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Abstract. We propose a new class of fundamental solutions for the numerical anal-
ysis of boundary value problems for the Maxwell equations. We prove completeness
of systems of such fundamental solutions in appropriate Sobolev spaces on a smooth
boundary and support the relevancy of our approach by numerical results.
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1. Introduction

The method of fundamental solutions or, equivalently, the method of discrete
sources (we will keep to the first name) is a widely used technique for the
numerical solution of elliptic boundary value problems which falls in the class
of so-called boundary methods reducing problems in n-dimensional domains
to some equations on their (n − 1)-dimensional boundaries. It is applicable
when a fundamental solution of the differential equation of the problem is
known and the completeness of an infinite system of such fundamental solu-
tions with singularities (sources) placed outside the domain of the problem is
proved. The original idea of the method emerged in the sixties [4, 20, 21] and
since then it was successfully used in geophysics, acoustics, elasticity theory,
electromagnetism and other fields. We refer the reader to the books [1, 8] and
to the review [10] for bibliography and more information about the method.

The aim of the present paper is to provide the theoretical foundation for
the application of the method of fundamental solutions to boundary value
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problems of electromagnetic scattering theory, in particular, to introduce a
system of fundamental solutions for Maxwell’s equations and to prove its
completeness in appropriate functional spaces. Here an explanation is needed
because all this seems to represent nothing new. Let us start with the concept
of a fundamental solution for a system of partial differential equations with
n unknowns and n equations of the form Au = 0, where A is a differential
operator. Usually (see, e.g., [28: p. 179]) it is defined as a n × n matrix,
denoted by Φ, such that

AΦ = δEn (1)

where δ is the Dirac delta function and En is the n × n identity matrix.
Nevertheless such a definition has no clear physical interpretation as a field
generated by a point source, the usual meaning of the fundamental solution.
In this sense the electromagnetic fields produced by an electric or a magnetic
dipole are closer to the physical meaning of a fundamental solution and some-
times they are called the fundamental solutions of the Maxwell system [7:
Section 4.2], but then it is not clear how they can be used for the analyti-
cal solution of homogeneous and inhomogeneous Maxwell’s equations, usually
based on property (1).

We propose another possibility, a fundamental solution which enjoys both
properties. It satisfies (1) in a sense explained below and has a clear meaning
of a field generated by a point source. Moreover, we prove the completeness
of an infinite system of such fundamental solutions in appropriate Sobolev
spaces which makes it possible to apply our system to the numerical solution
of boundary value problems for Maxwell’s equations in chiral media.

The construction of the system of fundamental solutions for the Maxwell
equations proposed here is based on some elements of quaternionic analysis
which seems to be the most appropriate formalism for this task. The solu-
tions obtained are complex quaternions, that is instead to be a pair of three-
component vectors, they have four components. Due to their simple form and
lower singularity compared with solutions based on a matrix approach (our
solutions increase as O( 1

ρ2(x) ) near the boundary, where ρ(x) is the distance
from the point x to the boundary, against O( 1

ρ3(x) ) in the case of solutions
proposed in [1, 8, 20]), and hence the quaternionic fundamental solutions are
in apt agreement with the natural integral representations for the electromag-
netic field which are the Stratton-Chu formulas) the numerical application of
them is easier and more natural.

The main idea for obtaining the quaternionic fundamental solutions for
Maxwell’s equations consists in the quaternionic diagonalization of Maxwell’s
equations proposed in [16] (see also [17, 19]). The Maxwell equations for an
isotropic homogeneous medium are reduced to a pair of quaternionic equations
in which the unknown functions are separated. For each of these equations
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a fundamental solution is easily constructed and then linear combinations of
them will give the required system of fundamental solutions for Maxwell’s
equations. The main difficulty constitutes the proof of completeness of this
system. We base our proof on the completeness of a system of fundamental
solutions of the Helmholtz operator in the kernel of this operator in L2-norm
and make use of a quaternionic decomposition of the kernel of the Helmholtz
operator.

Our results are applied to Maxwell’s equations for chiral media but they
are completely new for a non-chiral case as well.

2. Complex quaternions

We shall denote by H(C) the set of complex quaternions (= biquaternions).
Each element a of H(C) is represented in the form a =

∑3
k=0 akik where

{ak} ⊂ C, i0 is the unit and {ik : k = 1, 2, 3} are the quaternionic imaginary
units, that is the standard basis elements possessing the properties

i20 = i0 = −i2k, i0ik = iki0 = ik (k = 1, 2, 3)

i1i2 = −i2i1 = i3, i2i3 = −i3i2 = i1, i3i1 = −i1i3 = i2.

We denote the imaginary unit in C by i as usual. By definition, i commutes
with ik (k = 0, 1, 2, 3).

The basic quaternionic imaginary units i1, i2, i3 can be identified with the
basic coordinate vectors in a three-dimensional space. In this way a vector ~a
from C3 is identified with the complex quaternion a1i1+a2i2+a3i3. We will use
the so-called vector representation of complex quaternions, i.e. each a ∈ H(C)
is represented as a = a0+~a, where a0 is the scalar part of a sometimes denoted
as Sc(a) = a0 and ~a is the vector part of a: Vec(a) = ~a =

∑3
k=1 akik. Complex

quaternions of the form a = ~a will be called purely vectorial.
In vector terms, the multiplication of two arbitrary complex quaternions

a and b can be rewritten as follows:

a · b = a0b0 − 〈~a,~b〉+ [~a×~b] + a0
~b + b0~a

where

〈~a,~b〉 =
3∑

k=1

akbk ∈ C and [~a×~b] =

∣∣∣∣∣∣

i1 i2 i3
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
∈ C3.

