lp(Ω) if there exists u0 ∈ Lp(Ω×∆(A)) such that the following
holds true:

(SSC)

{
Given η > 0 and f ∈ Lp(Ω;A) with ‖u0 − f̂‖Lp(Ω×∆(A)) ≤ η

2

there is some α > 0 such that ‖uε − fε‖Lp(Ω) ≤ η provided E 3 ε ≤ α.

We express this by writing uε → u0 in Lp(Ω)-strong Σ. The unicity of u0 is
obtained exactly as in [27: Proposition 3.4], and we call u0 the strong Σ-limit
of (uε)ε∈E .

Remark 4.2. Suppose u0 = v̂0 with v0 ∈ Lp(Ω;A). Then uε → u0 in
Lp(Ω)-strong Σ if and only if ‖uε − vε

0‖Lp(Ω) → 0 as E 3 ε → 0.

Now by Proposition 4.3 we have limε→0 ‖ψε‖Lp(Ω) = ‖ψ̂‖Lp(Ω×∆(A)) for
ψ ∈ Lp(Ω;A). Proceeding as in [27: Examples 3.2 and 3.3], we deduce imme-
diately the following two basic examples.
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Example 4.2.
(1) For u ∈ Lp(Ω;A) we have uε → û in Lp(Ω)-strong Σ as ε → 0.
(2) Let (uε)ε∈E ⊂ Lp(Ω). If uε → u in Lp(Ω) (strong) as E 3 ε → 0,

then uε → u in Lp(Ω)-strong Σ.

However, in general a strongly Σ-convergent sequence in Lp(Ω) is not
necessarily convergent in Lp(Ω) (see [27: Remark 3.4]).

The next proposition provides an illustration of the concept of strong Σ-
convergence.

Proposition 4.6. Suppose a sequence (uε)ε∈E is strongly Σ-convergent
in Lp(Ω) to some u0 ∈ Lp(Ω×∆(A)). Then, as E 3 ε → 0, we have:

(i) uε → u0 in Lp(Ω)-weak Σ.
(ii) ‖uε‖Lp(Ω) → ‖u0‖Lp(Ω×∆(A)).

Reciprocally, if p = 2 and assertions (i) - (ii) hold, then uε → u0 in Lp(Ω)-
strong Σ.

Proof. The procedure is exactly that which leads to [27: Propositions
3.5 - 3.6]

We conclude this subsection with the following

Proposition 4.7. Suppose the two real numbers p, q ≥ 1 are such that
1
r = 1

p + 1
q ≤ 1. Let u0 ∈ Lp(Ω × ∆(A)) and v0 ∈ Lq(Ω × ∆(A)), and

let uε ∈ Lp(Ω) and vε ∈ Lq(Ω) for ε ∈ E. Finally, assume that uε → u0

in Lp(Ω)-strong Σ and vε → v0 in Lq(Ω)-weak Σ. Then uεvε → u0v0 in
Lr(Ω)weak Σ.

Proof. This is a reproduction of the proof of [27: Proposition 3.7]

4.3 Remarks. Let us state the following:
(1) Subsections 4.1 - 4.2 are still valid if Ω is not bounded provided some

slight modifications are made.
(2) Suppose E is a fundamental sequence and let (uε)ε∈E ⊂ Lp(Ω) (1 <

p < +∞) with uε → u in Lp(Ω)-weak as E 3 ε → 0. Let f ∈ Lp′(Ω;A).
According to Proposition 4.3, fε → f̃ in Lp′(Ω)-weak as ε → 0. By confining
ourselves to the mere resources of classical weak convergence, it is not in
general possible to state whether or not the sequence (uεf

ε)ε∈E is weakly
convergent in L1(Ω) when E 3 ε → 0. However, by appealing to the concept
of weak Σ-convergence we know at least that by Theorem 4.1 we can extract
a subsequence E′ from E such that, as E′ 3 ε → 0, uεf

ε → v in L1(Ω)-weak,
where

v(x) =
∫

∆(A)

u0(x, s)f̂(x, s) dxdβ(s) (x ∈ Ω)
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with u0 ∈ Lp(Ω × ∆(A)). The lesson drawn from this is that in general the
sequence (uεf

ε)ε∈E does not converge weakly in L1(Ω). Moreover, in the
case this should happen the corresponding limit would not be uf̃ . One of the
main purposes of the weak Σ-convergence is precisely to supply this deficiency.
Indeed, if instead of the preceding weak convergence hypothesis on (uε)ε∈E

we assume that (uε)ε∈E is weakly Σ-convergent in Lp(Ω) to some u0 ∈ Lp(Ω×
∆(A)), then uεf

ε → u0f̂ in L1(Ω)-weak Σ (use Proposition 4.7 and Example
4.2), hence uεf

ε → v in L1(Ω)-weak as E 3 ε → 0, where v is as above. On the
other hand, as we mentioned in [27: Subsection 1.1], the stiffness of the ususal
strong convergence in Lp(Ω) needed to be tempered with the new concept
of strong Σ-convergence (see part (2) of Example 4.2 and the subsequent
comment). Thus, if we write W and S for usual Weak Convergence and Strong
Convergence, respectively, and WΣ and SΣ for the Weak Σ-Convergence and
Strong Σ-Convergence, respectively, then S ⇒ SΣ ⇒ WΣ ⇒ W .

4.4 Proper H-structures. As will be seen later, our capability of applying
the theory of H-structures to partial differential equations is based on the
forthcoming notion of a proper H-structure. We begin with a few preliminar-
ies. The basic notation and hypotheses are as before, in particular Σ denotes
an H-structure on RN with A = J (Σ), and β is the M -measure for A.

Definition 4.3. Σ is said to be

(i) of class C∞ if A∞ is dense in A

(ii) total if D(∆(A)) is dense in H1(∆(A)).

