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Exponential Growth

for a

Fractionally Damped Wave Equation

M. Kirane and N.-e. Tatar

Abstract. We consider a nonlinear wave equation with an internal damping represented by
a fractional time derivative and with a polynomial source. It is proved that the solution is
unbounded and grows up exponentially in the Lp-norm for sufficiently large initial data. To
this end we use some techniques based on Fourier transforms and some inequalities such as the
Hardy-Littlewood inequality.
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1. Introduction

This paper is concerned with the fractional differential problem

utt + ∂1+α
t u = ∆u+ |u|p−1u

u(x, t) = 0

u(x, 0) = u0(x), ut(x, 0) = u1(x)

(x ∈ Ω, t > 0)

(x ∈ Γ, t > 0)

(x ∈ Ω)





(1.1)

where p > 1,−1 < α < 1, u0 and u1 are given functions, Ω is a bounded domain of RN

with smooth boundary Γ, and ∂1+α
t is Caputo’s fractional derivative of order 1+α (see

[30: Chapter 2.4.1]) defined by

∂1+α
t w(t) = I−α d

dt
w(t) (−1 < α < 0) (2)

and

∂1+α
t w(t) = I1−α d2

dt2
w(t) (0 < α < 1) (3)
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where Iβ (β > 0) is the fractional integral

Iβw(t) =
1

Γ(β)

∫ t

0

(t− s)β−1w(s) ds.

This kind of fractional derivatives is shown to be more appropriate to the study of
partial differential equations with initial conditions (see [30: p. 78]). See [7, 28, 32] for
more on fractional integrals and derivatives.

Due to the strong singularity of the kernel appearing in this fractional derivative it
seems very difficult to apply the existing methods to study the asymptotic behavior of
such problems.

The linear case (with the Riemann-Liouville fractional derivative) is considered by
Matignon et al. in [22]. There they interpreted the equation as a coupled problem
between an undamped classical wave equation and a diffusion equation after using an
idea of the last two authors to establish the positivity of the damping operator. The
well-posedness and the asymptotic stability are then obtained using standard Galerkin
methods and LaSalle’s invariance principle. Moreover, they proved an algebraic decay
result of the classical energy for some values of α.

The case α = 1
2 is known as the Lokshin model. It appears in the study of prop-

agation of the air inside a duct when taking into account viscothermal losses (see [20,
21]).

In the case α = −1, i.e. the wave equation without damping and with smooth
u0, u1, it was first proved that the solutions break down in finite time for any p > 1
when the initial data are large in some sense. Roughly speaking, if the initial data u0

and u1 belong to an ”unstable set”, then the associated solution blows up in a finite
time (see [4, 14, 19]). Then, solutions are shown to blow up also for small initial data
provided that the exponent p lies in some ”critical range” (see [5, 6, 13, 34]). It is often
proved that solutions are bounded and so exist globally beyond a critical power.

In general, the presence of a linear damping, i.e. α = 0 allows to prove global
existence for small initial data (see [23]; see also [26] for a nonlinear dissipation). Using
the potential well method (see [29, 33]) it was proved (see, for instance, [12, 31]) that
solutions exist globally when the initial data belong to a ”stable” set and blow up in
a finite time when the initial data are in an ”unstable” set. Another powerful tool
to prove blow up in finite time is the concavity method of Levine (see [19]). See also
Tsutsumi [35] for another method.

In general, besides their utility in control theory of dynamical systems and prop-
agation problems, fractional derivatives and integrals have many other applications in
physics (mechanics, electromagnetism,...), chemistry, biology, etc. (see [7, 28, 30, 32]
and references therein). They are used, in particular, to describe memory and hereditay
properties of various materials and processes.

In [16, 17], the authors have considered a semilinear problem with a boundary
damping (instead of internal damping) and a strongly positive definite kernel (see [27])

∫ t

0

k(t− s)ut(s) ds.
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In particular, they have examined kernels of the forms e−t. Stability, non-existence and
blow up in finite time results have been proved using appropriately chosen modified
”energy”, the concavity method of Levine, the potential well method and an argument
due to Tsutsumi. They have used in a crucial way the following inequality which holds
for all continuous, non-negative, non-increasing and convex kernels:

|(k ∗ w)(t)|2 ≤ 2k(0+) Re

∫ t

0

w(τ)(k ∗ w)(τ) dτ.

