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The Generalized Libera Transform on
Hardy, Bergman and Bloch Spaces on the
Unit Polydisc

S. Stevié

Abstract. In this note we consider the boundedness of Libera transform A,o on
Hardy, Bergman and a-Bloch spaces of analytic functions on the unit polydisk.

Keywords: Analytic function, Hardy space, Bergman space, Libera transform, poly-
disk, bounded operator

AMS subject classification: 47B38, 46E20

1. Introduction and preliminaries

Let U! = U be the unit disk in the complex plane C, dm(z) = %drd@ the
normalized Lebesgue measure on U, U™ the unit polydisk in the complex
vector space C™ and H(U"™) the space of all analytic functions on U". We

write

z-w = (z1w1, ..., 2pwy,) for z,w € C"
ew — (ewl,...,ew")

dt =dty ---dt,

do = dby ---db,

and r,t, s, a, A are vectors in C™. If we write 0 < r < 1, where r = (71, ..., 7y),
it means 0 <r; <1forj=1,..,n.

For 20 € U fixed and f € H(U") we define the linear operator f —
Ao (f) by

Awo()(2) = H”_l(; — / T wa ey

S. Stevié: Matematicki Fakultet, Studentski Trg 16, 11000 Beograd, Serbia, Yu-
goslavia
sstevic@ptt.yu and sstevo@matf.bg.ac.yu

ISSN 0232-2064 / $ 2.50 (© Heldermann Verlag Berlin



180 S. Stevié

This operator is one of the most natural averaging operators on H(U"). For
n = 1and 2" = 0 it is called the Libera transform, which is studied in geomet-
rical function theory. The Libera transform on the unit disk was investigated,
for example, in [2, 5, 7, 8, 10 - 12, 14] (mostly as formal adjoint of the Cesaro
operator). The Cesaro operator and its generalizations on the unit disk and
the unit polydisk has been studied extensively by many mathematicians in
the past decade. One of the major interests in this operator is its behavior on
function spaces (see, for example, [1 - 5, 7, 10 - 14]).

The Hardy space HP(U™) (0 < p < 00) is defined on U™ by
HP(U™) = {fIf € HU") and ||f]lzen) < oo}
where

£y = s [ Jf e,
[0,27]™

0<r<1

The weighted Bergman space AE(U™) (aq,...,an > —1,p > 0) is the space
of all analytic functions f on U™ for which

lagwon = [ [ P T sy

Iy n
= | = flr pd@) l—r )T dr]
Ln 0,1) \ J[0,2x]" | ) 1_[1 7

=

p

T I=

< 00.

The a-Bloch space B* = B%(U™) is the space of all analytic functions f on U™
such that
of

ba(f) = max sup (1 —[z[*)"
jzl?"‘7nZEU"

It is clear that B* is a normed space, modulo constant functions, and B*' C
B2 for a1 < as.

2. Main and auxiliary results

In this paper we prove the following three results.

Theorem 1. The generalized Libera operator is bounded on HP(U™) if
p > 1.

Theorem 2. The generalized Libera operator is bounded on AE(U™) if
aj+2<pforallj=1,..n
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Theorem 3. The generalized Libera operator is bounded on B*(U™) if
€ (0,2).

In the case n = 1, Theorems 1 - 3 were proved in [10, 14, 5], respectively.
In order to prove in Section 3 the main results we need in the present section
several auxiliary results which are incorporated in the following lemmas.

Lemma 1. Let f € HP(U") and ¢; : U - U (j =1,...,n) be analytic
and non-constant, ¢ = (¢1,...,¢,) and p > 0. Then

14 9;(0
150 oty < TT(FA2 U B
j=1 J

Proof. By [15: Theorem XVII 5.16], for almost all #; € (0,27) and all
29,...,2n € U, the function f(z1,z29,...,2,) converges to a regular function
f(e®r 25, ..., 2,) on UM~ L as z; tends non-tangentially to e®t. Hence

F(e pa(22), . pn(zn)) € HU™ ') for a.a. 61 € (0,27).

By [9: Theorem 1], for fixed 6, ..., 0,,

27
/0 | F(#1(pe™), d2(pe®), ..., pn(pe®)) [ dby

1+|¢10\ 2”
_1—|¢10

| (3)
191 ¢ z@g) ...,an(pew"))‘pdgl.