The complex quaternion a = a0−~a is called the conjugate of a. Let us denote
by S the set of zero divisors from H(C). We recall (see, e.g., [19]) that a ∈ S

if and only if a · a = 0. If a /∈ S ∪ {0}, then a−1 exists and a−1 = a
a·a .
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3. Quaternionic differential operators

We shall considerH(C)-valued functions depending on three variables x1, x2, x3.
On the set of such componentwise continuously differentiable functions the op-
erator D =

∑3
k=1 ik∂k is defined where ∂k = ∂

∂xk
. The expression Df , where

f is an H(C)-valued function, can be rewritten in a vector form as

Df = −div ~f + gradf0 + rot~f.

That is, Sc(Df) = −div ~f and Vec(Df) = gradf0 + rot~f . The condition
f ∈ kerD is equivalent to the Moisil-Theodoresco system

div ~f = 0

gradf0 + rot~f = 0

}

which has been studied in hundreds of works (see, e.g., [3, 9]).
Denote Dα = D +αI, where α is a complex constant and I is the identity

operator. As we will see in the subsequent pages, α has the meaning of a wave
number. Having this in mind we will assume that α 6= 0 and Imα ≥ 0.

We have the factorization of the Helmholtz operator

∆ + α2 = −DαD−α = −D−αDα (2)

which in particular means that any function satisfying the equation

Dαf = 0 (3)

or
D−αf = 0 (4)

also satisfies the Helmholtz equation (∆ + α2)f = 0.

Remark 1. Purely vectorial solutions of equations (3) or (4) are known as
Beltrami fields or linear force-free fields and are intensively studied in different
branches of modern physics (see, e.g., [2, 5, 6, 11, 12, 22, 24, 29, 32, 33]).

We will use the fundamental solution of the Helmholtz operator

θα(x) = −eiα|x|

4π|x|

which fulfills the Sommerfeld radiation condition at infinity. Fundamental
solutions Kα and K−α for the operators Dα and D−α, respectively, can be
obtained easily using (2). We have that the functions Kα = −(D − α)θα and
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K−α = −(D + α)θα satisfy the equations D±αK±α = δ. More explicitly, we
have

K±α(x) =
(± α + x

|x|2 − iα x
|x| )θα(x)

where x =
∑3

k=1 xkik. Note that K±α are complex quaternionic functions
with Sc(K±α(x)) = ±αθα(x) and Vec(K±α(x)) = −gradθα(x) = ( x

|x|2 −
iα x
|x| )θα(x).

Let us introduce the operators

Π±α = ∓ 1
2αD∓α

considering them on H(C)-valued functions from ker(∆ + α2). Then we have
the following statement (see the proof in [19: p. 36]).

Proposition 2. The following relations hold:
1. Π2

±α = Π±α

2. ΠαΠ−α = Π−αΠα = 0
3. Πα + Π−α = I

4. As imΠ±α = kerD±α we have ker(∆ + α2) = kerDα ⊕ kerD−α.

4. Relation between quaternionic differential operators
and Maxwell’s system for chiral media

As we will see, our approach works not only for homogeneous, isotropic, achiral
media but also for chiral media. This last case is more general. When the
chirality measure of a medium β is equal to zero, we obtain the non-chiral
or achiral situation. This is why we show our results for the case of a chiral
medium – transition to a non-chiral case is quite easy.

For the sake of simplicity we consider a sourceless situation. Then Maxwell’s
equations for time-harmonic electromagnetic fields in a chiral medium have
the form (see, e.g., [23, 25])

divẼ(x) = divH̃(x) = 0

rotẼ(x) = iωB̃(x)

rotH̃(x) = −iωD̃(x)





(5)

with the Drude-Born-Fedorov constitutive relations [23]

D̃ = ε
(
Ẽ(x) + βrotẼ(x)

)

B̃ = µ
(
H̃(x) + βrotH̃(x)

)
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where ω is the frequency, ε and µ are complex permittivity and permeability
of a medium and β is its chirality measure. The Maxwell equations (5) can
be also written as

rotẼ(x) = iωµ
(
H̃(x) + βrotH̃(x)

)

rotH̃(x) = −iωε
(
Ẽ(x) + βrotẼ(x)

)
.

}

Introducing the notations

Ẽ(x) = −√µ · ~E(x)

H̃(x) =
√

ε · ~H(x)

we obtain the equations

rot ~E(x) = −iα
(
~H(x) + βrot ~H(x)

)

rot ~H(x) = iα
(
~E(x) + βrot ~E(x)

)
}

(6)

where as before α = ω
√

εµ and, in the case of β = 0, α is the wave number.
When β 6= 0, as it will be seen below, α does not have the same physical
meaning. There appear two wave numbers α1 and α2 instead.

Now, following [15] we obtain a more convenient quaternionic form of sys-
tem (6). For this let us consider the purely vectorial biquaternionic functions

~ϕ(x) = ~E(x) + i ~H(x)
~ψ(x) = ~E(x)− i ~H(x).

We have
D~ϕ(x) = rot ~E(x) + irot ~H(x).

Using (6) we obtain

D~ϕ(x) = −(
iα ~H(x) + α~E(x)

)− αβ
(
D ~E(x) + iD ~H(x)

)
.

That is,
D~ϕ(x) = −α~ϕ(x)− αβD~ϕ(x).

