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On Positive-off-Diagonal Operators
on Ordered Normed Spaces

A. Kalauch

Abstract. On a normed space X ordered by a cone K we consider a continuous
linear operator A: X → X of the following kind: If a positive continuous functional
f attains 0 on some positive element x, then f(Ax) ≥ 0. If X is a vector lattice,
then such operators can be represented as sI + B, where B is a positive operator,
I is the identity and s ∈ R. We generalize this assertion for weaker assumptions on
X, using the Riesz decomposition property.
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1. Introduction

In the present paper let (X, K, ‖ · ‖) be an ordered normed space, i.e. X is
a real vector space, ‖ · ‖ is a norm on X and K is a cone in X, i.e. K is a
wedge (i.e. x, y ∈ K and λ, µ ≥ 0 imply λx + µy ∈ K) and K ∩ (−K) = {0}.
Furthermore, let K be closed. By means of the cone K a partial order is
introduced in X. We will use the notations x ∈ K and x ≥ 0 synonymously
and write x > 0 instead of 0 6= x ≥ 0. As usual, X ′ denotes the vector space
of all continuous linear functionals on X and L(X) the vector space of all
continuous linear operators on X. An operator B ∈ L(X) is called positive
if B(K) ⊆ K; a functional f ∈ X ′ is called positive if f(K) ⊆ [0,+∞). We
write B ≥ 0 and f ≥ 0, correspondingly. The wedge of all positive functionals
in X ′ is denoted by K ′. On (X,K, ‖ · ‖) operators of the following kind are
considered.

Definition 1.1. An operator A ∈ L(X) is called positive-off-diagonal if
x ∈ K and f ∈ K ′ with f(x) = 0 imply f(Ax) ≥ 0.
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The notion ”positive-off-diagonal” is motivated as follows: For X = Rn

and the standard cone K = Rn
+, a matrix A = (aij)n,n is a positive-off-

diagonal operator if and only if aij ≥ 0 for i 6= j. Note that on (Rn,Rn
+, ‖ · ‖)

an invertible operator A, where the operator −A is positive-off-diagonal and
A−1 ≥ 0, can be represented as a non-singular M -matrix and vice versa. 1)

The set of all positive-off-diagonal operators on (X, K, ‖ · ‖) is a wedge in
L(X), but it is not a cone, since the identity I and also −I are both positive-
off-diagonal operators. If A = sI+B with B ≥ 0 and s ∈ R, then the operator
A is positive-off-diagonal. If X = Rn and K is a polyedral generating cone in
Rn, then the converse is also true, i.e. every positive-off-diagonal operator A
2) can be represented as A = sI + B where s ∈ R and B ≥ 0 (see [6]). For
several other cones in Rn, in particular circular ones, this implication is not
true (see [6] or Example 4.1 below).

On (X, K, ‖ · ‖) consider for an operator A ∈ L(X) the properties

(i) A is a positive-off-diagonal operator

(ii) ‖A‖I + A ≥ 0.

Obviously, (ii) implies (i). If X is a Banach lattice, (i) and (ii) are equivalent
(see, e.g., [4: C-II, Theorem 1.11]). We shall prove the implication (i) ⇒ (ii)
for operators on certain ordered normed spaces X that need not be vector
lattices. Note that for any s ≤ −‖A‖ condition (ii) implies B = −sI + A ≥ 0,
hence A = sI + B with B ≥ 0.

There is a close connection between positive-off-diagonal operators and
the theory of positive operator semigroups. Namely, consider the condition

(iii) A is the generator of a semigroup (T (t))t≥0 of positive operators on
X.

Obviously, (ii) implies (iii) since

T (t) = etA = et(A+‖A‖)e−t‖A‖ ≥ 0 (t ≥ 0).

Now assume (iii) and consider x ∈ K and

Ax = lim
t↓0

T (t)x− x

t
.

