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Harnack Inequality
for a

Class of Degenerate Elliptic Operators

J. D. Fernandes, J. Groisman and S. T. Melo

Abstract. We prove a Harnack inequality for a class of two-weight degenerate
elliptic operators. The metric distance is induced by continuous Grushin-type vector
fields. It is not know whether there exist cutoffs fitting the metric balls. This obstacle
is bypassed by means of a covering argument that allows the use of rectangles in the
Moser iteration.
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1. Introduction

Perhaps inspired by David and Semmes’ work [5], Franchi, Gutierrez and
Wheeden proved in [10] a very deep generalization of the classical Sobolev-
Poincaré inequality, unifying several other previous results. The importance
of Sobolev-Poincaré-type inequalities to the study of elliptic equations has
been well known for decades [18]. In particular, the so-called Moser iteration
technique [22 - 24] still is the basis upon which are built more recent proofs
of Harnack-type inequalities for non-negative solutions of degenerate elliptic
equations [1, 3, 6, 7, 13 - 15].

The main result in [10] thus paved the way for the proof of a more general
Harnack inequality. Indeed, in [11: Theorem II] the same authors stated a
result which has as particular cases the Harnack inequalities proven in [3, 7].
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As they pointed out, that new version would apply to solutions of the equation

∂

∂x

[(|x|σ+1 + |y|)
κ

σ+1
∂f

∂x

]
+

∂

∂y

[(|x|σ+1 + |y|)
κ

σ+1 |x|σ ∂f

∂y

]
= 0 (1)

in an open set Ω ⊂ R2 containing the origin, with κ and σ arbitrary positive
numbers. None of the other available results includes this example.

The proof of [11: Theorem II], however, is not complete. It depends on
the (not proven) existence of certain cut-off functions fitting the metric balls
defined by the operator. It is easy to construct (see our Proposition 14 below)
cutoffs which are identical to one or non-zero not on metric balls, but on cer-
tain “rectangles” which are products of Euclidean balls with variable ratio of
the radii. If one insists in using balls contained or containing those rectangles,
there remains a gap between the two balls which provokes an explosion of the
constants that appear in the iteration process.

In this paper, we prove [11: Theorem II] without using cutoffs addapted to
balls, applying instead a covering technique, based on a theorem in [4], already
used in the study of degenerate parabolic equations by the first author [8]. The
building block of the Moser iteration used here turns out to be not exactly
a Sobolev-Poincaré inequality, but rather its consequence stated in Theorem
2; which is a Sobolev-Poincaré inequality for rectangles, with the one on the
right ε times larger than the one on the left and with a negative power of
ε on the right. The main point of Section 4 is to show that a sequence εk

can be chosen in such a way that the iteration converges. We show that the
Moser-type iteration designed by Chanillo and Wheeden in [3] also works in
this context. Propositions which are straighforward addaptions of results in
[3] are stated here without proof.

We will assume as a hypothesis that the Sobolev-Poincaré inequality we
need is true, without explicitly stating Franchi, Gutierrez and Wheeden’s
Theorem I of [10], which is nonetheless our main motivation (since it provides
the main example). One important aspect of that theorem is that it allows
the presence of two (possibly non-comparable and non-Muckenhoupt) weights
in the ellipticity condition.

The existence of cutoffs suitable to the study of regularity properties of
weak solutions of degenerate elliptic equations has been independently proven
by Franchi, Serapioni and Serra Cassano [14], and by Garofalo and Nhieu [17].
Their results would apply in our context, however, only if we required that the
function λ, defined in our Section 2, be Lipschitz continuous (for the operator
in (1), the natural choice of λ would be λ(x) = |x|σ, σ > 0). Under this
additional assumption, [17: Theorem 1.3] or [14: Proposition 2.9] (together
with, for example, the composition argument in the proof of [17: Theorem
1.5]), would imply the existence of the test functions needed for the proof of
[11: Theorem II] to work.
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A different approach was taken by Biroli and Mosco [1]. Within a very
general framework, they proved the existence of cutoffs which satisfy, instead
of a pointwise estimate (as in [17: Theorem 1.5], for example), a weaker
requirement, in integral form [1: Proposition 3.3]. That also suffices for the
proof of Harnack-type inequalities ([1: Theorem 1.1] and [15: Theorem 1]).
Working directly with the bilinear form defined by the elliptic operator, they
did not have to to deal with the regularity of the vector fields usually used to
define the metric.

2. Preliminaries and statement of the main result

The operators considered in this paper are of type

Lf =
N∑

i,j=1

∂

∂zi

(
aij(z)

∂f

∂zj

)
(2)

where

z = (z1, . . . , zN ) = (x1, . . . , xn, y1, . . . , ym) ∈ RN = Rn × Rm,

the matrix A = ((aij)) is symmetric and the functions aij are real, measurable
and satisfy the (degenerate) ellipticity condition

v(z)
(|ξ|2 + λ(x)2|η|2) ≤

N∑

i,j=1

aij(z)ζiζj ≤ u(z)
(|ξ|2 + λ(x)2|η|2) (3)

for all ζ = (ξ, η) ∈ Rn × Rm, with the functions λ, u and v non-negative and
satisfying several hypotheses which are especified in what follows.

Throughout this paper, aB will denote, for a0 and B a ball in some metric
space, another ball with the same center and a-times the radius as B.