Applying [15: Theorem XVII 5.16] in the second coordinate, then integrating
(3) from 0 to 27 in A3, applying Fubini’s theorem and [9: Theorem 1] on the
right-hand side, in the second coordinate, we obtain

21 2w
// £ (@1(pe™), $2(pe™®), .., $n(pe’®))|" dB1d2

1 0 2w p27
H 1 —i_- :j;g 0 | / / 191 192 ¢ (p@ )7 7¢n )‘pd91d92
J

Repeating the above arguments and using [15: Theorem XVII 5.24], we obtain
the result il

Lemma 2. Let f € HP(U™) (p >0). Then

CI f1 e wmy

i ze U™ 4
TR W

[f(2)] <
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for some constant C' > 0 independent of f.
Proof. If f € HP(U), then

coll fllp
(1—1[¢h?»

where the constant ¢, > 0 depends only of p (see [6: p. 36]). Without loss of
generality we may assume n = 2. If f(z1,20) € HP(U?), then the function f
is analytic in each variable separately on the unit disk. Hence, for each fixed
(2 €U and every ¢(; € U (0 <r; <1), by (5) we have

IF(O] < (Cel) ()

chri [T dé
(G @)l < | e g (6)
1 — |Gl
Similarly, for each fixed 7“16191 € U and every (3 € r2U (0 <17y < 1), we have
0 cbry 2 0, it b
™ )P < 2 [ e e 2. (7)

Combining (6) and (7) and since f € HP(U?), we obtain the result B

Lemma 3. For each polynomial f, Ao(f) can be written in the form

Aol = [ S, () ®)

where Yy, (25) = tjz; + (1 — t;)2) with t; € (0,1] and z; € U. Let p > 1.
Then for every f € HP(U™) the above integral is finite and defines an analytic
function on U.

Proof. Tt is clear that Ao(f)(z) is also polynomial in this case and that
integral (8) is finite for each z € U™. In integral (1) we choose the path of
integration between z and 2% as

(t1z1 + (L —t1)2), oo tnzn + (L —t5)z0)  (t1, ..., by € (0,1]).

Hence

A (P)(z) = /( e G

Let f € HP(U™). By (4) we have

Cllf e m)y < C||f||Hp(Un
[T (1= [, (z)D7 [T, 7 (1= |57

Jj=177

| (1, (21), s Y1, (20)) | <

for each z € U™ and t; € (0, 1]. Hence from the hypothesis it follows that the
integral in (8) is finite for each z € U™ and that it defines an analytic function
onU" I
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Lemma 4. Let Li(f)(2) = f(¢4,(21), ., ¥, (2n)) and 1 < p < co. Then

183

I Lell o v < CH tl/” (t; € (0,1)) (9)

for some constant C > 0.

Proof. Let ¢;(2) = (¢, (21), ..., ¥, (2,)). By Lemma 1,

1f © %50 ey SH( — 0:)||f||m(m
=11

(2 )||f||Hp(Un
<[t LT
j:l

as desired i

Remark 1. Let z? € OU and let \; be complex numbers such that
R(Aj) < ]% (j =1,...,n). It is well known that the functions

belong to H?(U™) and

P (20 (2)) = TT () 20

Jj=1

It follows that || L¢l|gr—mr > []5—, tl% From this and Lemma 4 we obtain
i
that in this case

II; i/ < | Lillo i < CH tl/p

Lemma 5. Let¢; : U —-U (j=1,...,n) be analytic and non-constant,
Y = (Y1,...,0n). Then the norm of the operator f — Ty(f) = fo1 on AR,
satisfies

m L ille + 5 (0)]\ 25
HT¢“AZ—>A§§1:[ (||¢j|\oo |¢j(0)|>
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where
T T2 (1o + 115 0)) ™ (Ibslloe + 3l(0)) ™7 if =1 < a; < 0.

Proof. Let f € A2. Then by [11: Lemma 1], for almost all fixed za, ..., 2,

/U £ (1(22) 02(22)s st () [P (1L = |22 2) 2 dim(2)

[1]lo0 + !¢1(0)|>a1+2
[¥1llo0 = [41(0)]

<[ LGt )1 = 21 dm(e)

Scl(

where

b { (191 |0 + [1(0)) ™ (901 [loo + 3|21 (0)]) ™" if =1 < a1 < 0.