Thus the complex quaternionic function ~ϕ satisfies the equation
(
D + α

1+αβ

)
~ϕ(x) = 0. (7)

By analogy we obtain the equation for ~ψ

(
D − α

1−αβ

)
~ψ(x) = 0. (8)
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Introducing the notations α1 = α
1+αβ and α2 = α

1−αβ we rewrite equations
(7) - (8) in the form

(D + α1)~ϕ(x) = 0

(D − α2)~ψ(x) = 0.

When β = 0, we arrive at the quaternionic form of the Maxwell equations in
the non-chiral case, but in general the wave numbers α1 and α2 are differ-
ent and physically characterize the propagation of waves of opposing circular
polarizations.

5. Quaternionic integral operators

Let Γ be a closed Liapunov surface in R3. The corresponding interior and
exterior domains we denote by Ω+ and Ω−, respectively. Let ~n be the outward
unitary normal on Γ with respect to Ω+ in quaternionic form: ~n =

∑3
k=1 nkik.

Denote

(K±αf)(x) = −
∫

Γ

K±α(x− y)~n(y)f(y) dΓy (x ∈ R3 \ Γ)

where f is an H(C)-valued function and all the products under the integral
are quaternionic. The following important result is well known (see, e.g., [19:
p. 70]).

Theorem 3. Let f ∈ C1(Ω+) ∩ C(Ω+) and f ∈ kerD±α(Ω+). Then
f(x) = (K±αf)(x) for all x ∈ Ω+.

Remark 4. In this paper the belonging of a complex quaternionic func-
tion f to some functional space means that each of its components fk belongs
to that space.

For the consideration of equations (3) - (4) in the domain Ω− one needs
appropriate radiation conditions at infinity. Such conditions were introduced
in [26] (see also [18]). Solutions of equation (3) are required to satisfy the
equality (

1 + ix
|x|

) · f(x) = o
(

1
|x|

)
(|x| → ∞) (9)

uniformly in all directions. For solutions of equation (4) in Ω− the corre-
sponding radiation condition has the form

(
1− ix

|x|
) · f(x) = o

(
1
|x|

)
(|x| → ∞). (10)

Then we have the following result [18]:
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Theorem 5. Let f ∈ C1(Ω−) ∩ C(Ω−), f ∈ kerDα(Ω−) and satisfying
condition (9) or f ∈ kerD−α(Ω−) and satisfying condition (10). Then

f(x) =




−Kαf(x)
or
−K−αf(x)

respectively for any x ∈ Ω−.

As we will consider H(C)-valued functions satisfying the Helmholtz equa-
tion

(∆ + α2)u = 0 (11)

in unbounded domains it will be convenient to obtain a radiation condition
at infinity in a quaternionic form for such functions. If a solution u0 of the
Helmholtz equation is a scalar function, then the corresponding radiation
condition is the well known Sommerfeld condition

iαu0(x)− 〈
x
|x| , gradu0(x)

〉
= o

(
1
|x|

)
when |x| → ∞. (12)

For a vector solution ~u of the Helmholtz equation the corresponding radiation
condition has the form [7: Section 4.2]

[
rot~u× x

|x|
]
+ x
|x|div~u− iα~u = o

(
1
|x|

)
when |x| → ∞. (13)

Let us notice that a vector solution ~u of the Helmholtz equation fulfills this
condition if and only if each Cartesian component of ~u fulfills the Sommer-
feld radiation condition [7: Section 4.2]. Thus, our quaternionic radiation
condition must include both conditions (12) for u0 and (13) for ~u.

It is easy to obtain such a condition using Proposition 2 and radiation
conditions (9) - (10). From Proposition 2, an H(C)-valued solution u = u0 +~u
of equation (11) has the form u = Παu + Π−αu where Παu fulfills (9) and
Π−αu fulfills (10). Thus we obtain

u(x) = −i x
|x| ·Παu(x) + i x

|x| ·Π−αu(x) + o
(

1
|x|

)
(|x| → ∞).

From the definition of Π±α we have

2αu(x) = i x
|x| · (D − α)u(x) + i x

|x| · (D + α)u(x) + o
(

1
|x|

)
(|x| → ∞).

Finally we arrive at the following radiation condition at infinity for complex
quaternionic solutions of the Helmholtz equation (11):

iαu(x) + x
|x| ·Du(x) = o

(
1
|x|

)
when |x| → ∞. (14)
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As is easy to see, when u = u0, then the scalar part of this equality gives us
exactly the Sommerfeld condition (12) and the vector part

[
x
|x| × gradu0(x)

]
= o

(
1
|x|

)
(15)

is a redundant equality because it is a simple consequence of the fact that a
scalar solution of the Helmholtz equation satisfying the Sommerfeld condition
at infinity can be represented as a single layer potential which satisfies (15).

When u = ~u, the vector part of (14) gives us (13) and the scalar part
〈

x
|x| , rot~u(x)

〉
= o

(
1
|x| )

is again a simple consequence from the integral representation of ~u (see [7:
Section 4.2] or [19: p. 120]). Thus (14) in special cases reduces to (12) and
(13) and in general represents the radiation condition at infinity for the quater-
nionic Helmholtz equation. Note that (9) - (10) follow from (14) immediately
if one assumes that u ∈ kerDα or u ∈ kerD−α, respectively.