We require that the function λ defined on Rn satisfis the following hy-
potheses:

(H1) λ is non-negative, continuous, and vanishes possibly only on a set of
isolated points.

(H2) λ is doubling with respect to the Euclidean metric and the Lebesgue
measure, with doubling constant C1, i.e.

∫
2Be

λ(x) dx ≤ C1

∫
Be

λ(x) dx

for every Euclidean ball Be ⊂ Rn.
(H3) There exists a constant C2 such that supx∈Be

λ(x) ≤ C2
1
|Be|

∫
Be

λ(x) dx

for every Euclidean ball Be ⊂ Rn, with |·| denoting the Lebesgue mea-
sure.



132 J. D. Fernandes et al.

Definition 1. Given z◦ = (x◦, y◦) ∈ Rn × Rm = RN and r′ > 0, we
define

Λ(z◦, r) = sup
{x: |x−x◦|<r}

λ(x)

and denote

Q(z◦, r) =
{

(x, y) ∈ Rn × Rm : |x− x◦| < r and |y − y◦| < rΛ(z◦, r)
}

.

If Q = Q(z◦, r) and t > 0, tQ will denote Q(z◦, tr).

Remark 2. If follows from hypotheses (H2) - (H3) that

Λ(z◦, 2r) ≤ C1C2

2n
Λ(z◦, r) (4)

for all z◦ ∈ RN and all r > 0; and, hence, C1C2 ≥ 2n must hold.

Lemma 3. If z ∈ Q(z◦, r) and w ∈ Q(z, s), then w ∈ Q(z◦, r + s).

Definition 4. An absolutely continuous curve in RN is subunit if, for
every ζ = (ξ, η) ∈ RN and for almost every t in its domain, we have

〈γ′(t), ζ〉2 ≤ |ξ|2 + λ(γ(t))2|η|2

with 〈·, ·〉 denoting the usual inner product of RN . Given z and w in RN , let
ρ(z, w) denote the infimum of all T ≥ 0 such that there is a subunit curve
joining the two points with domain [0, T ].

The function ρ corresponds to the metric on RN associated to the Grushin-
type vector fields

∂

∂x1
, . . . ,

∂

∂xn
, λ(x)

∂

∂y1
, . . . , λ(x)

∂

∂ym

in a way which has by now become standard [12]. If λ is smooth and does not
vanish, one can see that ρ is equal to the geodesic distance associated to the
Riemannian metric

ds2 =
n∑

i=1

dx2
i + λ(x)−2

m∑

j=1

dy2
j .

An elementary proof of the following proposition can be given. For a
somewhat different but closely related result, we refer to [9].
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Proposition 5. The function ρ above defines a metric on RN and there
exists a constant b, depending only on n and m, such that the double inclusion

Q(z◦, r
b ) ⊆ B(z◦, r) ⊆ Q(z◦, br) (5)

holds for every z◦ ∈ RN and r > 0, where B(z◦, r) denotes the ball with respect
to this new metric with center z◦ and radius r.

Remark 6. Only hypothesis (H1) is required for the proof of Proposition
5. As shown in [19: Proposition 2.1.1], one may take b = max{3,

√
m,
√

n}.
Proposition 5 and hypothesis (H1) imply that the metric ρ induces in RN its
usual topology.

We require that u and v be weights on RN (non-negative non-trivial locally
integrable functions), which are doubling with respect to the ρ-metric and the
Lebesgue measure, i.e. such that there are constants C3 > 0 and C4 > 0 with

∫

2B

u(z) dz ≤ C3

∫

B

u(z) dz and
∫

2B

v(z) dz ≤ C4

∫

B

v(z) dz (6)

holding for all ρ-balls B. For every measurable E ⊆ RN , we will denote by
u(E) and v(E) the integrals over E of u and v, respectively. Notice that (6)
and Proposition 5 imply that u(E) and v(E) are positive if E has non-empty
interior.

For every locally integrable function g, we will denote by mE(g) the u-
average u(E)−1

∫
E

gu.

Last we state the strongest hypothesis we impose on u, v and λ: that the
following Sobolev-Poincaré inequality holds. For sufficient conditions for its
validity see, for example, the papers [2, 7, 9, 10, 12, 16, 21, 25] and their
references.

(SP) There exist q > 2 and C5 > 0, constants depending only on u, v, λ, n
and m, such that the inequality

[
1

u(B)

∫

B

|g(z)−mB(g)|qu(z) dz

] 1
q

≤ C5r

[
1

v(B)

∫

B

|∇λg(z)|2v(z) dz

] 1
2

holds for every Lipschitz continuous function g and every ball B with
respect to the metric ρ induced by λ, with r denoting the radius of B,
and ∇λg denoting the vector field

∇λg(z) =
(

∂g

∂x1
(z), . . . ,

∂g

∂xn
(z), λ(x)

∂g

∂y1
(z), . . . , λ(x)

∂g

∂ym
(z)

)
.
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Weak solutions of the equation Lf = 0 in a bounded open set Ω ⊂ RN are
defined (as in [11]) in H(Ω), the completion of the space Lip(Ω) of Lipschitz
continuous functions on Ω, the closure of Ω, with respect to the norm

||f ||2H =
N∑

i,j=1

∫

Ω

aij(z)
∂f

∂zi
(z)

∂f

∂zj
(z) dz +

∫

Ω

f(z)2u(z) dz. (7)

Using (3) and (6), one can show, similarly as in [3], that the equation above
indeed defines a norm. Moreover, if we denote by H◦(Ω) the closure in H(Ω)
of the space Lip◦(Ω) of the Lipschitz continuous functions of compact support
in Ω, it can be proven, and for that hypothesis (SP) is required, that the
bilinear form a◦ on Lip◦(Ω),

a◦(f, g) =
N∑

i,j=1

∫

Ω

aij(z)
∂f

∂zi
(z)

∂g

∂zj
(z) dz,

induces on H(Ω)o an inner product whose corresponding norm is equivalent
to || · ||H .