In this form, this is not valid in our case. Instead, we shall use a somewhat similar
relation which may be found in the book of Gripenberg et al. [8]. A crucial use is also
made of the Hardy-Littlewood-Sobolev inequality.

In [3], an unboundedness result is proved in the case of a dissipation of polynomial
type. A cubic spatial convolution of the form

ut

∫

RN

u2
t (y, t)

|x− y|γ
dy (0 < γ < N)

has been considered in [25]. The authors proved a polynomial decay result in the absence
of sources.

It is then clear that our present situation is much different from the previous ones
(except for the last one, in some sense) in that our kernel is strongly singular and not
integrable.

In this paper, using a technique combining some ideas which are similar in spirit
to those in [3, 9, 10, 18, 25] and some continuity properties of the fractional derivative
(see [7, 32]) we shall prove that the solution of the problem grows up exponentially in
the Lp+1-norm for sufficiently large initial data.

2. Exponential growth

In this section we state and prove our result. In the proof we make use of Fourier trans-
forms, in particular the Parseval’s theorem (see, for instance, [11: Theorem 7.1.6]). We
also need a Sobolev inequality which is sometimes referred to as the Hardy-Littlewood
inequality or the Hardy-Littlewood-Sobolev inequality (see [11: p. 117/Theorem 4.5.3]
or [24: p. 378/Corollary]). We refer to [22] for the issue of well-posedness (see also
A.A. Kilbas et al. [15] for more on existence results on ordinary differential equations).
As we will be concerned only by those values of α between −1 and 0, the appropriate
definition is given by (2). In the notation of Hörmander [11], this definition is written
as

I−αv = χ
−(α+1)
+ ∗ v.

In order to avoid working with both powers and subscripts, we will denote our kernel
simply by k with the appropriate power (with a minus sign) as a subscript.

Let us first define

G(t) =

∫

Ω

{1

2
u2
t +

1

2
|∇u|2 − εuut −

1

p+ 1
|u|p+1

}
dx (4)

where 0 < ε < 1 is a small constant to be determined later.
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Lemma 1 (Hardy-Littlewood-Sobolev inequality, see [11] or [24]). Let u ∈ Lp(R) (p >

1), 0 < λ < 1 and λ > 1 − 1
p
. Then 1

|x|λ
∗ u ∈ Lq(R) with 1

q
= λ + 1

p
− 1. Also, the

mapping from u ∈ Lp(R) into 1
|x|λ

∗ u ∈ Lq(R) is continuous.

Theorem 2. Let u = u(x, t) be a regular solution of problem (1) with −1 < α < 0.
If the initial data are large enough (they will be determined in the proof according to the

cases −α < 1
p+1

,−α > 1
p+1

and −α = 1
p+1

), then the solution u grows up exponentially

in the Lp+1-norm.

Proof. Let us multiply equation (1)1 by ut − εu and integrate over Ω. We get

d

dt

∫

Ω

{1

2
u2
t +

1

2
|∇u|2 − εuut −

1

p+ 1
|u|p+1

}
dx

+
1

Γ(−α)

∫

Ω

ut

∫ t

0

(t− s)−(α+1)ut(s) dsdx

= ε

∫

Ω

|∇u|2dx+
ε

Γ(−α)

∫

Ω

u

∫ t

0

(t− s)−(α+1)ut(s) dsdx

− ε

∫

Ω

u2
tdx− ε

∫

Ω

|u|p+1dx.

(5)

Then, from definition (4) of G, it is clear that

G(t)−G(0) +
1

Γ(−α)

∫ t

0

∫

Ω

ut

∫ s

0

(s− z)−(α+1)ut(z) dzdxds

= ε

∫ t

0

∫

Ω

|∇u|2dxds

+
ε

Γ(−α)

∫ t

0

∫

Ω

u

∫ s

0

(s− z)−(α+1)ut(z) dzdxds

− ε

∫ t

0

∫

Ω

u2
tdxds− ε

∫ t

0

∫

Ω

|u|p+1dxds.