It is worth recalling that the construction of the space H1(∆(A)) in Sub-
section 2.3 is based on the hypothesis that Σ is of class C∞. The following
results can easily be established:

(1) Suppose Σ = Σ1 × Σ2, where Σi is an H-structure of class C∞ on
RNi (i = 1, 2) with N = N1 + N2. Then Σ is of class C∞.

(2) Suppose Σ = Σ1 +Σ2, where Σi is an H-structure of class C∞ on RN .
Then Σ is of class C∞.

(3) The H-structures in Examples 3.1 - 3.5 are each of class C∞.

Throughout the rest of this subsection Σ is assumed to be of class C∞.

Proposition 4.8. Suppose Σ is total. Then the following assertions are
true:

(i) J(D(∆(A))/C) is dense in H1
#(∆(A)), where D(∆(A))/C =

{
ϕ ∈

D(∆(A)) :
∫
∆(A)

ϕdβ = 0
}
.

(ii)
∫
∆(A)

∂iu dβ = 0 (i = 1, . . . , N) for u ∈ H1
#(∆(A)).
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Proof. Assuming that Σ is total implies immediately that D(∆(A))/C
is dense in the pre-Hilbert space H1(∆(A))/C. Hence assertion (i) follows by
points 2) and 3) of Remark 2.4. Combining this with Propositions 2.5 - 2.6
we finally arrive at assertion (ii)

We turn now to the next

Definition 4.4. We say the Sobolev space H1(Ω) = W 1,2(Ω) [1, 25,
26] is Σ-reflexive if the following holds: Given a fundamental sequence E
and a sequence (uε)ε∈E which is bounded in H1(Ω), a subsequence E′ can be
extracted from E such that, as E′ 3 ε → 0, uε → u0 in H1(Ω)-weak and ∂uε

∂xj
→

∂u0
∂xj

+ ∂ju1 in L2(Ω)-weak Σ (1 ≤ j ≤ N), where u1 ∈ L2(Ω;H1
#(∆(A))).

Remark 4.3. By considering ∂j as a mapping of H1
#(∆(A)) into L2(∆(A))

by Proposition 2.6, ∂j ◦ u1 ∈ L2(Ω × ∆(A)) for u1 ∈ L2(Ω; H1
#(∆(A))),

and the transformation u1 → ∂j ◦ u1 is a continuous linear mapping of
L2(Ω;H1

#(∆(A))) into L2(Ω × ∆(A)) (this follows by [7: p. 132/Theorem
4]). We shall set ∂ju1 = ∂j ◦ u1.

We are now able to define a so-called proper H-structure.

Definition 4.5. Σ is said to be proper if the following conditions are
fulfilled :

(PR)1 Σ is of class C∞.
(PR)2 Σ is total.
(PR)3 For any bounded open set Ω ⊂ RN

x , H1(Ω) is Σ-reflexive.

Example 4.3. Any almost periodic H-structure is proper (see [27]). Of
course, this includes the particular case of periodic H-structures.

Because of the important role the proper H-structures are destined to
play in the homogenization of partial differential equations, we wish to prove
a fundamental theorem that will later allow us to establish the properness of
some specific H-structures. Let us first state the hypotheses.

Let Σ2 be a further H-structure on RN with A2 = J (Σ2). We assume
that Σ2 is of class C∞. On the other hand, we denote by β2 the M -measure
for A2. Now, we assume that hypothesis (H) below is satisfied:

(H) There exist an isometric isomorphism L of L2(∆(A)) onto L2(∆(A2)),
a dense vector subspace V of A, a surjective linear mapping l : V →
A2, and a vector subspace V∞ of A∞ ∩ V such that the following
conditions hold:

L(G(v)) = G(lv) (v ∈ V) (4.4)
L(v̂u) = L(v̂)L(u)

(
v ∈ V, u ∈ L2(∆(A))

)
where v̂ = G(v) (4.5)
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(v − lv)ε → 0 in L2
loc(RN

x ) as ε → 0 (v ∈ V) (4.6)

If v ∈ V∞, then Dα
y v ∈ V (α ∈ NN ) (4.7)

The restriction of l to V∞ maps V∞ onto A∞2 (4.8)

Dα
y (lv) = l(Dα

y v) (v ∈ V∞, α ∈ NN ). (4.9)

Under the preceding hypotheses, we wish to prove that if Σ2 is proper,
then so also is Σ. However, before we can do this, some preliminary lemmas
are necessary.

Lemma 4.1. Suppose Σ2 is total. Then the following assertions are true:
(i) If u ∈ H1(∆(A)), then Lu ∈ H1(∆(A2)) and further

∂i(Lu) = L(∂iu) (1 ≤ i ≤ N). (4.10)

(ii) The restriction of L to H1(∆(A)) is an isometric isomorphism of
H1(∆(A)) onto H1(∆(A2)).

(iii) Σ is total.

Proof. First, it is not difficult to show that
∫

∆(A2)

Ludβ2 =
∫

∆(A)

u dβ
(
u ∈ L2(∆(A))

)
. (4.11)

With this in mind, let now u ∈ H1(∆(A)). Fix freely ψ ∈ A∞2 . Then, in the
distribution sense on ∆(A2), we have

〈∂iLu, ψ̂〉 = −
∫

∆(A2)

Lu∂iψ̂ dβ2.