Definition 7. An element f ∈ H(Ω) is a weak solution of the equation
Lf = 0 if a◦(f, θ) = 0 for all θ ∈ H◦(Ω).

Applying the Lax-Milgram’s theorem, existence and uniqueness of a suit-
ably defined weak version of the Dirichlet problem on Ω can be proven, in
exactly the same way as in [3].

We still need two more definitions. The inequality

∫

Ω

f(x)2u(x) dx ≤ ||f ||2H

follows from condition (3) and the definition of || · ||H . A natural mapping
H(Ω) → L2(Ω, u(z) dz), f 7→ f̃ , is then defined. We stress we are not claiming
that this is an injection, even though that could be proven under additional
hypotheses. Finally, we will call an f ∈ H(Ω) non-negative, and denote this by
f ≥ 0, if there is a sequence of non-negative functions fk ∈ Lip(Ω) converging
to f in H(Ω).

Remark 8. If U ⊂ Ω is open and f ∈ H(Ω) is a weak solution of the
equation Lf = 0 in Ω, the restriction f |U ∈ H(U) is then a weak solution of
Lf = 0 in U . We also have f̃ |U = f̃ |U .

We are ready to state our main result.
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Theorem 1. Suppose that λ satisfies hypotheses (H1) - (H3), u and v are
doubling weights and also that hypothesis (SP) holds. Then there is a constant
K, depending only on C1, . . . , C5,q, m and n, such that, if Ω is a bounded open
subset of RN and f ∈ H(Ω) is a non-negative weak solution of the equation
Lf = 0, with L satisfying (2) and (3), then

esssupB f̃ ≤ eKµessinfB f̃ (8)

for every ρ-ball B such that 2b4B ⊆ Ω, where µ = u(B)
1
2 v(B)−

1
2 .

3. Application of a covering technique

All hypotheses of Theorem 1 are assumed to be true for the rest of the paper,
even if not explicitly. By a “constant” we will always mean a positive num-
ber which may depend only on the constants that arise in the hypotheses of
Theorem 1: C1, . . . , C5, q, m and n.

We start with a Sobolev-Poincaré inequality for the rectangles Q of Defi-
nition 1.

Proposition 9. There exists a constant C6 such that
[

1
u(Q)

∫

Q

|g(z)|qu(z) dz

] 1
q

≤ C6r

[
1

v(Q)

∫

b2Q

|∇λg(z)|2v(z) dz

] 1
2

+
[

1
u(Q)

∫

b2Q

g(z)2u(z) dz

] 1
2

(9)

holds for every Lipschitz function g and every Q = Q(z, r), where q > 2 is the
constant provided by hypothesis (SP).

Proof. Using (5), we see that
[

1
u(Q)

∫

Q

|g(z)−mbB(g)|qu(z) dz

] 1
q

is bounded by
[

u(bB)
u( 1

b B)
1

u(bB)

∫

bB

|g(z)−mbB(g)|qu(z) dz

] 1
q

.

Using that u is doubling and inequality (SP) for the ball bB, we get
[

1
u(Q)

∫

Q

|g −mbB(g)|qu
] 1

q

≤ C6r

[
1

v(Q)

∫

b2Q

|∇λg|2v
] 1

2

(10)

with C6 = bC
l
q

3 C5, where l is an integer such that b2 < 2l. To prove (9),
we start by applying to g = [g −mbB(g)] + mbB(g) the triangle inequality in
Lp(Q,u(z) dz), followed by (10), then by the Cauchy-Schwarz inequality for
L2(Q,u(z) dz) and finally (5)
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We will call a metric space homogeneous if it can be equipped with a Borel
measure ν such that ν(2B) ≤ Dν(B) for every ball B, for some doubling-factor
D.

The following proposition is a particular case of [4: Theorem 1.2].

Proposition 10. If {B(x, r)} is a family of balls of constant radius cov-
ering a subset E of a homogeneous metric space X, then there is a finite
sub-family {B(xi, r) : i = 1, . . . ,m} of disjoint balls such that {B(xi, 4r) : i =
1, . . . , m} still covers E.

Proposition 11. The metric space (RN , ρ) is homogeneous.