1) If (X, K, ‖ · ‖) is an ordered normed space and A ∈ L(X) with A = sI − B,
where B ≥ 0 and s > r(B) (here r(B) denotes the spectral radius of the operator
B), then we call A an M -operator. In the space X = Rn with the cone K = Rn

+

the notion M -matrix is used.
2) Note that in Matrix Theory instead of ”positive-off-diagonal” the notion ”cross-

positive” is used.
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Then for f ∈ K ′ with f(x) = 0 one has

f(Ax) = lim
t↓0

f(T (t)x)− f(x)
t

= lim
t↓0

f(T (t)x)
t

≥ 0,

hence (iii) implies (i). In certain ordered normed spaces, e.g. if K has a non-
empty interior [3: Theorem 7.27], condition (i) implies (iii). In general (iii)
does not imply (ii) (see Example 4.1). If one has the implication (i) ⇒ (ii) for
some ordered normed space, then this yields the equivalence of all properties
(i), (ii) and (iii).

2. Preliminaries

Recall some definitions and notations of the theory of ordered vector spaces,
where our terminology mainly follows that of [1, 7]. Let (X, K) be a real
vector space ordered by a cone K. For given a, b ∈ X with a ≤ b, let [a, b] =
{x ∈ X : a ≤ x ≤ b}. (X, K) is called Archimedean if nx ∈ [0, y] for all
n ≥ 1 and some y ∈ K implies x = 0. An element u > 0 is an order unit if
for every x ∈ X there exists a number λ > 0 such that x ∈ [−λu, λu]. K is
generating if each x ∈ X can be represented as x = y − z where y, z ∈ K.
The ordered vector space (X, K) is said to satisfy the Riesz Decomposition
Property, if for every y, x1, x2 ∈ K with y ≤ x1 + x2 there exist y1, y2 ∈ K
such that y = y1 + y2 and yi ≤ xi (i = 1, 2).

An element x > 0 is called an extremal of the cone K, if y ∈ K and
y ≤ x imply y = λx for some λ ≥ 0, i.e. x is an extremal of K if and only
if it generates an extreme ray of K. A subset D of the cone K is called a
base of K if D is a non-empty convex set such that each x > 0 has a unique
representation x = λy with y ∈ D and λ > 0. If K possesses a base D with
extreme points, then every extreme point of D is an extremal of K.

Now let (X, K) be a vector lattice. Note that every Dedekind complete
vector lattice is Archimedean. A subset S of X is called solid, if y ∈ X, x ∈ S
and |y| ≤ |x| imply y ∈ S. The band generated by a singleton {x}, i.e. the
intersection of all bands that contain the element x, will be denoted by Bx.
Note that Bx = {y ∈ X : |y| ∧ n|x| ↑n |y|}. Two vectors x and y are called
disjoint, written x ⊥ y, if |x| ∧ |y| = 0. The disjoint complement of a set
S ⊂ X is defined as Sd = {x ∈ X : x ⊥ y for all y ∈ S}. A band B in X is
called a projection band if X = B ⊕Bd.

Essentially we will make use of the following assertion (see [1: Theorem
3.8]):

Proposition 2.1. Every band in a Dedekind complete vector lattice is a
projection band.
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Proposition 2.2. Let (X, K) be an Archimedean vector lattice and 0 <
x ∈ X. The element x is an extremal of K if and only if Bx = {λx : λ ∈ R}.

Proof. Let x be an extremal of K and y ∈ Bx. Then |y| = sup{|y|∧n|x| :
n ∈ N}. Since x is an extremal, 0 ≤ |y| ∧ n|x| ≤ n|x| = nx implies the
existence of a number αn ∈ R such that |y| ∧ n|x| = αnx. We show that
the sequence (αn)n∈N is bounded. If the contrary is assumed, then for each
m ∈ N there exists an n ∈ N such that mx ≤ αnx = |y| ∧ n|x| ≤ |y|. Since X
is Archimedean, we conclude x = 0 which is a contradiction. If C denotes an
upper bound of (αn)n∈N, then

|y| = sup{|y| ∧ n|x| : n ∈ N} = sup{αnx : n ∈ N} ≤ Cx.