Multiplying (10) by (1 —|z2|?)®2, integrating obtained inequality over U in 2o,
then applying Fubini’s theorem and [11: Lemma 1] on the right-hand side, in
the second coordinate, we obtain that for almost all z3, ..., 2z,

/U2 | F(¥1(21), ¥2(22), ooy n(20)) | (1 = [21*)* (1 = [22]?)*? dm(21)dm(z2)

2
I3l + 15 (0)] o5+
< C;
<1l (W=wo!

></ | (21, 22,903(28) oo Yn () |” (1 = |21 2) 0 (1 = |22[*) 2 dm(z1)dm(22).
U2

Repeating this procedure we obtain the result il
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3. Proofs of the main results

In this section, we prove the main results of the paper.

Proof of Theorem 1. Let p > 1. Then, by Minkowski inequality and
Lemma 4,

(Dl = s ([ 1natr)-eyran)

0<r<1

—sw ([t e arl o)’
0<r<1 \ J[0,27]" | J(0,1]"

< sup / (/ ‘f(wt et ‘pd9>pdt
0<r<1J(0,1]» \ J[0,2x]"

<Clflwwm [ Tt
(0,1]™ j=1

= C1|lfllar@n)

as desired B

Remark 2. Theorem 1 is not true in the case p € (0, 1]. Indeed itp e
(0,1) and 29 € 9U for j € S C {1,...,n}, then fi(z) = [Lies o= Z]_z € HP(U”)

On the other hand, it is easy to see that Ao have no sense on f1, that is, Ao
is unbounded on H?(U™) for p € (0,1).

Let now p = 1 and 29 € 9U for j € S C {1,...,n}. It is known [10] that
the operator

Fu(f)(z) = — /Zf(t)dt (zeU)

zZ — 20

is not bounded on H!(U). Using this fact we see that the operator Ao is not
bounded on H(U™).

Proof of Theorem 2. Let a; +2 < p for j = 1,...,n. It is clear that
p > 1 in this case. By the Minkowski inequality and Lemma 5, where ¢ = 1,
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we obtain

1Az (f)llar = (/n /(0,1]"

<[ fouila
(0,1]™
<ol [ TI(
(Ovl}nj:]_
noopl eyt
<clfle L[ 6 7 d
j=1"0

Since the last integrals converge for a; + 2 < p, we obtain the result in this
case 1

T =

(1= [zl ajdm(zj)>

<
||: 3
_

Remark 3. Theorem 2 is not true if there is a j € {1,...,n} such that
aj + 2 > p. Indeed, first let a; +2 > p and z? € OU for a j € {1,...n}, and
f1(zj) = 2o Then by polar coordinates and [6: p. 84/Lemma 3] we obtain

g J

n

| g Il dma

1 s
=C [ (1—r})% / 11 —r;e%|7Pd0;r;dr;
0

1
< C/ (1 — Tj)aijlipde
0
< o0

for aj +2 > p. Hence f; € A if a; +2 > pfora j e {1,...,n}. On the other
hand, Ao have no sense on the function f; and consequently A,o(f1) is not
in A? in this case.

Now let aj +2 = p and z? € OU for a j € {1,...,n}. Note that p > 1 in
this case. Let

Z-—Zj Zj Zj—Zj

fa(z;) = 01 (llog 01 >_1.
j

The only singularity of fo is at z; = z?. By polar coordinates centered at

zj = z;), we see that the integral

1 TI0 = sl dnes) = [ 2P0~ 57 dn()
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s

——— <0

o p(n)P

since p > 1. Hence fy € AP, where a = (a1,..., -1, — 2,41, ..., & ). On

the other hand, it is easy to see that A,o have no sense on the function fs and
consequently Ao(f2) is not in AP for a; +2 = p.

Proof of Theorem 3. Let f € B® for a € (0,2). Then

OAo(f o)
8zj (Z)‘

is equiconvergent to

[

ba(Ao(f)) = max sup (1 — |zj|2)“

Jj=1l,...,n zepyn

< max / sup (1 — |z;]*)* M dt
j=Lsn J(o1)n zeU™ 0z,
L= ) OF 4l
< 2¢ LA VIR (2] dt
=7 A /(0,1}" zselg)n( tj ) 0z; (We(2)) |15 (25)]
< 2%,(f)  max / tjl.*adt
j=1,...,n (0,1}"
B 22aba(f)
- 2-a

and hence A o(f) € B* 1
Remark 4. Theorem 3 is not true in the case a € [2,00). Indeed, if
a € [2,00) and z;-) € OU for a j € {1,...,n}, then the function fi(z;) =
z 1z_ belongs to B*(U™). However, this function is not in the domain of the
J

0
definition of ALo.
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