Proof. Let z◦ = (x◦, y◦) ∈ Rn×Rm and r > 0 be given. By (4), we have

Λ(z◦, t) ≤ Cl
7Λ(z◦, t

2l ) (11)

for every non-negative integer l and every t > 0, with C7 = 2−nC1C2. Using
Proposition 5, we then get

|B(z◦, 2r)| ≤ ωnωm(2br)NΛ(z◦, 2br)m ≤ Cml
7 (2b2)N |Q(z◦, r

b )|
if l is chosen so that 2b2 ≤ 2l, with ωk denoting the volume of the unit ball
in Rr. Since Q(z◦, r

b ) ⊆ B(z◦, r), this shows that the Lebesgue measure is
doubling with doubling-factor Cml

7 (2b2)N

Proposition 12. Given z ∈ RN and 0 < r < s, there exist z1, . . . , zp ∈
Q(z, s) such that the family {Q(z1, r), . . . , Q(zp, r)} covers Q(z, s), with Q(zj ,

r
4b2 )

and Q(zk, r
4b2 ) disjoint when j 6= k. Moreover, there are constants β and C8

such that
p ≤ C8

(s

r

)β

. (12)

Proof. The first statement of this proposition follows straightforwardly
from Proposition 5, Proposition 10 (with r

4b replacing r) and Proposition 11.
In order to prove (12), let us first remark that there is a constant β such that
the inequality

|Q(w, θt)| ≥ C−m
7 θβ |Q(w, t)| (13)

holds for all 0 < θ < 1, t > 0 and w ∈ RN . Indeed, let β be defined
by β = N + m log C7

log 2 . Using |Q(w, t)| = ωnωmtNΛ(w, t)m, we get (13) by
applying (11) to the integer l such that θ

2 < 2−l ≤ θ. It follows from Remark
2 that C7 ≥ 1 and thus β is positive.

By Lemma 3, and since s + r
4b2 < (b2 + 1)s, each Qj = Q(zj ,

r
4b2 ) is

contained in Q(z, (b2 + 1)s). Since the Qj ’s are mutually disjoint, we have

|Q(z, (b2 + 1)s)| ≥
p∑

j=1

∣∣∣Q
(
zj ,

r

4b2

)∣∣∣. (14)
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Now let us apply (13) to w = zj , t = (2b2 + 1)s and θ = r
8b4s+4b2s . We get

∣∣∣Q
(
zj ,

r

4b2

)∣∣∣ ≥
(r

s

)β |Q(zj , (2b2 + 1)s)|
Cm

7 (8b4 + 4b2)β
. (15)

By (5), z is in Q(zj , b
2s). Now Lemma 3 implies Q(zj , (2b2 +1)s) ⊇ Q(z, (b2 +

1)s). This, (14) and (15) together imply

|Q(z, (b2 + 1)s)| ≥ p
(r

s

)β |Q(z, (b2 + 1)s)|
Cm

7 (8b4 + 4b2)β
.

This proves (12) with C8 = Cm
7 (8b4 + 4b2)β

Lemma 13. There are constants C9 and γ such that

u(sQ)
u(rQ)

≤ C9

(s

r

)γ

and
v(sQ)
v(rQ)

≤ C9

(s

r

)γ

(16)

for every “rectangle” Q and for every 0 < r < s.

Proof. It follows from (5) and (6) that, if l is an integer such that b2 < 2l,
then u(2Q) ≤ Cl+1

3 u(Q) and v(2Q) ≤ Cl+1
4 v(Q) for all Q. Arguing similarly

as for the proof of (13), we can get (16) with C9 = max{Cl+1
3 , Cl+1

4 } and
γ = log C9

log 2

The following theorem plays here the role of Theorem D in [8]. The explicit
form of the constants in inequality (17) below, valid for arbitrarily small ε, is
needed for an efficient control of the constants that show up in the iteration
process.

Theorem 2. Under the hypotheses of Theorem 1, there are constants α
and C10 such that the estimate

εα

C10

[
1

u(Q)

∫

Q

|g(z)|qu(z) dz

]
≤




(
s2

v(Q)

∫

(1+ε)Q

|∇λg(z)|2v(z) dz

) 1
2

+

(
1

u(Q)

∫

(1+ε)Q

g(z)2u(z) dz

) 1
2



q

(17)
holds for every Q = Q(z, s), for every 0 < ε < 1, and for every Lipschitz
continuous function g, where q > 2 is the constant provided by hypothesis
(SP).
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Proof. Let us apply Proposition12 with r = ε s
b2 and let the Q’s then

obtained be denoted by Qj = Q(zj , r) (j = 1, . . . , m). By (9) we get

∫

Q

|g(z)|qu(z) dz ≤
p∑

j=1

u(Qj)


C6r

(
1

v(Qj)

∫

b2Qj

|∇λg(z)|2v(z) dz

) 1
2

+

(
1

u(Qj)

∫

b2Qj

g(z)2u(z) dz

) 1
2



q

.

(18)

By Lemma 3, we have b2Qj ⊆ Q(z, s + b2r), and hence the integrals on
b2Qj inside the brackets in (18) may be replaced by integrals on (1 + ε)Q.
We then estimate u(Q)

u(Qj)
and v(Q)

v(Qj)
using (16) and Q(z, s) ⊆ Q(zj , (b2 + 1)s)

(which follows from Lemma 3 and Proposition 5). This way we see that the
expression between brackets in (18) is bounded by the expression between

brackets in (17) times C
1
2
9 max{C6, 1}[ (b

2+1)s
r ]

γ
2 .

Next we use that Qj ⊆ 2Q (which follows from Lemma 3), to get u(Qj) ≤
C9u(Q) (by the proof of Lemma 13). After using (12), we finally get (17) with

C10 = C8C
2+q
2

9 max{C6, 1}q(b4 + b2)
qγ
2 b2β

and α = β + qγ
2

4. Moser iteration and Harnack inequality

We start this section with the construction of the test functions addapted to
rectangles mentioned in the Introduction.