(6)

We want to estimate the second term in the right-hand side of (6). Let us denote
1

Γ(1−β)
t−β by kβ(t) and for fixed t = T > 0 define

LTw(τ) =

{
w(τ) for τ ∈ [0, T ]
0 for τ ∈ R \ [0, T ]

Lkβ(τ) =

{
kβ(τ) for τ > 0
0 for τ ≤ 0.

(To simplify the notation we shall drop the subscript T in LT ). Then we can easily see
that

1

Γ(−α)

∫ T

0

u(s)

∫ s

0

(s− z)−(α+1)ut(z) dzds

=

∫ +∞

−∞

Lu(s)

∫ +∞

−∞

Lkα+1(s− z)Lut(z) dzds.
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By Parseval’ theorem we have

∫ +∞

−∞

Lu(s)

∫ +∞

−∞

Lkα+1(s− z)Lut(z) dzds

=

∫ +∞

−∞

F(Lu)(σ)F
(
Lkα+1 ∗ Lut

)
(σ) dσ

(7)

where F(f) denotes the usual Fourier transform of f . By the convolution here we mean
the integrand in the left-hand side.

It is well known (see, e.g., [30: p. 7] or [36]) that kβ satisfies the convolution
property kβ+γ−1 = kβ ∗ kγ . Therefore, by (7), the Cauchy-Schwarz inequality and the
generalized Hölder inequality, we see that for δ > 0

∫ +∞

−∞

Lu(s)

∫ +∞

−∞

Lkα+1(s− z)Lut(z) dzds

≤

(∫ +∞

−∞

∣∣F(Lu)F
(
Lkα+2

2

)∣∣2dσ
) 1

2
(∫ +∞

−∞

∣∣F
(
Lkα+2

2

)
F(Lut)

∣∣2dσ
) 1

2

≤ δ

∫ +∞

−∞

∣∣F
(
Lkα+2

2

)
F(Lut)

∣∣2dσ +
1

4δ

∫ +∞

−∞

∣∣F
(
Lkα+2

2

)
F(Lu)

∣∣2dσ.

(8)

By [8: Theorem 16.5.1], we have

I =

∫ +∞

−∞

∣∣F
(
Lkα+2

2

)
F(Lu)

∣∣2dσ ≤ 1
cos απ

2

∫ +∞

−∞

Lu(s)(Lkα+1 ∗ Lu)(s) ds.

Then, an application of Hölder’s inequality yields

I ≤
1

cos απ
2

(∫ +∞

−∞

|Lu|p+1ds

) 1
p+1

(∫ +∞

−∞

(Lkα+1 ∗ Lu)
p+1
p (s) ds

) p

p+1

. (9)

This will be our reference inequality for the discussion below.

(a) If −α < 1
p+1 , then r = p+1

p−α(p+1) > 1 and we may apply the Hardy-Littlewood-

Sobolev inequality to get

(∫ +∞

−∞

(Lkα+1 ∗ Lu)
p+1
p (s) ds

) p

p+1

≤
C(p, α)

Γ(−α)

(∫ +∞

−∞

|Lu|rds

) 1
r

. (10)

Note that r < 2 and C(p, α) depends only on p and α (it does not depend on T ).

By the Hölder inequality the integral term in the right-hand side of (10) is estimated
as (∫ +∞

−∞

|Lu|rds

) 1
r

≤ T
p+1−r

p+1

(∫ +∞

−∞

|Lu|p+1ds

) 1
p+1

.
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From this inequality, (10) and (9), we obtain

I ≤
C(p, α)

Γ(−α) cos απ
2

T
p+1−r

p+1

(∫ +∞

−∞

|Lu|p+1ds

) 2
p+1

≤
2

p+ 1

( C(p, α)

Γ(−α) cos απ
2

) p+1
2

∫ +∞

−∞

|Lu|p+1ds+
p− 1

p+ 1
T

p+1−r

p−1 .