But according to (4.8), ψ = lv with v ∈ V∞, and further ∂iψ̂ = L(∂iv̂) =

L( ∂̂v
∂yi

) thanks to (4.4), (4.7) and (4.9). Hence

〈∂iLu, ψ̂〉 = −
∫

∆(A2)

L(u∂iv̂) dβ2 (according to (4.5)))

= −
∫

∆(A)

u∂iv̂ dβ (use (4.11))

=
∫

∆(A)

v̂∂iu dβ
(
since u ∈ H1(∆(A))

)

=
∫

∆(A2)

L(v̂∂iu)dβ2 (use (4.11), once more)

=
∫

∆(A2)

ψ̂L(∂iu) dβ2 (thanks to (4.5), once more).
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Therefore assertion (i) follows by the arbitrariness of ψ. We next show asser-
tion (ii). According to (i), L maps isometrically H1(∆(A)) into H1(∆(A2)).
Thus, it only remains to establish that H1(∆(A2)) = L[H1(∆(A))], which
reduces to showing that L[H1(∆(A))] is dense in H1(∆(A2)), since L is iso-
metric. But this follows by

D(∆(A2)) = G(A∞2 ) = L(G(V∞)) ⊂ L[H1(∆(A))] ⊂ H1(∆(A2))

and use of the fact that Σ2 is total. This shows assertion (ii). Finally, refer-
ence to what precedes reveals that L(G(V∞)) is dense in H1(∆(A2)). Hence
assertion (iii) follows by (ii)

In the sequel J denotes the canonical mapping of H1(∆(A))/C into H1
#(∆(A))

whereas J2 denotes the canonical mapping of H1(∆(A2))/C into H1
#(∆(A2)).

Lemma 4.2. Suppose Σ2 is total. Then there exists an isometric isomor-
phism L# : H1

#(∆(A)) → H1
#(∆(A2)) such that

L#(Jf) = J2(Lf) (f ∈ H1(∆(A))/C) (4.12)

∂iL#(u) = L(∂iu) (u ∈ H1
#(∆(A)), 1 ≤ i ≤ N). (4.13)

Proof. According to Lemma 4.1/(i) - (ii), L is an isometric isomorphism
of H1(∆(A))/C onto H1(∆(A2))/C. With this in mind, observe that

‖Lf‖H1(∆(A2))/C = ‖J2(Lf)‖H1
#(∆(A2)) (f ∈ H1(∆(A))/C).

Therefore, J2 ◦ L is an isometry of H1(∆(A))/C into H1
#(∆(A2)). Hence,

in view of Remark 2.4/4), there is a unique continuous linear maping L# :
H1

#(∆(A)) → H1
#(∆(A2)) such that (4.12) holds, and it is clear on the other

hand that L# is an isometric mapping. Furthermore, the surjectivity of L#

follows by noting that

J2[H1(∆(A2))/C] = J2[L(H1(∆(A))/C)] ⊂ L#[H1
#(∆(A))] ⊂ H1

#(∆(A2)),

and following the same line of argument as in part (ii) of the proof of Lemma
4.1. Thus, only (4.13) remains to be shown. Of course, it suffices to show
(4.13) for u = Jf with f ∈ H1(∆(A))/C. But this results immediately by
(4.10) and (4.12)

Before we can prove the main result in this subsection, we need one
further lemma and a few notations and remarks. To begin with, if u ∈
L2(Ω;L2(∆(A))), we set (LΩu)(x) = L(u(x)) (x ∈ Ω) which defines a map-
ping

LΩ : L2(Ω; L2(∆(A))) → L2(Ω;L2(∆(A2)))
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(use [7: p. 132]). Furthermore, according to hypothesis (H), LΩ is an isometric
isomorphism of L2(Ω; L2(∆(A))) onto L2(Ω;L2(∆(A2))). Likewise, provided
Σ2 is total, Lemma 4.2 reveals that the mapping

L#Ω : L2(Ω; H1
#(∆(A))) → L2(Ω;H1

#(∆(A2)))

defined by L#Ωu = L# ◦ u is an isometric isomorphism with the further
property

∂i(L#Ωu) = LΩ(∂iu) (4.14)

for u ∈ L2(Ω;H1
#(∆(A))) and 1 ≤ i ≤ N .

Finally, for ψ ∈ K(Ω)⊗V, we set (lΩψ)(x) = l(ψ(x)) (x ∈ Ω) which gives
a function lΩψ ∈ K(Ω)⊗A2. By (4.4) and (4.6) we have

LΩ(GΩ(ψ)) = GΩ(lΩψ) (4.15)
(ψ − lΩψ)ε → 0 in L2(Ω) as ε → 0. (4.16)

Lemma 4.3. Suppose E is a fundamental sequence, and let (uε)ε∈E be a
sequence in L2(Ω) such that

uε → v0 in L2(Ω)-weak Σ2 as ε → 0 (4.17)

where v0 ∈ L2(Ω×∆(A2)). Then uε → L−1
Ω v0 in L2(Ω)-weak Σ.

Proof. In view of (4.17), the sequence (uε)ε∈E is bounded in L2(Ω) (use
Proposition 4.4). On the other hand, K(Ω)⊗V is dense in L2(Ω;A). Hence, by
a routine technique (see, e.g., the proof of [27: Proposition 3.2]) our objective
reduces to showing that, as E 3 ε → 0, we have

∫

Ω

uεψ
εdx →

∫∫

Ω×∆(A)

u0(x, s)ψ̂(x, s) dxdβ(s)

for all ψ ∈ K(Ω)⊗V, where u0 = L−1
Ω v0. But according to (4.16), it amounts

to verifying that, as E 3 ε → 0,
∫

Ω

uε(lΩψ)εdx →
∫∫

Ω×∆(A)

u0(x, s)ψ̂(x, s) dxdβ(s) (4.18)

for ψ ∈ K(Ω)⊗ V. So let ψ be as stated. By (4.17) we have
∫

Ω

uε(lΩψ)εdx →
∫∫

Ω×∆(A2)

v0(x, s)GΩ(lΩψ)(x, s) dxdβ(s)

as E 3 ε → 0. But by using (4.15), (4.5) and (4.11), we see that
∫∫

Ω×∆(A2)

v0(x, s)GΩ(lΩψ)(x, s) dxdβ2(s) =
∫

Ω

∫

∆(A)

u0(x, s)ψ̂(x, s) dβ(s)dx.