Proposition 14. Given any z◦ ∈ RN and any 0 < r1 < r2, there is a
smooth function η equal to one everywhere on Q(z◦, r1), with support contained
in Q(z◦, r2), and such that 0 ≤ η(z) ≤ 1 and |∇λη(z)| ≤ C11

r2−r1
for all z ∈ RN ,

with C11 denoting the constant 2
√

N .

Proof. Choose ψ a smooth function on R identical to one on (−∞, 0],
with support contained in (−∞, 1), and such that 0 ≤ ψ(t) ≤ 1 and |ψ′(t)| ≤ 2
for all t ∈ R. Given z◦ = (x◦, y◦) ∈ Rn × Rm and 0 < r1 < r2, define

η(x, y) = ϕ

( |x− x◦|
r2

)
ϕ

( |y − y◦|
r2Λ(z◦, r2)

) (
(x, y) ∈ Rn × Rm

)

where ϕ(t) = ψ( r2t−r1
r2−r1

). It is straightforward to check that this η does it
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Definition 15. An element f ∈ H(Ω) is a weak subsolution of the equa-
tion Lf = 0 if a◦(f, θ) ≤ 0 for all non-negative θ in H◦(Ω).

Definition 16. Given M > 0 and d ≥ 1, let the function HM,d (contin-
uously differentiable with bounded derivative) be defined by HM,d(t) = td if
t ∈ [0,M ], and HM,d(t) = Md + dMd−1(t−M) if t > M .

Proposition 17. Let f ∈ H(Q), Q = Q(z◦, h), be a non-negative sub-
solution of the equation Lf = 0 and let fk be a sequence of non-negative
Lipschitz continuous functions on Q converging to f in H(Q). Given 1

2 ≤ s <
t ≤ 1,M > 0 and β ≥ 1, there are a subsequence fkj

of fk and a sequence
δj ≥ 0, δj → 0, such that for all j we have

∫

sQ

|∇λ(HM,d ◦ fkj )|2v ≤ δj +
4C2

11

(t− s)2h2

∫

tQ

|fkj · (H ′
M,d ◦ fkj )|2u. (19)

Proposition 17 can be given a proof almost identical to the first part of
the proof of [3: Lemma 3.1/pages 1117 - 1119]. One only needs to replace
their Euclidean ball B by our rectangle Q, and their ellipticity condition (1.1)
by ours (3). When (3) is applied, our ∇λ will show up, replacing their ∇.
Also, one should take η as the test function constructed in Proposition 14,
with r1 = hs and r2 = ht. Since the support of the chosen η is contained in
the open set Q(z◦, ht), we may allow t to be equal to one (this fact is needed
in our iteration).

An inequality to be derived from (17) and (19) will be iterated in the proof
of the next proposition, which corresponds to a weaker version of Lemma 3.1
in [3].

Proposition 18. If f ∈ H(Q), Q = Q(z◦, h), is a non-negative subsolu-
tion of the equation Lf = 0, then the estimate

(
ess sup

aQ
f̃

)p

≤ C12

(1− a)δ
[pµ(Q)]

2q
q−2

1
u(Q)

∫

Q

f̃pu (20)

holds for every a ∈ [ 12 , 1) and every p ≥ 2, with δ and C12 denoting constants
explicitly defined below (at the end of the proof), and µ(Q) = u(Q)

1
2 v(Q)−

1
2 .

(We recall that q arises in hypothesis (SP).)

Proof. Given 1
2 ≤ s < t ≤ 1 and d ≥ 1, let us first use Proposition

17 to extract a subsequence fkj of a sequence fk of non-negative Lipschitz
continuous functions on Q converging to f in H(Q) for which (19) is true.
Then, let us apply (17) to the rectangle sQ, for some ε satisfying (1 + ε)s < t
and for g = HM,d ◦fkj . Then let us apply (19) with (1+ε)s replacing s. Next,
we use (16) with t and s replacing s and r, respectively, and taking advantage
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of the fact that 1 < t
s ≤ 2. Finally, after using that HM,d(ϕ) ≤ ϕH ′

M,d(ϕ) for
all ϕ ∈ R, we get

[
1

u(sQ)

∫

sQ

|HM,d ◦ fkj
|qu

] 1
q

≤ C
1
q

10ε
−α

q sh

v(sQ)
1
2

δ
1
2
j + 2

γ
2 C

1
2
9 C

1
q

10 e−
α
q

×
[
2C11µ(sQ)

s

t− (1 + ε)s
+ 1

]

×
[

1
u(tQ)

∫

tQ

|fkj
· (H ′

M,d ◦ fkj
)|2u

] 1
2

.

(21)
Now we want to let j first, and then M , go to infinity. We may suppose,

passing to another subsequence if necessary, that fkj converges to f̃ pointwise,
almost everywhere with respect to the measure u(z) dz. Using Fatou’s lemma
on the left-hand side and Lebesgue’s convergence theorem on the right (again,
this is the same argument as Chanillo and Wheeden’s, on page 1120 of [3]),
one can see that it is legitimate to replace fkj by f̃ in (21), and then HM,d ◦ f̃

by f̃d and H ′
M,d ◦ f̃ by f̃d−1.