We will need the operators

(Sαf)(x) = −2
∫

Γ

Kα(x− y)~n(y)f(y) dΓy (x ∈ Γ)

Pα = 1
2 (I + Sα) and Qα = 1

2 (I − Sα)

defined for example on Hölder functions in the sense of the Cauchy principal
value. It is well known that Sα is a singular integral operator of Calderon-
Zygmund type (see [13: Section 2.5]). This implies the boundedness of the
operators Pα, Qα, Sα in Sobolev spaces Hs(Γ) for all real s.

The following important properties of the operators Pα, Qα, Sα will be
widely used in this work.

Theorem 6. Let f ∈ L2(Γ). Then for almost every point τ ∈ Γ the
non-tangential limits

lim
Ω±3x→τ∈Γ

Kα[f ](x) = Kα[f ]±(τ) (16)

exist and the formulas

Kα[f ]+(τ) = Pα[f ](τ) = 1
2 (I + Sα)f(τ)

Kα[f ]−(τ) = −Qα[f ](τ) = − 1
2 (I − Sα)f(τ)

(17)

hold.

Let now Γ be a sufficiently smooth surface in order that the Sobolev space
Hs(Γ) for a given s be defined.
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Remark 7. Since Hs(Γ) ⊂ L2(Γ) for s ≥ 0 and Sα is bounded in Hs(Γ),
equalities (16) - (17) hold for f ∈ Hs(Γ) (s ≥ 0).

Corollary 8.
1. The equalities S2

α = I, P 2
α = Pα, Q2

α = Qα, PαQα = QαPα = 0 hold on
Hs(Γ) (s ≥ 0).

2. In order for f ∈ Hs(Γ) (s ≥ 0) to be a boundary value of a function
F ∈ kerDα(Ω+), the condition f ∈ imPα(Hs(Γ)) is necessary and sufficient.

3. In order for f ∈ Hs(Γ) (s ≥ 0) to be a boundary value of a func-
tion F ∈ kerDα(Ω−) satisfying condition (9) at infinity, the condition f ∈
imQα(Hs(Γ)) is necessary and sufficient.

The proof of these facts in L2(Γ) can be found in [19: Chapter 5]. By
Theorem 6 and Remark 7 these assertions also hold in the space Hs(Γ) (s ≥
0). Needless to say that the same facts are valid for D−α.

6. Complete systems of fundamental solutions
of the Helmholtz operator

Let Γ be a closed surface in R3 which is a boundary of a bounded domain
Ω+ and of an unbounded domain Ω− = R3 \ Ω+. By Γ− we denote a closed
surface enclosed in Ω+ and enclosing the domain V and by Γ+ a closed surface
enclosing Ω+ as shown in Figure 1.

By {y−n }∞n=1 we denote a set of points distributed on Γ− and dense on Γ−, and
by {y+

n }∞n=1 a set of points distributed on Γ+ and dense on Γ+. To each of these
sets a system of fundamental solutions {θα(x−y−n )}∞n=1 or {θα(x−y+

n )}∞n=1 is
related. Denote θ−α,n(x) = θα(x− y−n ) and θ+

α,n(x) = θα(x− y+
n ). Singularities
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of functions of the first system are distributed on the interior surface Γ− and
consequently every such function is a solution of the Helmholtz equation in
Ω− satisfying the Sommerfeld radiation condition at infinity. Functions from
the second system have their singularities on the exterior surface Γ+ and solve
the Helmholtz equation in Ω+.

We start with the following theorem due to V. Kupradze [20]. Its proof
can be found, for example, in [8: p. 51].

Theorem 9. Let Γ be a closed surface of class C2. Then the system of
functions {θα(x − y+

n )}∞n=1 is complete in L2(Γ). Assume additionally that
α2 is not an eigenvalue of the Dirichlet problem in V . Then the system of
functions {θα(x− y−n )}∞n=1 is complete in L2(Γ) also.

Our aim is to obtain a similar result for the Sobolev spaces Hs(Γ). This
will require a sequence of steps. We will show first that these systems of func-
tions are complete in L2(Ω)∩ker(∆+α2). Then this result will be extended to
Hs(Ω)∩ker(∆+α2). Finally, as Hs(Γ) can be considered as a space of traces
of corresponding solutions of the Helmholtz equation, we will be able to prove
the completeness of our systems of fundamental solutions for the Helmholtz
operator in this space.

6.1 Interior domain. First, let us consider the case of a bounded domain
Ω+ and then of an unbounded domain Ω−.

Theorem 10. Let Ω+ be a bounded domain in R3 with a Liapunov bound-
ary Γ. The system of functions {θ+

α,n}∞n=1 is complete in L2(Ω+)∩ker(∆+α2).

Proof. We consider ∆ + α2 as an unbounded operator in L2(Ω+) with
domain H2(Ω+). This operator is closed and the set L2(Ω+)∩ ker(∆ + α2) is
a subspace. Thus it is sufficient to prove that the system {θ+

α,n}∞n=1 is closed
in L2(Ω+) ∩ ker(∆ + α2). Assume that there exists a non-trivial function
f ∈ L2(Ω+)∩ ker(∆ + α2) with the property 〈θ+

α,n, f〉L2(Ω+) = 0 for all n ∈ N
or, in explicit form,

∫

Ω+
θα(x− y+

n )f∗(x) dx = 0 (n ∈ N)

where * stands for the usual complex conjugation. Denote

VΩ+f(y) =
∫

Ω+
θα(x− y)f(x) dx.