Hence (4.18) follows and so the lemma is proved
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We are now able to prove the desired result.

Theorem 4.2. Suppose Σ2 is proper. Then Σ is proper.

Proof. Since Σ is of class C∞ (by hypothesis) and total (Lemma 4.1), it
only remains to show that H1(Ω) is Σ-reflexive. So let (uε)ε∈E be a bounded
sequence in H1(Ω), E being fundamental. Using the Σ2-reflexivity of H1(Ω),
we get a subsequence E′ from E and two functions u0 ∈ H1(Ω) and v1 ∈
L2(Ω,H1

#(∆(A2))) such that, as E′ 3 ε → 0, uε → u0 in H1(Ω)-weak and
∂uε

∂xj
→ ∂u0

∂xj
+ ∂jv1 in L2(Ω)-weak Σ2 (1 ≤ j ≤ N). Furthermore, thanks

to Lemma 4.3, ∂uε

∂xj
→ L−1

Ω (∂u0
∂xj

) + L−1
Ω (∂jv1) in L2(Ω)-weak Σ (1 ≤ j ≤

N). But L−1
Ω (∂u0

∂xj
) = ∂u0

∂xj
(because ∂u0

∂xj
does not depend on the variable

s ∈ ∆(A2)) and L−1
Ω ∂jv1 = ∂ju1 (according to (4.14)), where u1 = L−1

#Ωv1 ∈
L2(Ω,H1

#(∆(A))). Therefore the theorem follows

As mentionned above, the real object of Theorem 4.2 is to allow us to
establish the properness of some specific H-structures. So, by way of illustra-
tion, we have the following three corollaries.

Corollary 4.2. The H-structure Σ∞,R on RN (Example 3.5) is proper.

Proof. Let Σ1 = Σ∞, Σ2 = ΣR, and Σ = Σ∞,R. As usual, we will
set Ai = J (Σi) (i = 1, 2) and A = J (Σ). We recall that Σ = Σ1 + Σ2

(Proposition 3.7) and, further, Σ is of class C∞. Now, let L be the isometric
isomorphism constructed in Proposition 3.6, put V = (A1/C)⊕ A2, and let l
be the mapping of V into A2 defined by lψ = l2ψ (ψ ∈ V), where l2 : V → V
denotes the projection on A2 along A1/C (see Subsection 3.5). Finally, let
V∞ = D(RN )+A∞2 where D(RN ) is the space of all complex functions on RN

that are of class C∞ and of compact supports. This is clearly a vector subspace
of A∞∩V. On the other hand, it is clear that V is dense in A, and l is surjective
and linear. Thus, the corollary is proved if we can verify that conditions (4.4) -
(4.9) are satisfied. Condition (4.4) is immediate by Proposition 3.6, condition
(4.6) follows by the fact that v − lv ∈ B0(RN

y ) = A1/C for v ∈ V (use (3.13)).
As regards condition (4.5), decomposition (3.13) and use of (3.12) reveal that
l(vψ) = l(v)l(ψ) for v, ψ ∈ V. Hence (4.5) follows by (4.4) and use of the
fact that G(V) is dense in L2(∆(A)). Finally, the verification of (4.7) - (4.9)
is an easy matter. Therefore, since ΣR is proper (Example 4.3), the corollary
follows by Theorem 4.2

Corollary 4.3. The H-structure Σ∞ on RN (Example 3.4) is proper.

Proof. Note that Σ∞ = Σ∞ + Σ0 with Σ0 = ΣR={O} (O the origin of
RN ) and apply Corollary 4.2

Corollary 4.4. Let Σ = Σ1 × Σ∞ on RN = RN−1 × R (N ≥ 2) where
Σ1 is an H-structure of class C∞ on RN−1 and Σ∞ is the H-structure of the
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convergence at infinity on R. Suppose the product H-structure Σ2 = Σ1 × Σ0

on RN = RN−1 × R (Σ0 is the trivial H-structure on R) is proper. Then Σ
is proper, too.

Proof. The H-structures Σ and Σ2 are of class C∞ so that, thanks to
Theorem 4.2, the corollary is proved once we have shown that the pair {Σ, Σ2}
satisfies hypothesis (H). For this purpose, let V = A = J (Σ) and A2 = J (Σ2),
and consider the mapping l : V → A2 given by l(ψ) = l1(ψ)⊗1 (ψ ∈ V) where
1 denotes the identity element of the algebra B(R), and l1 is the mapping of
A = B∞(R;A1) into A1 defined in Example 3.7. It is clear that l maps
continuously V into A2, and that l(ψ) = ψ for ψ ∈ A2. Next, let L be
the mapping of C(∆(A)) into C(∆(A2)) such that L(G(ψ)) = G(l(ψ)) (ψ ∈
A), where G is the Gelfand transformation on A and A2, as well. By using
Corollary 3.1 we see that L(ψ̂) = L1(ψ̂)⊗ 1 (ψ ∈ A) where 1 is this time the
identity element of C(∆(C)) (recall that J (Σ0) = C) and where L1 is defined
in Proposition 3.4. By the said proposition and use of Corollary 3.2 we deduce
that ‖L(ψ̂)‖L2(∆(A2)) = ‖ψ̂‖L2(∆(A)) for ψ ∈ A. Hence an obvious argument
reveals that L extends to an isometric mapping, still called L, of L2(∆(A))
into L2(∆(A2)). Furthermore, by the property L(ψ̂) = ψ̂ (ψ ∈ A2) we have
that

C(∆(A2)) = G(A2) ⊂ L[L2(∆(A))] ⊂ L2(∆(A2)).