Since 1
2 ≤ s < (1 + ε)s < t ≤ 1, then s

t−(1+ε)s is greater than one. By (3),
it follows that µ(sQ) ≥ 1. Hence, the “+1” inside the first pair of brackets
at the right-hand side of inequality (21) may be absorbed by the constant
at its left, which will then be multiplied by two. Next we raise to the 1

d -th
power both sides of the inequality and change notation, writing r = 2d and
q = 2σ. After all that is taken into account, we will have deduced from (21)
the estimate

[
1

u(sQ)

∫

sQ

f̃rσu

] 1
rσ

≤
[
C13ε

−Aµ(sQ)rs
t− (1 + ε)s

] 2
r

[
1

u(tQ)

∫

tQ

f̃ru

] 1
r

(22)

for all r ≥ 2, with C13 = 2
2+γ
2 C

1
2
9 C

1
q

10C11 and A = α
q .

Let a ∈ [ 12 , 1) and p ≥ 2 be given and define aj = a + 1−a
j+1 . For each non-

negative integer j, let us apply (22) with t = aj , s = aj+1, ε = εj = aj+1−aj+2
aj+1

and r = σjp. Let us apply (22) again to the right-hand side of the inequality
thus obtained, but with t = aj−1, s = aj , ε = εj−1 and r = σj−1p. By
repeating this procedure, after j + 1 steps we will get

[
1

u(aj+1Q)

∫

aj+1Q

f̃pσj+1
u

] 1
pσj+1

≤




j∏

k=0

[
C13ε

−A
k µ(ak+1Q)pσkak+1

ak − (1 + εk)ak+1

] 2
pσk





[
1

u(Q)

∫

Q

f̃pu

] 1
p

.

(23)
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Since a < aj+1 < 2a for all j, it follows from Lemma 13 that the left-hand
side of (23) is greater than or equal to

[
2γC9

u(aQ)

∫

aQ

f̃pσj+1
u

] 1
pσj+1

which converges to ess supaQ f̃ as j tends to infinity. On the right-hand side
of (23) we may replace µ(aj+1Q) by

√
2γC9µ(Q), due to Lemma 13. Hence,

all we need is to find a precise estimate for the product

∞∏

k=0

[
C13

√
2γC9µ(Q)pσk

] 2
pσk

∞∏

k=0

[
ε−A

k ak+1

ak − (1 + εk)ak+1

] 2
pσk

. (24)

The first of these products equals

[
C13

√
2γC9µ(Q)pσ

1
σ−1

] 2σ
p(σ−1)

.

The second expression between brackets is equal to the left side of

(k + 1)(k + 3)A+1(ak + a + 1)A+1

2(1− a)A+1
≤ (k + 3)2A+3

2(1− a)A+1
.

Hence, the second product in (24) is bounded by

2−
2σ

p(σ−1) (1− a)−
2(A+1)σ
p(σ−1)

[
exp

∞∑

k=0

log(k + 3)
σk

] 4A+6
p

.

Defining δ = 2(A+1)σ
σ−1 and

C12 =
[√

2γ−2C9 C13σ
1

σ−1

] 2σ
σ−1

[
exp

∞∑

k=0

log(k + 3)
σk

]4A+6

finishes the proof

Proposition 19. Let f ∈ H(Q), Q = Q(z◦, h), be a strictly positive
(f ≥ ε◦ > 0) solution of the equation Lf = 0 and let fk, fk ≥ ε◦, be a
sequence in Lip(Q) converging to f in H(Q). Given 1

2 ≤ s < t ≤ 1 and
β ≤ 1, with −1 6= β 6= 0, there are a subsequence fkj of fk and a sequence of
non-negative reals δj → 0 such that for all j we have

∫

sQ

|∇λ(f
β+1
2

kj
)|2v ≤ δj +

(β + 1)2

β2

C2
11

(t− s)2h2

∫

tQ

fβ+1
kj

u. (25)
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A proof for Proposition 19 can be given following exactly the same steps
as in the first half of the proof of Lemma (3.11) in [3: pages 1121 – 1122],
making the addaptations already described after the statement of Proposition
17.

The proof of the following proposition follows the steps of [3: Lemma
3.11] for p < 0 or p ≥ 2. For 0 < p < 2, we use a technique of Hardy and
Littlewood, as in [20: Lemma 3.17].

Proposition 20. If f ∈ H(Q), Q = Q(z◦, h), is a non-negative solution
of the equation Lf = 0, then the estimate

(
esssupaQf̃

)p

≤ C14

(1− a)δ

[
1 + |p|µ(Q)

] 2q
q−2

1
u(Q)

∫

Q

f̃pu (26)

holds for every a ∈ [ 12 , 1) and every 0 6= p ∈ R, with δ and µ(Q) as defined in
Proposition 18 and C14 denoting the constant explicitly defined below, at the
end of the proof.

Proof. We may suppose that f ≥ ε◦ > 0 and later let ε◦ tend to zero, as
long as we make sure that none of the constants depends on ε◦.

Given β ≤ 1, −1 6= β 6= 0, 1
2 ≤ s < t ≤ 1 and ε > 0 such that (1+ ε)s < t,

we may combine (17) for g = f
β+1
2

kj
and (25), and then let j go to infinity.