Since x is an extremal, we get |y| = αx for some α ≥ 0. Finally, y+ and
y− are multiples of x as well because of 0 ≤ y+, y− ≤ |y| = αx. Hence
y = y+ − y− = λx for some λ ∈ R.

Vice versa, let x ∈ K and Bx = {λx: λ ∈ R}. Obviously, since Bx is solid,
0 ≤ y ≤ x implies y ∈ Bx, hence y = λx

Now let (X, K, ‖ · ‖) be an ordered normed space. A cone K is called
non-flat, if there exists a constant κ > 0 such that each x ∈ X possesses a
representation x = y − z with y, z ∈ K and ‖y‖, ‖z‖ ≤ κ‖x‖. If K has a non-
empty interior, then K is non-flat (and generating, obviously). K is called
normal, if the norm in X is semi-monotone on K, i.e. there exists a constant
(of semi-monotony) N such that 0 ≤ x ≤ y implies ‖x‖ ≤ N‖y‖. Note that
K ′ is a cone in X ′ if and only if X is the norm closure of K −K. We will call
a non-empty subset M ⊆ K ′ total if x ∈ X and f(x) ≥ 0 for every f ∈ M
imply x ∈ K.

A norm ‖ · ‖ on a vector lattice is a lattice norm if |x| ≤ |y| implies
‖x‖ ≤ ‖y‖. If (X, K, ‖ · ‖) is a normed vector lattice, i.e. a vector lattice
equipped with a lattice norm, then for any two disjoint elements x, y ∈ X one
has

‖x‖ ≤ ‖x + y‖. (1)

This follows immediately from [1: Theorem 1.4] since

0 = |x| ∧ |y| = 1
2
(|x + y| − |x− y|)

implies |x− y| = |x + y| and

|x| ≤ |x| ∨ |y| = 1
2
(|x + y|+ |x− y|) =

1
2
(2|x + y|) = |x + y|.

Since ‖ · ‖ is a lattice norm we get (1)



On Positive-off-Diagonal Operators 233

Recall the following result of Riesz and Kantorovich [7: Theorem V.3.1]:

Proposition 2.3. If an ordered normed space (X, K, ‖·‖) with a non-flat
and normal cone K satisfies the Riesz decomposition property, then (X ′, K ′)
is a Dedekind complete vector lattice.

In the case of a Banach space X and a closed cone K, due to a theorem of
Krein [7: Theorem III.2.1] the condition on K to be non-flat can be replaced
by the condition on K to be generating. Note that because of ‖x+‖, ‖x−‖ ≤
‖ |x| ‖ = ‖x‖ any normed vector lattice satisfies all assumptions of Proposition
2.3.

If (X ′,K ′) is a Dedekind complete vector lattice, then for f, g ∈ X ′ and
x ∈ K one has

(f ∧ g)(x) = inf
{
f(x′) + g(x− x′) : x′ ∈ [0, x]

}

and
|f |(x) = sup

{|f(y)| : |y| ≤ x
}
.

In an ordered normed space (X,K, ‖ · ‖) with a closed cone K we consider
for 0 6= f ∈ K ′ the following properties:

(I) f−1(0) = (f−1(0) ∩ K) − (f−1(0) ∩ K). This means that the part
f−1(0)∩K of the boundary of K generates the corresponding hyper-
plane f−1(0) of X.

(II) f is an extremal of K ′.

Property (I) always implies property (II). Indeed, for g ∈ K ′ with 0 ≤ g ≤ f
from f(x) = 0 for some x ∈ X one has x = x1 − x2 with x1, x2 ∈ f−1(0)∩K,
hence 0 = f(x1) ≥ g(x1) ≥ g(x). Similarly, f(−x) = 0 yields 0 ≥ g(−x). This
implies g(x) = 0. Therefore we can conclude: Either g = 0 or g and f have
the same kernel. Hence g = λf for some λ ∈ R.