We have VΩ+f∗(y+
n ) = 0 for all n ∈ N. These equalities and the continuity of

VΩ+f∗ imply the equality VΩ+f∗ = 0 on Γ+.
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The function VΩ+f∗ satisfies the Helmholtz equation in Ω− and fulfills the
Sommerfeld radiation condition at infinity. Consequently, VΩ+f∗ ≡ 0 in Ω−.
Moreover, all the derivatives of VΩ+f∗ in Ω− are equal to zero. Thus we obtain
that the function VΩ+f∗ and all its derivatives are equal to zero on Γ. Taking
this into account and using the fact that VΩ+f∗ ∈ ker(∆ + α∗2)(∆ + α2) in
Ω+ due to the uniqueness of continuation for the null solutions of this elliptic
operator [27: Theorem 6.14] we obtain VΩ+f∗ ≡ 0 in Ω+ and hence f ≡ 0 in
Ω+

Theorem 11. Under the conditions of Theorem 10 the system of func-
tions {θ+

α,n}∞n=1 is complete in Hs(Ω+) ∩ ker(∆ + α2) (s ≥ 0).

Proof. Here we use the quite general fact proved by N. Tarkhanov (for a
general elliptic system, see [30: Section 8.1]) that a function from Hs(Ω+) ∩
ker(∆ + α2) belongs to the closure of the subspace sol(Ω+) in Hs(Ω+) con-
sisting of all C∞ solutions of the Helmholtz equation in a neighborhood of
Ω+. That is, for any function f ∈ Hs(Ω+) ∩ ker(∆ + α2) and for any ε > 0
we can find such a function f0 ∈ ker(∆ + α2) in Ω̃+, where Ω+ ⊂ Ω̃+, that
‖f − f0‖Hs(Ω+) < ε

2 . The domain Ω̃+ can be chosen enclosed by Γ+.

For all solutions u of the Helmholtz equation in Ω̃+ we have the estimate
(see, e.g., [31: Theorem 11.1]) ‖u‖Hs(Ω+) ≤ C‖u‖

L2(Ω̃+)
where the constant

C does not depend on u. Due to Theorem 10, for any ε1 > 0 the function
f0 can be approximated by a linear combination fN =

∑N
n=1 anθ+

α,n in Ω̃+ in
such a way that ‖f0 − fN‖L2(Ω̃+)

< ε1. Choose ε1 = ε
2C and consider

‖f − fN‖Hs(Ω+) = ‖f − f0 + f0 − fN‖Hs(Ω+)

≤ ‖f − f0‖Hs(Ω+) + ‖f0 − fN‖Hs(Ω+)

< ε
2 + C‖f0 − fN‖L2(Ω̃+)

< ε.

Thus the statement is proved

Theorem 12. Let Γ be a sufficiently smooth (the space Hs(Γ) is defined)
closed surface. The system of functions {θ+

α,n}∞n=1 is complete in Hs(Γ) (s ∈
R).

Proof. For s ≤ 0 the result follows from Theorem 10. Let s > 0. Given
ε > 0, for any u ∈ Hs(Γ) there exists (probably not unique) a solution of
the Dirichlet problem (∆ + α2)U = 0 in Ω+, U |Γ = u in Hs+ 1

2 (Ω+). Due to
Theorem 11, for any ε1 > 0 we can approximate it by a linear combination
UN =

∑N
n=1 anθ+

α,n in such a way that ‖U − UN‖
Hs+ 1

2 (Ω+)
< ε1. Denoting

uN = γUN and using the continuity of the trace operator γ we obtain

‖u− uN‖Hs(Γ) = ‖γ(U − UN )‖Hs(Γ) ≤ C‖U − UN‖
Hs+ 1

2 (Ω+)
< Cε1.
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Choosing ε1 = ε
C we finish the proof

Remark 13. Theorem 12 was proved for scalar functions from Hs(Γ).
Nevertheless, it is obviously valid also for H(C)-valued functions from Hs(Γ)
which in this case are approximated by linear combinations

∑N
n=1 c+

n θ+
α,n

where c+
n are complex quaternions.

6.2 Exterior domain. Let BR be an arbitrary ball with a sufficiently large
radius R such that Ω+ ⊂ BR. Denote Ω−R = Ω− ∩BR. Thus Ω−R is a domain
in R3 with a boundary consisting of Γ and of the sphere ∂BR.

Theorem 14. Let Γ be a closed Liapunov surface and α2 be not an eigen-
value of the Dirichlet problem in V . The system of functions {θ−α,n}∞n=1 is
complete in L2(Ω−R) ∩ ker(∆ + α2).

Proof. Assume that there exists a non-trivial function f ∈ L2(Ω−R) ∩
ker(∆ + α2) with the property 〈θ−α,n, f〉L2(Ω

−
R

) = 0 for all n ∈ N or, in explicit
form, ∫

Ω−
R

θα(x− y−n )f∗(x) dx = 0 (n ∈ N).

Denote

VΩ−
R
f(y) =

∫

Ω−
R

θα(x− y)f(x) dx.

We have VΩ−
R
f∗(y−n ) = 0 for all n ∈ N and hence VΩ−

R
f∗ = 0 on Γ−.

The function VΩ−
R
f∗ satisfies the Helmholtz equation in Ω+. It is equal to

zero in V due to the uniqueness of a solution of the Dirichlet problem in V , and
it is zero with all its derivatives in Ω+ due to the uniqueness of continuation for
the solutions of the Helmholtz equation. Moreover, in Ω+ ∪ Ω−R the function
VΩ−

R
f∗ belongs to ker(∆ + α∗2)(∆ + α2). Thus due to the uniqueness of

continuation for the solutions of this elliptic operator we obtain VΩ−
R
f∗ ≡ 0 in

Ω−R and hence f ≡ 0 in Ω−R

Theorem 15. Under the conditions of Theorem 14 the system of func-
tions {θ−α,n}∞n=1 is complete in Hs(Ω−R) ∩ ker(∆ + α2) (s ≥ 0).