(11)

Taking into account relation (11) in (8), and choosing

δ =
1

p− 1

(
C(p, α)

Γ(−α) cos απ
2

) p+1
2

we find

∫ +∞

−∞

Lu(s)

∫ +∞

−∞

Lkα+1(s− z)Lut(z) dzds

≤ δ

∫ +∞

−∞

∣∣F
(
Lkα+2

2

)
F(Lut)

∣∣2dσ

+
p− 1

2(p+ 1)

∫ +∞

−∞

|Lu|p+1ds+
(p− 1)2

4(p+ 1)

(Γ(−α) cos απ
2

C(p, α)

) p+1
2

T
p+1−r

p−1 .

(12)

Back to (6), from (12) and [8: Theorem 16.5.1] we find

G(T ) +
[
cos

απ

2
− εδ

] ∫

Ω

∫ T

0

∣∣kα+2
2

∗ ut

∣∣2dsdx

≤ G(0) + ε

∫ T

0

∫

Ω

|∇u|2dxds− ε

∫ T

0

∫

Ω

u2
tdxds

−
ε(p+ 3)

2(p+ 1)

∫ T

0

∫

Ω

|u|p+1dxds+ C1T
σ1

(13)

where

C1 =
ε(p− 1)2|Ω|

4(p+ 1)

(
Γ(−α) cos απ

2

C(p, α)

) p+1
2

and σ1 =
p+ 1− r

p− 1
.

Next, adding and substracting the term

ε2(p+ 3)

2

∫ T

0

∫

Ω

uutdxds

to the right-hand side of (13) and using the fact that

∫

Ω

uutdx ≤
C̃

2

∫

Ω

|∇u|2dx+
1

2

∫

Ω

u2
tdx (14)
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where C̃ is the Poincaré constant, we obtain

G(T ) +
[
cos

απ

2
− εδ

] ∫

Ω

∫ T

0

∣∣kα+2
2

∗ ut

∣∣2dsdx

≤ G(0) +
ε(p+ 3)

2

∫ T

0

G(s) ds

+ ε
(
1 +

εC̃(p+ 3)

4
−

p+ 3

4

)∫ T

0

∫

Ω

|∇u|2dxds

− ε
(
1−

ε(p+ 3)

4
+

p+ 3

4

)∫ T

0

∫

Ω

u2
tdxds+ C1T

σ1 .

(15)

Observe that as ε < 1, the coefficient of
∫ T

0

∫
Ω
u2
tdxds is negative. Furthermore, choosing

ε ≤ min

{
1,

p− 1

C̃(p+ 3)
,
1

δ
cos

απ

2

}

it appears from (15) that

G(T ) ≤ G(0) +
ε(p+ 3)

2

∫ T

0

G(s) ds+ C1T
σ1 .

We define Ψ = −G. Clearly,

Ψ(T ) ≥ Ψ(0) +
ε(p+ 3)

2

∫ T

0

Ψ(s) ds− C1T
σ1 . (16)

From this inequality we deduce (by an argument similar to that for the classical Gronwall
inequality) that

Ψ(T ) ≥ Ψ(0)e
ε(p+3)

2 T − σ1C1e
ε(p+3)

2 T

∫ T

0

sσ1−1e−
ε(p+3)

2 sds

≥
{
Ψ(0)− σ1C1

(ε(p+ 3)

2

)−σ1

Γ(σ1)
}
e

ε(p+3)
2 T .

(17)

The initial data u0 and u1 are chosen so that

Ψ(0)− σ1C1

(ε(p+ 3)

2

)−σ1

Γ(σ1) > 0.

On the other hand, from the definition of Ψ and inequality (14), we see that

Ψ(T ) ≤
1

p+ 1

∫

Ω

|u|p+1dx−
1

2

∫

Ω

u2
tdx

−
1

2

∫

Ω

|∇u|2dx+
ε

2

∫

Ω

u2
tdx−

εC̃

2

∫

Ω

|∇u|2dx
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or

Ψ(T ) ≤
1

p+ 1

∫

Ω

|u|p+1dx−
1

2
(1− ε)

∫

Ω

u2
tdx−

1

2
(1− εC̃)

∫

Ω

|∇u|2dx.