Therefore the same routine argument as used in the proof of Proposition 3.4
reveals that L is an isometric isomorphism of L2(∆(A)) onto L2(∆(A2)).

Finally, we set V∞ = A∞2 + (A∞1 ⊗ D(R)), and we note that this is a
vector subspace of A∞ ∩ V = A∞. Now, it is an easy exercise to check that
conditions (4.4) - (4.9) are satisfied and so Σ is proper

Example 4.4. Let Σ∞ be as above, and let ΣR′ be the almost periodic
H-structure on RN−1 represented by a countable subgroup R′ of RN−1. Then
the H-structure Σ = ΣR′ × Σ∞ on RN is proper. Indeed, this follows by
Corollary 4.4 (with Σ1 = ΣR′) owing to the fact that Σ2 = Σ1×Σ0 is precisely
the almost periodic H-structure ΣR′×{0} on RN (see Example 4.3).

5. Application to the homogenization of a
linear elliptic partial differential equation

5.1 Statement of the abstract model problem. Preliminaries. Let

−
N∑

i,j=1

∂

∂xi

(
aε

ij

∂uε

∂xj

)
= f in Ω, uε ∈ H1

0 (Ω) (5.1)
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where ε > 0, Ω is a fixed bounded open set in RN
x , f ∈ H−1(Ω), aε

ij(x) =
aij(x, x

ε ) for x ∈ Ω (in the sense of Proposition 4.2) with aij ∈ C(Ω; L∞(RN
y )),

and with the classical ellipticity condition: there exists α > 0 such that for
any x ∈ Ω

Re
N∑

i,j=1

aij(x, y)ξjξi ≥ α|ξ|2 (ξ ∈ CN , a.e. in y ∈ RN ). (5.2)

Under these hypotheses, uε (for each fixed ε > 0) is uniquely determined by
(5.1) (see [27: Proposition 1.6]). Now, let Σ be a proper H-structure on RN .
We assume that

aij(x, ·) ∈ X2
Σ for all x ∈ Ω (1 ≤ i, j ≤ N) (5.3)

and we wish to investigate under this abstract structure hypothesis the be-
havior of uε when ε → 0. For convenience we will require the family {aij}
to satisfy the symmetry condition aji = aij (1 ≤ i, j ≤ N), but this is not
essential.

We now collect the basic tools and preliminary results we need. Firt, as
usual, the Hilbert space H1

0 (Ω) = W 1,2
0 (Ω) is considered with the norm

‖v‖H1
0 (Ω) =

( N∑

i=1

∥∥∥ ∂v

∂xi

∥∥∥
2

L2(Ω)

)1/2

,

equivalent to the H1(Ω)-norm. Next, we let

F1
0 = H1

0 (Ω)× L2
(
Ω; H1

#(∆(A))
)

with A = J (Σ),

defining thus a Hilbert space under the norm

‖V ‖F10 =
[
‖v0‖2H1

0 (Ω) + ‖v1‖2L2(Ω;H1
#(∆(A)))

]1/2

, V = (v0, v1) ∈ F1
0.

Furthermore, by Proposition 4.8/(i),

F∞0 = D(Ω)× [D(Ω)⊗ J
(D(∆(A))/C

)]
is dense in F1

0. (5.4)

By letting

DiV =
∂v0

∂xi
+ ∂iv1, V = (v0, v1) ∈ F1

0, 1 ≤ i ≤ N
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and using Proposition 4.8/(ii) we are quickly led to

‖V ‖F10 =
[ N∑

i=1

‖DiV ‖2L2(Ω×∆(A))

]1/2

(V ∈ F1
0).

This expression of the F1
0-norm will prove very useful.

Now, according to (5.3), we have aij ∈ C(Ω, X2,∞) (1 ≤ i, j ≤ N) where
X2,∞ = X2

Σ ∩ L∞ is equipped with the L∞-norm. Thanks to Corollary 2.2 it
follows that âij = GΩ(aij) ∈ C(Ω, L∞∆(A))) with âji = âij and

Re
N∑

i,j=1

âij(x, s)ξjξi ≥ α|ξ|2 (ξ ∈ CN ) (5.5)

for all x ∈ Ω and almost all s ∈ ∆(A) (i.e. given x ∈ Ω, we have (5.5) for any
s lying outside some β-negligible set Rx ⊂ ∆(A)). The preceding ellipticity
condition is deduced from (5.2) exactly as in [27: Proposition 5.2].

Consequently, the sesquilinear form âΩ(·, ·) on F1
0 × F1

0 defined by

âΩ(U, V ) =
N∑

i,j=1

∫ ∫

Ω×∆(A)

âij(x, s)DiU(x, s)DiV (x, s) dxdβ(s)

is Hermitian, continuous, and coercive in the sense that Re âΩ(V, V ) ≥ α‖V ‖2F10
for all V ∈ F1

0. We deduce in passing that if L denotes the continuous anti-
linear form on F1

0 given by L(V ) = 〈f, v0〉 with V = (v0, v1) ∈ F1
0, then the

variational problem

U = (u0, u1) ∈ F1
0

âΩ(U, V ) = L(V ) (V ∈ F1
0)

}
(5.6)

admits a unique solution.
We will need a few basic convergence results. Let us begin by noting that

F∞0 (in (5.4)) is precisely the space of all Φ of the form

Φ = (ψ0, JΩ(ψ̂1))
(
ψ0 ∈ D(Ω), ψ1 ∈ D(Ω)⊗ (A∞/C)

)
(5.7)

where A∞/C = {ψ ∈ A∞ : M(ψ) = 0}, ψ̂1 = GΩ(ψ1) and JΩ(ψ̂1) = J ◦ ψ̂1, ψ̂1

being viewed as a mapping of Ω into D(∆(A))/C.
This being so, let Φ be given by (5.7). For ε > 0, let

Φε = ψ0 + εψε
1, (5.8)

i.e. Φε(x) = ψ0(x) + εψ1(x, x
ε ) for x ∈ Ω. We have Φε ∈ D(Ω), and it is an

easy exercise to verify that, as ε → 0,

Φε → ψ0 in H1
0 (Ω)-weak (5.9)

∂Φε

∂xi
→ DiΦ =

∂ψ0

∂xi
+ ∂iψ̂1 in Lp(Ω)-strong Σ, 1 ≤ i ≤ N (5.10)

where 1 ≤ p < +∞. This leads to the following fundamental
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Lemma 5.1. Let (uε)ε∈E′ ⊂ H1
0 (Ω) where E′ is a fundamental sequence.