Similarly as just before (22), with r = β + 1 and σ = q
2 , we get

[
1

u(sQ)

∫

sQ

f̃rσu

] 1
|r|σ

≤
(

C13ε
−A

2

) 2
|r| [ |r|

|r − 1|
sµ(sQ)

t− (1 + ε)s
+ 1

] 2
|r|

[
1

u(tQ)

∫

tQ

f̃ru

] 1
|r|

(27)

for all r ≤ 2, 0 6= r 6= 1.
Now let a ∈ [ 12 , 1) and p < 0 be given and let aj and εj be defined as in

the proof of Proposition 18. For each integer j, let us then apply (27) with
r = σkp, t = ak, s = ak+1 and ε = εk, for k = 0, 1, . . . , j. Iterating the j + 1
inequalities just obtained and letting j tend to infinity, similarly as before, we
get

esssupaQf̃−1 ≤ K0

[
1

u(Q)

∫

Q

f̃pu

] 1
|p|

(28)

with

K0 =
∞∏

k=0

[
C13ε

−A
k

2

(
σk|p|µ(ak+1Q)ak+1

|σkp− 1| [ak − (1 + εk)ak+1]
+ 1

)] 2
|p|σk

.
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Since at this point we are assuming p < 0, we have |σkp − 1| ≥ 1 for all
k ≥ 0. Taking into account also that 1 ≤ σk, that 1 ≤ ak+1

[ak−(1+εk)ak+1]
, that

µ(ak+1Q) ≤ √
2γC9 µ(Q) and that 1 ≤ √

2γC9, the infinite product above is
seen to be bounded by

K0 ≤
∞∏

k=0

[
C13

√
2γC9

2
(
1 + |p|µ(Q)

)
σk ε−A

k ak+1

ak − (1 + εk)ak+1

] 2
|p|σk

.

We may here use the estimates obtained at the end of the proof of Proposition
18 to conclude that (26) holds, if there we replace C14 by C12. It follows from
Proposition 18 that the same is true for p ≥ 2.

In the case 0 < p < 2, we have σjp tending to infinity, but smaller than
two for some values of j. Let us first suppose that σkp 6= 1, for every integer
k ≥ 0. Let then l be the integer such that σlp < 2 ≤ σl+1p. We may iterate
as before, but using (27) at the first l + 1 steps of the iteration and (22) after
that. We get

esssupaQf̃ ≤ K1

[
1

u(Q)

∫

Q

f̃pu

] 1
p

with

K1 =
l∏

k=0

[
C13ε

−A
k

2

(
σkpµ(ak+1Q)ak+1

|σkp− 1| [ak − (1 + εk)ak+1]
+ 1

)] 2
pσk

×
∞∏

k=l+1

[
C13ε

−A
k σkpµ(ak+1Q)ak+1

ak − (1 + εk)ak+1

] 2
pσk

.

In order to get a good estimate for K1, let us further suppose that p =
σj(σ+1)

2 , for some j ∈ Z. Then it will hold that |σkp − 1| ≥ σ−1
2σ , for every

integer k ≥ 0. We may proceed as we did for the other infinite products, using
in adition that 1 < 2σ

σ−1 , and prove that (26) holds for these values of p, with

C14 replaced by C15 = C12( 2σ
σ−1 )

2σ
σ−1 .

By Remark 8, we may apply the result we have just obtained with αQ
replacing Q, for any α ∈ (0, 1). Given 1

2 ≤ α′ < α ≤ 1 and p belonging

X = {σj(σ+1
2 : j ∈ Z}, we get

(
esssupα′Qf̃

)p

≤ C15(2γC9)
q

q−2

(α− α′)δ

[
1 + pµ(Q)

] 2q
q−2

1
u(αQ)

∫

αQ

f̃pu (29)

where we have used Lemma 13 and 1 ≤ C9 in order to replace µ(αQ) by µ(Q)
inside the brackets.
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Let us define

Ip =
[1 + pµ(Q)]

2q
2q−2

u(Q)

∫

Q

f̃pu
(
p ∈ (0, 2)

)

and E(α) = ess supαQ f̃ . Given any p ∈ (0, 2) \ X, let p ∈ X be such that
p
σ < p < p. By Lemma 13 and (29), we get

E(α′)p ≤ C16

(α− α′)δ
E(α)p−pIp (30)

with C16 = C15(2γC9)
2q−2
q−2 σ

2q
q−2 .

Given a ∈ [ 12 , 1), let αk be a strictly increasing sequence such that α0 = a,
and lim αk < 1. Let us take the logarithm of (30) and iterate, with α′ = αk

and α = αk+1 (k ≥ 0). With θ = p−p
p , we get

log E(a) ≤ 1
p

∞∑

k=0

θk log
C16

(αk+1 − αk)δ

+ lim sup
k→∞

θk+1 log E(αk+1) +
1

p(1− θ)
log Ip;

(31)

noting that, since C16 > 1 and αk+1 − αk < 1
2 , the terms of the series in the

above inequality are positive.
It follows from Proposition 18 for p = 2 that E(lim αk) is finite. Since

θ < 1, we then get lim supk→∞ θk+1 log E(αk+1) = 0. To estimate the sum in
(31), we need to make a precise choice of αk. If we let

αk = a + (1− a)

∑k
j=1 j−2

2
∑∞

j=1 j−2
(k ≥ 1)

we get αk+1 − αk ≥ 1−a
[4(k+1)2] . Since p(1− θ) = p, we get

p log E(a) ≤ log
C164δ

(1− a)δ
+

∞∑

k=0

θk log(k + 1)2δ + log Ip.