In a Banach lattice property (II) also yields property (I). Indeed, for any
x ∈ X one has x = x+− x−, where x+ = x∨ 0. Suppose that f is an extreme
element in K ′ and f(x) = 0. Then f is a lattice homomorphism and we
get f(x+) = f(0) ∨ f(x) = 0. Accordingly, f(x−) = 0. However, in general
property (II) does not imply property (I) (see Example 4.1).

We will say that a cone K in an ordered normed space is b-generating if
for every extremal f of K ′ property (I) is satisfied. 3) Note that the Riesz
decomposition property does generally not imply that K is b-generating (con-
sider, e.g., the space X = C1[0, 1] of all continuously differentiable functions
on [0, 1], ordered by the cone of non-negative functions).

3) This property is used, e.g., in [5].
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3. Main results

We start with the main result on positive-off-diagonal operators.

Theorem 3.1. Let (X, K, ‖ · ‖) be an ordered normed space that satisfies
the Riesz decomposition property and let K be a closed normal non-flat b-
generating cone. Assume that there exists a total set of extremals of K ′.
Then for any operator A ∈ L(X) the conditions

(i) A is a positive-off-diagonal operator
(ii) ‖A‖I + A ≥ 0

are equivalent.

An ordered normed space that satisfies all assumptions of Theorem 3.1
need not be a vector lattice (see Example 4.2 below). For the proof of Theorem
3.1 we need some preliminary results.

Lemma 3.2. Let (X,K, ‖·‖) be an ordered normed space that satisfies the
Riesz decomposition property. Furthermore, let the cone K be closed, normal
and b-generating. Then for every extremal f of K ′ there exists some constant
C > 0 such that the following property is satisfied: For every y ∈ f−1(1) ∩K
there exists an element z ∈ f−1(1) such that z ≤ y and ‖z‖ ≤ C.

Proof. Let f be an extremal of K ′. Fix some element y0 ∈ f−1(1)∩K and
put C = N‖y0‖, where N is the constant of semi-monotony of the norm. Let
y ∈ f−1(1)∩K. The element x = y−y0 lies in f−1(0) and can be decomposed
into x = x1−x2, where x1, x2 ≥ 0 and x1, x2 ∈ f−1(0), since K is b-generating.
Hence we get 0 ≤ y ≤ y + x2 = x1 + y0. The Riesz decomposition property
yields y = w + z, where 0 ≤ w ≤ x1 and 0 ≤ z ≤ y0. Due to f(x1) = 0 one
has f(w) = 0, hence f(z) = 1. Moreover, ‖z‖ ≤ N‖y0‖ = C

Theorem 3.3. Let (X, K, ‖ · ‖) be an ordered normed space that satisfies
the Riesz decomposition property. Furthermore, let the cone K be closed,
normal, non-flat and b-generating and let f be an extremal of K ′. If g ∈ X ′

is such that f ⊥ g and g(x) ≥ 0 for each x ∈ f−1(0) ∩K, then g ∈ K ′.

Proof. Proposition 2.3 ensures that (X ′,K ′) is a vector lattice. Let f be
an extremal of K ′ and g ∈ X ′ such that g 6= 0 and f ⊥ g. For x > 0 we get

0 = (f ∧ |g|)(x) = inf
{
f(x′) + |g|(x− x′) : x′ ∈ [0, x]

}
.

Hence for every n ∈ N there exists some xn ∈ [0, x] such that f(xn) + |g|(x−
xn) ≤ 1

n . This implies f(xn) ≤ 1
n and also

|g(x)− g(xn)| = |g(x− xn)| ≤ |g|(x− xn) ≤ 1
n

. (2)
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If f(xn) = 0, then the premise ensures g(xn) ≥ 0. If f(xn) > 0, we obtain
a lower bound for g(xn) as follows: For the extremal f of K ′ let C be the
constant from Lemma 3.2. Since 1

f(xn)xn ∈ K and f( 1
f(xn)xn) = 1, we get

an element zn ∈ f−1(1) such that zn ≤ 1
f(xn)xn and ‖zn‖ ≤ C. Then wn =

xn − f(xn)zn lies in f−1(0) ∩K and one has

‖xn − wn‖ = f(xn)‖zn‖ ≤ f(xn)C ≤ C

n
.