Let Φ ∈ F∞0 and Φε ∈ D(Ω) with (5.7)− (5.8). Suppose that, as E′ 3 ε → 0,
we have ∂uε

∂xj
→ DjU in L2(Ω)-weak Σ (1 ≤ j ≤ N) where U ∈ F1

0. Then
aε(uε, Φε) → âΩ(U, Φ) as E′ 3 ε → 0.

Proof. Based on (5.10) and on Propositions 4.5 and 4.7, we see immedi-
ately that the lemma follows by the same line of reasoning as in [27: Lemma
5.2]

Finally, given x ∈ Ω, let

â(x; u, v) =
N∑

i,j=1

∫

∆(A)

âij(x, s)∂ju(s)∂iv(s) dβ(s)

for u, v ∈ H1
#(∆(A)). This defines a coercive (see (5.5)), continuous, Her-

mitian sesquilinear form â(x; ·) on H1
#(∆(A)) × H1

#(∆(A)). Thus, given
1 ≤ j ≤ N , to each x ∈ Ω there is attached a unique χj(x) ∈ H1

#(∆(A))
such that

â(x;χj(x), v) =
N∑

k=1

∫

∆(A)

âkj(x, s)∂kv(s) dβ(s) (5.11)

for all v ∈ H1
#(∆(A)). This gives a family of mappings χj : Ω → H1

#(∆(A)) (1 ≤
j ≤ N), hence a family of functions qij : Ω → C (1 ≤ i, j ≤ N) with

qij(x) =
∫

∆(A)

âij(x, s) dβ(s)−
N∑

l=1

∫

∆(A)

âil(x, s)∂lχ
j(x, s) dβ(s) (5.12)

for x ∈ Ω, where s → ∂lχ
j(x, s) (for fixed x) actually denotes the function

∂l(χj(x)).

Lemma 5.2. The following assertions are true:

(i) χj ∈ C(Ω; H1
#(∆(A))).

(ii) qij ∈ C(Ω), qji = qij.

(iii) There exists a constant α0 > 0 such that Re
∑N

i,j=1 qij(x)ξjξi ≥
α0|ξ|2 (ξ ∈ CN ) for any x ∈ Ω.

Proof. This is an exact reproduction of the proof of [27: Lemma 5.3]

5.2 Homogenization of the abstract model problem. The first point is
to prove the following
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Theorem 5.1. Suppose (5.3) with, moreover, Σ proper. Let U = (u0, u1)
be (uniquely) defined by (5.6), and for each real ε > 0 let uε be the unique
solution of (5.1). Then, as ε → 0,

uε → u0 in H1
0 (Ω)-weak (5.13)

uε → u0 in L2(Ω) (5.14)

∂uε

∂xj
→ DjU =

∂u0

∂xj
+ ∂ju1 in L2(Ω)-weak Σ (1 ≤ j ≤ N). (5.15)

Proof. First, for fixed ε > 0, we have

N∑

i,j=1

∫

Ω

aε
ij

∂uε

∂xj

∂v

∂xi
dx = 〈f, v〉 (v ∈ H1

0 (Ω)).

By a routine trick we see immediately that the sequence (uε)ε>0 is bounded
in H1

0 (Ω). Therefore, given an arbitrary fundamental sequence E, the Σ-
reflexivity of H1(Ω) guarantees the existence of a subsequence E′ from E and
of some U = (u0, u1) ∈ F1

0 such that, as E′ 3 ε → 0, we have (5.13) - (5.14) (as
a direct consequence of (5.13) by reason of the Rellich theorem), and (5.15).
Thus, if we succeed in proving that U is the solution of (5.6), then according
to the unicity we will be justified in claiming that (5.13) - (5.15) actually hold
when E 3 ε → 0 (ε ∈ E instead of ε ∈ E′). Hence the theorem will follow by
Remark 4.1. To this end, take in the preceding equation (for fixed ε ∈ E′) the
particular test function v = Φε with (5.7) - (5.8), then use (5.9) and Lemma
5.1 to see that âΩ(U,Φ) = L(Φ) holds for all Φ ∈ F∞0 . By (5.4) we deduce
that U satisfies (5.6). Hence the theorem follows

This leads us to the next point of the present section.

Corollary 5.1. The following assertions are true:
(i) For almost every x ∈ Ω, u1(x) is the (unique) solution of the coercive

variational problem

u1(x) ∈ H1
#(∆(A))

â(x;u1(x), v) = −
N∑

j,k=1

∂u0

∂xj
(x)

∫

∆(A)

âkj(x, s)∂kv(s) dβ(s)

∀ v ∈ H1
#(∆(A)).





(5.16)

(ii) For almost every x ∈ Ω, we have

u1(x) = −
N∑

j=1

∂u0

∂xj
(x)χj(x)
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with χj(x) ∈ H1
#(∆(A)) given by (5.11).