Proof. First, for a given ε > 0 we choose such a function f0 ∈ ker(∆+α2)
in Ω̃−R that ‖f − f0‖Hs(Ω−

R
) < ε

2 , where Ω̃−R is a domain containing Ω−R and

such that Γ− ∩ Ω̃−R = ∅. For all solutions u of the Helmholtz equation in Ω̃−R
we have the estimate ‖u‖Hs(Ω−

R
) ≤ C‖u‖

L2(Ω̃
−
R

)
where the constant C does not

depend on u. The proof finishes by analogy with that of Theorem 11
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Theorem 16. Let Γ be a sufficiently smooth closed surface and α2 be
not an eigenvalue of the Dirichlet problem in V . The system of functions
{θ−α,n}∞n=1 is complete in Hs(Γ) (s ∈ R).

The proof is completely analogous to that of Theorem 12.

7. Extensions into exterior domains

Let us consider the exterior Dirichlet problem for the Helmholtz equation

(∆ + α2)U = 0 in Ω−

U |Γ = u

}
(18)

and let U satisfy the Sommerfeld radiation condition (12) at infinity. For
u ∈ Hs(Γ) (s > 0) it is known that the solution of this problem exists,
is unique and belongs to a weighted Sobolev space in Ω− (see [28: Section
2.6]). For our purposes the important fact will be that the solution belongs
to Hs+ 1

2 (Ω−R) where Ω−R is an intersection of Ω− with a ball BR of radius
R chosen large enough to enclose the interior domain Ω+. We denote by
H

s+ 1
2

loc (Ω−) the union of all such Hs+ 1
2 (Ω−R).

The same will be valid if in (18) we assume the functions u and U to be
H(C)-valued and each Cartesian component of U to satisfy (12) or, which is
equivalent, the whole function U to satisfy (14). The operator transforming u

into U we denote by Λ. As we have just seen, Λ acts from Hs(Γ) to H
s+ 1

2
loc (Ω−).

The operators Π±α introduced above act obviously from Hs
loc(Ω

−) to
Hs−1

loc (Ω−). Consider a function ΠαΛu. For u ∈ Hs(Γ) (s > 1) it will belong

to H
s− 1

2
loc (Ω−) and its trace (see, e.g., [28: p. 50]) is γΠαΛu ∈ Hs−1(Γ). As

the operators Q±α are bounded in Hs(Γ), we can introduce two new operators
Q̃α and Q̃−α by

Q̃±α = Q±αγΠ±αΛ : Hs(Γ) → Hs−1(Γ) (s > 1).

Proposition 17. Let an H(C)-valued function u belongs to Hs(Γ) (s >
1). Then

u = Q̃αu + Q̃−αu. (19)

Proof. Consider U = Λu. We have

U = ΠαU + Π−αU = −(KαγΠαU + K−αγΠ−αU) (20)

for any point x ∈ Ω−. Taking the limit of this equality when x tends to the
boundary and using Theorem 6 we obtain

u = QαγΠαΛu + Q−αγΠ−αΛu = Q̃αu + Q̃−αu

and the statement is proved
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Remark 18. As seen, the operators Q̃±α act from Hs(Γ) to Hs−1(Γ) (s >
1). So equality (19) can appear a little bit surprising. Nevertheless, this is
a reflection of the corresponding fact inside the domain Ω− (20), where the
differential operators Π±α also reduce the smoothness of a function but the
derivatives in (20) are cancelled.

Proposition 19. Let f ∈ imQα(Hs(Γ)) (s > 0). Then Qαf = Q̃αf .

Proof: Let f ∈ imQα, that is f = Qαf . We have that the function Λf

satisfies equation (3) in Ω− and belongs to H
s+ 1

2
loc (Ω−). Moreover, due to the

uniqueness of the solution of the Dirichlet problem for the Helmholtz operator
in Ω− we obtain ΠαΛf = Λf . Thus Λf = −KαγΠαΛf which on the boundary
due to Theorem 6 gives f = Q̃αf

Let us introduce the systems of functions
{K±α,n(x) = (−D + α)θα(x− y±n )

}∞
n=1{K±−α,n(x) = −(D + α)θα(x− y±n )

}∞
n=1

where the sets of points {y+
n }∞n=1 and {y−n }∞n=1 are defined as in Section 6.

We are ready to prove one of the central facts of this work.

Theorem 20. Let α2 be not an eigenvalue of the Dirichlet problem in V .
Then the systems of functions {K−±α,n}∞n=1 are complete in imQ±α(Hs(Γ)) (s >

1), respectively, by the norm of Hs−1(Γ).

Proof. Let us consider the system {K−α,n}∞n=1. Due to Proposition 19, any
function f ∈ imQα(Hs(Γ)) can be represented as f = Q̃αf . Due to Theorem
16, for any ε1 > 0 there exists such a linear combination fN =

∑N
j=1 ajθ

−
α,j

that ‖f − fN‖Hs(Γ) < ε1 where aj are constant complex quaternions. Due to
the boundedness of Q̃α we have

‖f − Q̃αfN‖Hs−1(Γ) = ‖Q̃αf − Q̃αfN‖Hs−1(Γ) ≤ C‖f − fN‖Hs(Γ) < Cε1

where C > 0 is a constant. Choosing ε = Cε1 we obtain ‖f−Q̃αfN‖Hs−1(Γ) <

ε. Thus the function Q̃αfN approximates f in the norm of Hs−1(Γ). Consider

Q̃αfN = QαγΠαΛ
N∑

j=1

ajθ
−
α,j .