The premise ensures g(wn) ≥ 0. Since

|g(xn)− g(wn)| ≤ ‖g‖ ‖xn − wn‖ ≤ ‖g‖C

n

we conclude

g(xn) ≥ −‖g‖C
n

. (3)

Now we prove the assertion by way of contradiction. Suppose that there exists
a vector x > 0 such that g(x) < 0. Put n > ‖g‖C+1

−g(x) . Then −g(x) > ‖g‖C
n + 1

n .
For the corresponding xn inequality (3) shows

g(xn)− g(x) >
−‖g‖C

n
+
‖g‖C

n
+

1
n

=
1
n

which contradicts (2)

Now we come to the

Proof of Theorem 3.1. We already mentioned that condition (ii) im-
plies condition (i). Now assume that A is a positive-off-diagonal operator. We
have to show ‖A‖x + Ax ∈ K for every x ∈ K. Since there exists a total set
M of extremals of K ′ it suffices to show f(‖A‖x + Ax) ≥ 0 for each f ∈ M .
Fix some f ∈ M . Since (X ′, K ′) is a Dedekind complete vector lattice, from
Proposition 2.1 follows that Bf is a projection band in X ′, i.e. X ′ = Bf ⊕Bd

f .
Since (X ′,K ′) is Archimedean and f is an extremal of K ′, Proposition 2.2
yields Bf = {λf : λ ∈ R}. This allows us to represent the element A∗f as
A∗f = f1 + f2 , where f1 = λf and f2 ⊥ f . If we show both

(a) f2 is positive
(b) |λ| ≤ ‖A‖,

then we can conclude

f(‖A‖x + Ax) = ‖A‖f(x) + (A∗f)(x)

= ‖A‖f(x) + λf(x) + f2(x)

= (‖A‖+ λ)f(x) + f2(x)

≥ 0.
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Property (a): According to Theorem 3.3 it suffices to show f2(x) ≥ 0 for
any x ∈ K with f(x) = 0. In this case f1(x) = 0 and f(Ax) ≥ 0 since A is a
positive-off-diagonal operator. Hence

f2(x) = (A∗f)(x)− f1(x) = f(Ax) ≥ 0.

Consequently, f2 ∈ K ′.
Property (b): From inequality (1) we conclude

|λ| ‖f‖ = ‖λf‖ ≤ ‖λf + f2‖ = ‖A∗f‖ ≤ ‖A‖ ‖f‖

and hence |λ| ≤ ‖A‖
If K is closed, then K ′ is total [7: Section II.4]. If, additionally, there

exists an interior point u of K, then Fu = {f ∈ K ′ : f(u) = 1} is a σ(X ′, X)-
compact base of K ′ [8: Theorem II.3.2] and the set of extreme points of Fu is
a total set of extremals of K ′. Hence the following conclusion is obvious.

Corollary 3.4. Let (X,K, ‖ · ‖) be an ordered normed space that satisfies
the Riesz decomposition property and let K be a closed normal b-generating
cone with non-empty interior. Then for any positive-off-diagonal operator
A ∈ L(X) one has ‖A‖I + A ≥ 0.

4. Examples

First we present an example which shows that a positive-off-diagonal operator
A in general can not be represented as A = sI + B with a positive operator
B and a number s ∈ R, even if A operates on a finite-dimensional space.