(iii) The function u0 is the weak solution of

−
N∑

i,j=1

∂

∂xi

(
qij

∂u0

∂xj

)
= f in Ω, u0 ∈ H1

0 (Ω) (5.17)

where qij is given by (5.12) (see also Lemma 5.2).

Proof. Proceed exactly as in the proofs of [27: Propositions 5.4 and 5.5]

Remark 5.1. It is not difficult to check that if u0 is the solution of (5.17),
and if a measurable function u1 : Ω → H1

#(∆(A)) satisfies (5.16) for almost
every x ∈ Ω, then U = (u0, u1) satisfies (5.6).

5.3 A few concrete examples. Thus, the homogenization of (5.1) under
both the properness hypothesis on Σ and the abstract hypothesis (5.3) leads
precisely to explicit results that are in every respect similar to those provided
by the usual periodic theory (see [2, 5, 30]). Now, with a view to illustrating
the wide scope of this general homogenization approach, let us exhibit various
concrete examples of structure hypotheses that are reducible to (5.3).

Example 5.1 (Periodicity hypothesis). Suppose there exists a paral-
lelepiped Y in RN

y , e.g. Y = (0, 1)N , such that aij(x, ·) is Y -periodic for
each fixed x ∈ Ω (1 ≤ i, j ≤ N). This amounts to saying that there exists
a network R in RN such that, given x ∈ Ω, we have aij(x, y + k) = aij(x, y)
for all k ∈ R and for almost all y ∈ RN . This leads us immediately to (5.3)
with Σ = ΣR, ΣR being the periodic H-structure on RN represented by R
(Example 3.2). It is essential to recall that ΣR is a proper H-structure (see
Example 4.3). Also, note that we have here

X2
Σ = L2

per(Y ) ≡ {
w ∈ L2

loc(RN
y ) : w is Y -periodic

}
= L2(∆(A))

H1
#(∆(A)) =

{
w ∈ H1

loc(RN
y ) : w is Y -periodic and

∫
Y

w dy = 0
}

(see [27] for more details), and so we are right in the classical periodic setting.

Example 5.2 (Almost periodicity hypothesis). We assume that

aij(x, ·) ∈ L2
AP (RN

y ) for all x ∈ Ω, 1 ≤ i, j ≤ N (5.18)

where L2
AP (RN

y ) denotes the space of all functions w ∈ L2
loc(RN

y ) that are
almost periodic in the sense of Stepanoff [27]. Then (5.3) holds with Σ = ΣR,
where ΣR is the almost periodic H-structure on RN represented by a suitable
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countable subgroup R of RN (see Examples 3.3 and 4.3). Here also, it should
be stressed that the properness of ΣR is a fundamental property.

The present example is worth illustrating:
(1) Suppose there is a family of parallelepipeds Yij in RN

y (1 ≤ i, j ≤ N)
such that aij(x, ·) is Yij-periodic for each x ∈ Ω. Then (5.18) is satisfied.

(2) Suppose that to each x ∈ Ω there is attached a parallelepiped Yx in
RN such that aij(x, ·) is Yx-periodic (1 ≤ i, j ≤ N). Then (5.18) is satisfied.

Example 5.3. Let Y ′ = (0, 1)N−1 with N ≥ 2. We suppose here that

aij(x, ·) ∈ B∞(R; L2
per(Y

′)) for all x ∈ Ω, 1 ≤ i, j ≤ N (5.19)

where L2
per(Y ′) denotes the usual Hilbert space of all functions in L2

loc(RN−1)
that are Y ′-periodic and B∞(R; L2

per(Y
′)) denotes the space of all u ∈ B(R; L2

per(Y
′))

such that u(yN ) converges in L2
per(Y

′) as |yN | → ∞.

Proposition 5.1. Suppose (5.19) holds. Then we have (5.3) with Σ =
ΣR′ × Σ∞ where ΣR′ is the periodic H-structure on RN−1

y′ (the space RN−1

of the variable y′ = (y1, ..., yN−1)) represented by R′ = ZN−1, and Σ∞ is the
H-structure on R defined in Example 3.4. Furthermore, Σ is proper.

Proof. Let Σ = ΣR′ ×Σ∞ be as stated above. According to Proposition
3.3, we have A = J (Σ) = B∞(R; Cper(Y ′)), where Cper(Y ′) = J (ΣR′) is the
space of all Y ′-periodic continuous complex functions on RN−1. Hence (5.3)
follows by the fact that B∞(R; Cper(Y ′)) is dense in B∞(R; L2

per(Y ′)) (provided
with the B(R;L2

per(Y
′))-norm) and the latter is continuously embedded into

Ξ2. Finally, the properness of Σ was established in Example 4.4

Remark 5.2. If in (5.19) we consider L2
AP (RN−1) instead of L2

per(Y ′),
then it can be shown that Proposition 5.1 remains valid, ΣR′ being this time
a suitable almost periodic H-structure on RN−1.

Example 5.4. Let (L2, l∞) be the amalgam of L2 and l∞ on RN [18]
(see also [27]), i.e. (L2, l∞) is the space of all u ∈ L2

loc(RN ) such that

‖u‖2,∞ = sup
k∈ZN

[ ∫

k+Y

|u(y)|2dy

]1/2

< +∞ (Y = (0, 1)N ). (5.20)

This is a Banach space under the norm ‖ · ‖2,∞. This being so, we denote by
L2
∞,per(Y ) the closure in (L2, l∞) of the space of all finite sums

∑

finite

ϕiui (ϕi ∈ B∞(RN
y ), ui ∈ Cper(Y ))
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where Cper(Y ) is the space of all u ∈ C(RN
y ) such that u(y + k) = u(y) for all

k ∈ ZN and all y ∈ RN (such a u is said to be Y -periodic, Y = (0, 1)N ). In
the present example we assume that

aij(x, ·) ∈ L2
∞,per(Y ) for all x ∈ Ω, 1 ≤ i, j ≤ N. (5.21)

Proposition 5.2. Suppose (5.21). Then (5.3) holds with Σ = Σ∞,R (Example
3.5), where R = ZN . Moreover, Σ is proper.