Note that from our choice of ε we have ε < 1

C̃
. It follows that

Ψ(T ) ≤
1

p+ 1

∫

Ω

|u|p+1dx. (18)

From inequalities (17) and (18) we conclude the exponential growth of the solution in
the Lp+1-norm.

(b) The case −α > 1
p+1 can be treated in the following manner:

(Lkα+1 ∗ Lu)(s) ≤ |s|(1−
(α+1)(p+1)

p
) p

p+1

(∫ s

0

|u|p+1dz

) 1
p+1

.

Note here that 1− (α+1)(p+1)
p

> 0. Taking this estimate into account in (9) we find

I ≤
1

cos απ
2

(∫ T

0

|s|1−
(α+1)(p+1)

p ds

) p

p+1
(∫ T

0

|u|p+1ds

) 2
p+1

≤ CTσ2 +
2(cos απ

2 )−
p+1
2

p+ 1

∫ T

0

|u|p+1ds

where

C =
p− 1

p+ 1

(
2−

(α+ 1)(p+ 1)

p

)− p

p−1

and σ2 = 1−
α(p+ 1)

p− 1
.

Choosing

δ =
(cos απ

2 )−
p+1
2

p− 1

we see that
∫ +∞

−∞

Lu(s)

∫ +∞

−∞

Lkα+1(s− z)Lut(z) dzds

≤ δ

∫ +∞

−∞

∣∣F
(
Lkα+2

2

)
F(Lut)

∣∣2dσ +
p− 1

2(p+ 1)

∫ T

0

|u|p+1ds+
C

4δ
Tσ2 .

(19)

Relations (6) and (19) now imply that

G(T ) +
[
cos

απ

2
− εδ

] ∫

Ω

∫ T

0

∣∣kα+2
2

∗ ut

∣∣2dsdx

≤ G(0) + ε

∫ T

0

∫

Ω

|∇u|2dxds− ε

∫ T

0

∫

Ω

u2
tdxds

−
ε(p+ 3)

2(p+ 1)

∫ T

0

∫

Ω

|u|p+1dxds+ C2T
σ2
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with C2 = εC
4δ |Ω|. Choosing

ε < min

{
1,

cos απ
2

δ
,

p− 1

(p+ 3)C̃

}

we get

G(T ) ≤ G(0) + ε

∫ T

0

∫

Ω

|∇u|2dxds− ε

∫ T

0

∫

Ω

u2
tdxds

−
ε(p+ 3)

2(p+ 1)

∫ T

0

∫

Ω

|u|p+1dxds+ C2T
σ2 .

(20)

Adding and substracting the same term ε2(p+3)
2

∫ T

0

∫
Ω
uutdxds in the right-hand side of

(20), we get with the help of (14)

G(T ) ≤ G(0) + ε
p+ 3

2

∫ T

0

G(s) ds+ C2T
σ2 .

We define Ψ = −G. Clearly,

Ψ(T ) ≥ Ψ(0) + ε
p+ 3

2

∫ T

0

Ψ(s) ds− C2T
σ2 .

The rest of the proof is similar to that in part (a).

(c) If −α = 1
p+1 (see [10]), we use the estimate

I ≤
1

cos απ
2

(∫ +∞

−∞

|Lu|2ds

) 1
2
(∫ +∞

−∞

(Lkα+1 ∗ Lu)
2(s) ds

) 1
2

.

We may use the Hardy-Littlewood-Sobolev inequality with r = 2
1−2α > 1 to get

I ≤
C(α)

Γ(−α) cos απ
2

(∫ T

0

|u|2ds

) 1
2
(∫ T

0

|u|rds

) 1
r

.

Next, by Hölder’s inequality and Young’s inequality, we see that

I ≤
C(α)

Γ(−α) cos απ
2

T
2p−r

p+1

(∫ T

0

|u|p+1ds

) 2
p+1

≤
p− 1

p+ 1
Tσ3 +

2

p+ 1

( C(α)

Γ(−α) cos απ
2

) p+1
2

∫ T

0

|u|p+1ds.

Here we take

δ =
1

1(p− 1)

( C(α)

Γ(−α) cos απ
2

) p+1
2

.

The rest of the proof is similar to that in case (a)
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