Example 4.1. We consider the ordered normed space (R3, K, ‖·‖), where

K =
{
t(x1, x2, 1): x2

1 + x2
2 ≤ 1 and t ≥ 0

}

is a circular cone (see Figure 1) and ‖ · ‖ is the Euclidean norm on R3. The
cone K is closed, normal and has a non-empty interior. K is not b-generating
and does not satisfy the Riesz decomposition property (see, e.g., [2]). Note
that K ′ = K. Consider the operator given by the matrix

A =



−2 1 0
−1 −1 0
0 0 −1


 .

Let x ∈ K and y ∈ K ′ such that 〈x, y〉 = 0 and assume x = (x1, x2, 1). Then
x2

1 + x2
2 = 1 and y = (−x1,−x2, 1). Hence 〈Ax, y〉 = x2

1 ≥ 0, i.e. A is a
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positive-off-diagonal operator with respect to K. Note that A is the generator
of a semigroup of positive operators. Moreover, there is no number s such
that sI + A is positive. Indeed, for v = (0,−1, 1) ∈ K one has (sI + A)v =
(−1,−s + 1, s− 1) /∈ K for every s ∈ R.

Figure 1: Illustration of Example 4.1

A similar example can be found, e.g., in [6]. Example 4.1 provides an
operator with the additional property

(−A)−1 =
1
3




1 1 0
−1 2 0
0 0 3


 ≥ 0.

Indeed, if y = (y1, y2, 1) with y2
1 + y2

2 ≤ 1 and x = (−A)−1y = (x1, x2, x3),
then x3 = 1 and

x2
1 + x2

2 =
1
9
(y1 + y2)2 +

1
9
(−y1 + 2y2)2

=
1
9
(2y2

1 + 5y2
2 − 2y1y2)

≤ 1

= x3,

hence x ∈ K.
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Referring to the remark in Section 1 on M -operators in the space (Rn,Rn
+, ‖·

‖), the operator C = −A presents an example such that −C is positive-off-
diagonal, C−1 ≥ 0 but C can not be represented as an M -operator (see also
Figure 1).

In the following example we consider an ordered normed space that is not
a vector lattice, but satisfies all assumptions of Theorem 3.1.

Example 4.2. Let

X =
{
x ∈ C[0, 4]: x(2) = x(1) + x(3)

}

K =
{
x ∈ X: x(t) ≥ 0 for all t ∈ [0, 4]

}
.

The ordered vector space (X, K) satisfies the Riesz decomposition property,
it is not a vector lattice, and with the maximum norm it becomes a Banach
space where K is closed (see [7: Section V.2]). Furthermore, the cone K is
normal. As an order unit we can choose the function e with

e(t) =





1 for t ∈ [0, 1] ∪ [3, 4]
t for t ∈ [1, 2]
−t + 4 for t ∈ [2, 3]

(note that e ∈ int(K)). For any x ∈ X one has x = y−z, where y = ‖x‖e and
z = ‖x‖e − x are positive. Furthermore, ‖y‖ ≤ 2‖x‖ and ‖z‖ ≤ 3‖x‖, hence
we get the constant of non-flatness κ = 3.

A set of extremals of K ′ is the collection of the evaluation maps εt (i.e.
εt(x) = x(t) for each x ∈ X) determined by the points t ∈ [0, 2) ∪ (2, 4]. This
set is total.

Finally, K is b-generating. To see this fix s ∈ [0, 2) ∪ (2, 4] and x ∈
ε−1
s (0) = {x ∈ X: x(s) = 0}. The element x belongs to the vector lat-

tice C[0, 4], where x can be represented as x = x+ − x− with the non-
negative functions x+(t) = max{0, x(t)} and x−(t) = max{0,−x(t)}. Note
that x+(s) = x−(s) = 0. In order to show that ε−1

s (0) ∩ K is generating in
ε−1
s (0) consider the following two cases:

Case (a): If x(1) and x(3) have the same sign, say x(1) ≥ 0 and x(3) ≥ 0,
then x+ and x− belong to the subspace X ⊂ C[0, 4]. Indeed, one has x+(1) =
x(1), x+(3) = x(3) and x(2) = x(1) + x(3) ≥ 0, hence x+(2) = x(2) =
x+(1) + x+(3) and therefore x+ ∈ X. Because of x−(1) = x−(3) = x−(2) = 0
one has x− ∈ X. The case x(1) ≤ 0, x(3) ≤ 0 can be considered analogously.