Proof. L2
∞,per(Y ) is exactly the closure of J (Σ∞,R) = B∞,R(RN ) in

(L2, l∞). Therefore, since (L2, l∞) is continuously embedded into Ξ2 (see
[27: Lemma 1.3]), (5.3) follows with Σ = Σ∞,R and R = ZN , the latter
H-structure being proper (Corollary 4.2)

As a direct consequence of this, we have the following

Corollary 5.2. Suppose we have aij(x, ·) ∈ L2(RN
y ) + L2

per(Y ) for all
x ∈ Ω, 1≤ i, j ≤ N , where Y = (0, 1)N . Then (5.3) holds with Σ = Σ∞,R as
above

Proof. Indeed, both L2(RN ) and L2
per(Y ) are contained in L2

∞,per(Y ), so
that (5.21) is satisfied. Therefore, the corollary follows by Proposition 5.2

Example 5.5. For the sake of convenience we assume here that the co-
efficients aij (1 ≤ i, j ≤ N) do not depend on x ∈ Ω. Suppose that for each
k ∈ ZN we have aij(y) = rij(k) for y ∈ k + Y (Y as in Example 5.4), where
the family rij ∈ l∞(ZN ) (1 ≤ i, j ≤ N) is given. In other words, the function
aij is constant in each cell k + Y , the corresponding constant being rij(k).
Then it can be checked that (5.3) (where x must be disregarded, of course) is
satisfied in each of the following three cases:

(1) rij ∈ AP (ZN ) [24: p. 323].

(2) rij = cij + γij with cij ∈ C and γij ∈ l1(ZN ).

(3) rij ∈ B∞(ZN )

where B∞(ZN ) denotes the space of all complex mappings on ZN that converge
at infinity. These results are established in [27] (for the case (1)) and [31] (for
the cases (2) and (3)).

5.4 Concluding remarks. Thus, with the aid of the theory of H-structures,
problem (5.1) can be homogenized under various concrete structure hypothe-
ses (such as, e.g., (5.18), (5.19), (5.21), and the hypotheses of Example 5.5)
beyond the classical periodic framework. In each case, the operating proce-
dure consists in reducing the concrete homogenization problem to the abstract
statement of Subsection 5.1 so as to be able to apply Theorem 5.1. This is a
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significant progress in homogenization theory: Not only it is from now on pos-
sible to tackle outstanding nonperiodic homogenization problems, but also the
results achieved are in every respect similar to those of the periodic homoge-
nization theory, with the same explicitness and the same degree of accuracy.
The differential equation (see (5.1)) taken to illustrate our approach was pur-
posely classical and simple. In this connection it is of interest to anticipate
that one can obtain results of equal exactness with more complex partial dif-
ferential equations, for example nonlinear equations and evolution (linear or
nonlinear) equations. But that is quite another matter [32, 33].

Acknowledgement. The author would like to thank the anonymous ref-
eree for his pertinent remarks and useful suggestions.
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[8] Bourbaki, N.: Intégration, Chap. 5. Paris: Hermann 1967.

[9] Bourbaki, N.: Topologie générale, Chap. V - X. Paris: Hermann 1974.

[10] Bourbaki, N.: Topologie générale, Chap. I - IV. Paris: Hermann 1971.

[11] Bourbaki, N.: Espaces vectoriels topologiques, Chap. I - II. Paris: Hermann
1965.

[12] Bourgeat, A., Mikelic, A. and S. Wright: Stochastic two-scale convergence in
the mean and applications. J. Reine Angew. Math. 456 (1994), 19 – 51.

[13] Cascado-Diaz, J. and I. Gayte: A general compactness result and its application
to the two-scale convergence of almost periodic functions. C.R. Acad. Sci. Paris
(Série I) 323 (1996), 329 – 334.

[14] Dalmaso, G.: An Introduction to Gamma-Convergence. Boston: Birkhauser
1993.

[15] Dautrey, J. and J. L. Lions: Analyse mathématique et calcul numérique pour
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Academia 1967.

[27] Nguetseng, G.: Almost periodic homogenization: asymptotic analysis of a sec-
ond order elliptic equation (Publ. math. LAN 01). Univ. Yde I 2000.

[28] Nguetseng, G.: Mean value on locally compact abelian groups (to appear).

[29] Nguetseng, G. and R. Nzengwa: Homogenization of an elliptic differential equa-
tion of order 2m (submitted).

[30] Nguetseng, G.: A general convergence result for a functional related to the
theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608 – 623.

[31] Nguetseng, G.: Homogenization structures and applications II (in preparation).

[32] Nguetseng, G. and H. Nnang: Homogenization of nonlinear monotone operators
bayond the periodic setting (submitted).

[33] Nguetseng, G. and J. L. Woukeng: Deterministic homoganization in time of
linear and nonlinear parabolic equations (in preparation).

[34] Oleinik, O. and V. Zhikov: On the homogenization of elliptic operators with
almost periodic coefficients. Rend. Sem. Mat. Fis. Milano 52 (1982), 149 –
166.

[35] Papanicolaou, G. S. and S. R. S. Varadhan: Boundary value problems with
rapidly oscillating random coefficients. In: Random Fields (eds.: J. Fritz et
al.). Amsterdam: North-Holland 1981, pp. 835 – 873.

[36] Sanchez-Palencia, E.: Nonhomogeneous Media and Vibration Theory. Berlin:
Springer-Verlag 1980.



Homogenization Structures and Applications I 113

[37] Tartar, L.: Cours Peccot. Paris: Collège de France 1977.
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