It is obvious that the extension Λθ−α,j coincides with the values of θα(x− y−j )
for all x ∈ Ω−. We obtain

Q̃αfN (x) =
N∑

j=1

QαγΠα(θα(x−y−j ))aj =
1
2α

N∑

j=1

QαγK−α,j(x)aj =
1
2α

N∑

j=1

K−α,j(x)aj .

Thus the statement is proved
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8. Extensions into interior domains

The results of this section and their proofs are similar to those of Section
7 and we present them more briefly. Here a new and natural assumption
will be that α2 is not an eigenvalue of the Dirichlet problem in Ω+. Then
for each H(C)-valued function u ∈ Hs(Γ) (s > 0) there exists its unique
Helmholtz extension, an H(C)-valued function U satisfying the Helmholtz
equation (11) in Ω+ and coinciding with u on the boundary. As before, the
operator transforming u into U we denote by Λ. By analogy with the operators
Q̃±α we introduce the operators

P̃±α = P±αγΠ±αΛ : Hs(Γ) → Hs−1(Γ) (s > 1).

Proposition 21. Let α2 be not an eigenvalue of the Dirichlet problem
in Ω+ and let an H(C)-valued function u belong to Hs(Γ) (s > 1). Then
u = P̃αu + P̃−αu.

The proof is analogous to that of Proposition 17.

Proposition 22. Let α2 be not an eigenvalue of the Dirichlet problem in
Ω+ and let an H(C)-valued function f belong to imPα(Hs(Γ)) (s > 0). Then
Pαf = P̃αf .

The proof is analogous to that of Proposition 19.
Finally, by analogy with Theorem 20 the following statement can be

proved.

Theorem 23. Let α2 be not an eigenvalue of the Dirichlet problem in Ω+.
Then the systems of functions {K+

±α,n}∞n=1 are complete in imP±α(Hs(Γ)) (s >

1) respectively by the norm of Hs−1(Γ).

Remark 24. For α = 0 a similar result can be found in [14: p. 284] (see
also the references therein). Unfortunately, the scheme of the proof proposed
in that work is not applicable for complex quaternion-valued functions due to
the difficulty of introduction of an L2 space which would correspond to the
complex quaternionic multiplication.
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9. Complete systems for Maxwell’s equations

As was shown in preceding sections, the functions ~ϕ and ~ψ can be approxi-
mated by right linear combinations of functions {K±α1,n}∞n=1 and {K±−α2,n}∞n=1,
respectively. The vectors ~E and ~H from (6) are easily recovered from ~ϕ and
~ψ by

~E = 1
2 (~ϕ + ~ψ) and ~H = 1

2i (~ϕ− ~ψ). (21)

Consequently, all the results of preceding sections are applicable to the elec-
tromagnetic field.

As before we start with exterior domains. The radiation condition for the
vectors ~E and ~H is the Silver-Müller condition

~E − [
x
|x| × ~H

]
= o

(
1
|x|

)
(22)

or, in an equivalent form,
~H +

[
x
|x| × ~E

]
= o

(
1
|x|

)
(23)

uniformly for all directions. Note that (22) and (23) are fulfilled automatically
if as before ~ϕ and ~ψ satisfy (9) amd (10), respectively. We have

~E = 1
2 (~ϕ + ~ψ)

= 1
2 (−i x

|x| · ~ϕ + i x
|x| · ~ψ) + o

(
1
|x|

)

= x
|x| · 1

2i (~ϕ− ~ψ) + o
(

1
|x|

)

= x
|x| · ~H + o

(
1
|x|

)
.

The vector part of this equality gives us (22) and the scalar is a simple con-
sequence of (23). Starting with ~H instead of ~E we arrive at (23).

From Theorem 6, equalities (21) and the last observation concerning the
relation between the radiation conditions for ~ϕ and ~ψ from one side and for
~E and ~H from the other, we obtain the following criterion.

Theorem 25. Let complex vectors ~e and ~h belong to Hs(Γ) (s > 0).
Then in order for ~e and ~h to be boundary values of ~E and ~H satisfying Maxwell
equations (6) in Ω− and (22) at infinity, the condition

(~e + i~h) ∈ imQα1

(~e− i~h) ∈ imQ−α2

(24)

is necessary and sufficient.

Now from Theorem 20 we obtain immediately the following important re-
sult opening the possibility to apply the systems of quaternionic fundamental
solutions {K−α1,n}∞n=1 and {K−−α2,n}∞n=1 to approximation of the electromag-
netic field in exterior domains.
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Theorem 26. Let both α2
1 and α2

2 be no eigenvalues of the Dirichlet prob-
lem in V . Then if condition (24) is fulfilled, the vectors ~e and ~h belonging to
Hs(Γ) (s > 1) can be approximated with an arbitrary precision (in the norm
of Hs−1(Γ)) by right linear combinations of the form

~eN = 1
2

( N∑

j=1

K−α1,jaj +
N∑

j=1

K−−α2,jbj

)

~hN = 1
2i

( N∑

j=1

K−α1,jaj −
N∑

j=1

K−−α2,jbj

)

where aj and bj are constant complex quaternions.