Exponentiating both sides of this inequality and defining

C14 = max

{
C12, C15, 4δC16 exp

[ ∞∑

k=0

θk log(k + 1)2δ

]}

finishes the proof
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Proposition 21. Let Ω be a bounded open set of RN , and let f ∈ H(Ω)
be a positive weak solution of the equation Lf = 0, bounded below by a positive
number. Let z0 ∈ Ω and h > 0 be such that bB ⊆ Ω, where B = B(z0, h).
For each α ∈ [ 12 , 1), define k(α, f) by log k(α, f) = mαbB(log f̃) (see page 4).
Then there is a constant C17 such that, if z0 and h are such that b2Q ⊆ Ω,
where Q = Q(z0, h), then the inequality

u

({
x ∈ αQ :

∣∣∣∣ log
f̃(x)

k(α, f)

∣∣∣∣ > t

})
≤ C17µ(Q)u(αQ)

(1− α)t
(32)

holds for every t > 0 and every α ∈ [ 12 , 1).

Proof. This proposition can be given a proof very similar to that of [3:
Lemma 3.13]. We are going to highlight a few points, refering to Chanillo and
Wheeden’s article for more details.

Let fk denote a sequence of positive Lipschitz continuous functions, uni-
formly bounded away from zero, converging to f in H(Ω). With the aid of the
test function η (built in Proposition 14 – here we take r1 = αh and r2 = h),
we can extract from fk a subsequence, which we will still denote by fk, such
that ∫

αQ

|∇λ(log fk)|2v ≤ 4C2
11u(Q)

(1− α)2h2
+ δk (33)

for some δk → 0.

With g = log fk, let us apply (10) with q replaced by 2 (this is allowed by
Hölder’s inequality) and Q replaced by αQ. Next, let us apply (33) with Q
replaced by b2Q. Using also Lemma 13, we get

∫

αQ

∣∣ log(fk)−mαbB(log fk)
∣∣2u ≤ C2

17

(1− α)2
µ(Q)2u(αQ) + δ′k (34)

with C17 = 2C6C
1
2
9 C11b

γ−2 and δ′k → 0. Using that fk is uniformly bounded
away from zero, one can see that the limk of the left-hand side of (34) is equal
to

∫
αQ
| log f̃ − log k(α, f)|2u. The proposition now follows from Chebyshev’s

and Cauchy-Schwartz’s inequalities

The following lemma for w ≡ 1 is essentially Lemma 3 of [24], whose proof
also works for the case of an arbitrary weight w.

Lemma 22 (Bombieri-Moser). Let w be a (non-negative) weight on RN ,
and let f be a bounded non-negative measurable function defined on a bounded
measurable set E. Suppose there is a family Et, t ∈ (0, 1], of measurable sets
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with w(Et) > 0 for all t, E1 = E and Es ⊂ Et if s < t. Assume there are
µ, c, d > 0 such that

esssupEs
fp ≤ c

(t− s)d

1
w(E1)

∫

Et

fpw (35)

for all p, s, and t such that 0 < p < µ−1 and 1
2 ≤ s < t ≤ 1 and

w
({

x ∈ E1 : log f(x) > τ
}) ≤ cµ

τ
w(E1) (36)

for all τ > 0. Then there exists C > 0, depending only on c, such that

esssupEα
f ≤ exp

[
Cµ

(1− α)2d

]
(37)

for all α ∈ [ 12 , 1).

Proof of Theorem 1. We may suppose that f̃ is bounded away from
zero, otherwise we could add an ε > 0 and later let ε → 0.

Let B = B(z0, h) be such that 2b3B ⊆ Ω and let Q = Q(z0, h). With
w = u and Et = 3t

2 Q, we are going to apply Lemma 22 to the functions f̃
k and

k
f̃
, where k = exp[m 3

2 bB(log f̃)]. Notice that f̃ is bounded on E1, since the
closure of E1 is contained in Ω, and we may then apply Proposition 18 with
p = 2 for a rectangle slightly larger than E1. Choosing, for example,

c = max
{

4C17

√
2γC9, 2γC9C14(2

γ
2 +1C9)

2q
q−2

}

we can check that (35) and (36) with d = δ and µ = µ(Q) hold for both f̃
k and

k
f̃
, by Propositions 20 and 21, and by also using that u is doubling (Lemma

13). We remark that 2b3B ⊆ Ω implies that 2b2Q ⊆ Ω, and we may apply
(32) with 2Q replacing Q and α = 3

4 . Choosing α = 2
3 in (37) for f̃

k and k
f̃
,

we see that ess supQ
f̃
k and ess supQ

k
f̃

= [ess infQ
f̃
k ]−1 are both bounded by

exp(32dCµ). Taking the product of these two inequalities, we get

esssupQf̃ ≤ exp(2C32dµ) essinfQf̃ . (38)

Now let B = B(z0, h) be such that 2b4 ⊆ Ω. We may apply (38) for the
rectangle bQ. By (5) we thus have

esssupB f̃ ≤ esssupbQf̃

≤ exp[2C32dµ(bQ)] essinfbQf̃

≤ exp[2C32dµ(bQ)] essinfB f̃ .

This proves (8) with K = 2C32d but with µ = µ(bQ) instead of µ = u(B)
1
2 v(B)−

1
2 .

Since u and v are doubling, those two quantities are comparable
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