Case (b): If x(1) and x(3) have different signs, say x(1) > 0 and x(3) < 0,
then x+ and x− may not belong to X. However, we can still find another
representation x = x1 − x2 such that 0 ≥ x1, x2 ∈ X with x1(s) = x2(s) = 0.
Let 0 ≤ w ∈ C[0, 4] with w(1) = w(3) = w(s) = 0 and w(2) = x(1) − x+(2).
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Note that w(2) ≥ 0. Indeed, if x(2) < 0, then x+(2) = 0 ≤ x(1). If x(2) ≥ 0,
then x+(2) = x(2) = x(1)+x(3) ≤ x(1). Put now x1 = x++w and x2 = x1−x.
Then x1 ≥ 0 and x2 = x+ + w − (x+ − x−) = w + x− ≥ 0. Obviously,
x1(s) = x2(s) = 0. We show that x1, x2 ∈ X. For x1 this follows from

x1(1) + x1(3) = x+(1) + w(1) + x+(3) + w(3)

= x(1)

= x(1)− x+(2) + x+(2)

= w(2) + x+(2)

= x1(2),

i.e. x1 ∈ X. For x2 we proceed as follows:

x2(1) + x2(3) = x1(1)− x(1) + x1(3)− x(3)

= x1(1) + x1(3)− (x(1) + x(3))

= x1(2)− x(2)

= x2(2),

therefore x2 ∈ X.

Note that the functional ε2 is not an extremal of K ′, and in the subspace
ε−1
2 (0) the cone ε−1

2 (0)∩K is not generating. Consider for example x ∈ ε−1
2 (0),

where x(1) 6= 0, and assume x = x1 − x2 for some x1, x2 ∈ ε−1
2 (0) ∩K. Then

0 = x1(2) = x1(1) + x1(3) ≥ 0 implies, in particular, x1(1) = 0. Analogously,
x2(1) = 0. Finally, x(1) = x1(1)− x2(1) = 0 yields a contradiction.

The space X in Example 4.2 satisfies all assumptions of Theorem 3.1 (and
of Corollary 3.4, respectively), hence every positive-off-diagonal operator on
X is an operator of the kind sI + B with positive B and s ∈ R.

References

[1] Aliprantis, C. D. and O. Burkinshaw: Positive Operators. London: Acad. Press
1985.

[2] Aliprantis, C. D., Tourky, R. and N. C. Yannelis: The Riesz-Kantorovich for-
mula and general equilibrium theory. J. Math. Economics 34 (2000), 55 –
76.

[3] Clement, Ph. and H. J. A. M. Heijmans: One-Parameter Semigroups. Ams-
terdam et al.: North-Holland 1987.

[4] Nagel, R. J.: One-Parameter Semigroups of Positive Operators. Lect. Notes
Math. 1184 (1986).



240 A. Kalauch

[5] Schmidt, G. C.: Cones with faces, m-discrete ordered linear spaces and repre-
sentations of discrete linear lattices. Lin. Alg. Appl. 78 (1986), 147 – 161.

[6] Schneider, H. and M. Vidyasagar: Cross-positive matrices. SIAM J. Num.
Anal. 7 (1970), 508 – 519.

[7] Vulikh, B. Z.: Introduction to the Theory of Cones in Normed Spaces (in Rus-
sian). Kalinin (Russia): Kalinin Univ. 1977.

[8] Vulikh, B. Z.: Special Topics of the Geometry of Cones in Normed Spaces (in
Russian). Kalinin (Russia): Kalinin Univ. 1978.

Received 18.02.2002; in revised form 06.12.2002