Proof. Due to Theorem 20, there exist such aj and bj that

∥∥∥∥~e + i~h−
N∑

j=1

K−α1,jaj

∥∥∥∥
Hs−1(Γ)

< ε and
∥∥∥∥~e− i~h−

N∑

j=1

K−−α2,jbj

∥∥∥∥
Hs−1(Γ)

< ε.

From these two inequalities we obtain the necessary result

In a similar way we obtain the corresponding result for interior domains.

Theorem 27. Let both α2
1 and α2

2 be no eigenvalues of the Dirichlet prob-
lem in Ω+ and let the condition

(~e + i~h) ∈ imPα1(H
s(Γ))

(~e− i~h) ∈ imP−α2(H
s(Γ))

(s > 1)

be fulfilled which is a necessary and sufficient condition of the extendability of
the vectors ~e and ~h into Ω+ in such a way that their extensions satisfy (6).
Then ~e and ~h can be approximated with an arbitrary precision (in the norm
of Hs−1(Γ)) by right linear combinations of the form

~eN = 1
2

( N∑

j=1

K+
α1,jaj +

N∑

j=1

K+
−α2,jbj

)

~hN = 1
2i

( N∑

j=1

K+
α1,jaj −

N∑

j=1

K+
−α2,jbj

)

where aj and bj are constant complex quaternions.
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10. Numerical realization

Let Γ = ∂Ω− be a closed sufficiently smooth surface in R3. Consider the
following exterior boundary value problem for the Maxwell equations:

rot ~E(x) = −iα
(
~H(x) + βrot ~H(x)

)

rot ~H(x) = iα
(
~E(x) + βrot ~E(x)

)
[
~E(x)× ~n(x)

]
= ~f(x)

(x ∈ Ω−)

(x ∈ Ω−)

(x ∈ Γ)





(25)

where ~f(x) is a given tangential field and at infinity the vectors ~E and ~H
satisfy the Silver-Müller radiation condition (22) or (23). As before ~n stands
for the unit outward normal to Γ.

Using results of the preceding section, this problem can be rewritten in
the equivalent form

(D + α1)ϕ(x) = 0

(D − α2)ψ(x) = 0
1
2

[(
ϕ(x) + ψ(x)

)× ~n(x)
]

= ~f(x)

Scϕ(x) = Scψ(x) = 0

(x ∈ Ω−)

(x ∈ Ω−)

(x ∈ Γ)

(x ∈ Γ)





(26)

and at infinity the functions ϕ and ψ satisfy the conditions
(
1 + ix

|x|
) · ϕ(x) = o

(
1
|x|

)
(
1− ix

|x|
) · ψ(x) = o

(
1
|x|

)
(|x| → ∞).

(27)

Note that due to the uniqueness of the solution of the exterior Dirichlet prob-
lem for the Helmholtz equation condition (26)4 implies that ϕ and ψ will be
purely vectorial on the whole domain Ω−.

We look for an approximate solution of problem (26) - (27) in the form

ϕN (x) =
N∑

j=1

K−α1,j(x)aj and ψN (x) =
N∑

j=1

K−−α2,j(x)bj (28)

where aj and bj are constant complex quaternions. In order to find the coeffi-
cients ajand bj we use the collocation method. In (28) we have 8N unknown
complex quantities, the components of aj and bj . Thus it is necessary to
obtain 8N linearly independent equations with respect to components of aj

and bj . Every collocation point generates four linearly independent equations,
two of which correspond to the boundary condition (26)3 and the other two
correspond to (26)4. Consequently, in order to determine the coefficients aj
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and bj we need 2N collocation points. After having solved the corresponding
system of linear algebraic equations we obtain the approximate solution of
problem (25) as

~E(x) = 1
2

(
ϕN (x) + ψN (x)

)

~H(x) = 1
2i

(
ϕN (x)− ψN (x)

) (x ∈ Ω−).

The method described above was tested using the following exact solution.
Let β = 0 and consequently α = α1 = α2. The vectors

~Em(x) = rot~cθα(x) =




c3∂2θα(x)− c2∂3θα(x)
c1∂3θα(x)− c3∂1θα(x)
c2∂1θα(x)− c1∂2θα(x)




and

~Hm(x) = − 1
iα rot ~Em(x) (x ∈ R3 \ {0})

with ~c ∈ R3 constant represent the electromagnetic field of a magnetic dipole
situated at the origin [7: Section 4.2]. They satisfy (25)1−2 (for β = 0) as well
as the Silver-Müller conditions at infinity.

Let Γ be a unit sphere with its centre at the origin. Then ~Em and ~Hm

give us the solution of the boundary value problem

rot ~E(x) = −iα ~H(x)

rot ~H(x) = iα ~E(x)
[
~E(x)× ~n(x)

]
= ~f(x)

(x ∈ Ω−)

(x ∈ Ω−)

(x ∈ Γ)





where

~f(x) =







c3∂2θα(x)− c2∂3θα(x)
c1∂3θα(x)− c3∂1θα(x)
c2∂1θα(x)− c1∂2θα(x)


× ~n(x)


 .

As the auxiliary surface Γ− containing points y−n we have chosen the sphere
with centre at the origin and radius 0.15. In the following table we present
the results for different values of N . The corresponding errors represent the
absolute maximum difference between the exact and the approximate solutions
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at the points on the sphere with centre at the origin and radius 5.

A quite fast convergence of the method can be appreciated (all numerical
results were obtained on a PC Pentium 3).

Let us notice that the approximation by linear combinations of quater-
nionic fundamental solutions can be applied to other classes of boundary value
problems for the Maxwell system like for example the impedance problem.
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