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Errata

e We shall ask 9,x0(0,:) = 9zx0(4,-) = 0 a.e. in (0,7) in (3.1)4 and in
Remark 3.2.

e In (3.2)7 and (3.2)3 we actually prove the stronger regularities L>°(0,T; W)
and L>(0,T; H), respectively.

e In (4.4)3 one also obtains y,. € L>(0,T; H3()).
e The first term in the left-hand side of (5.1) is ||8t)~(||2L2(07t;H).

e The final right-hand side of (5.2) is
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e Page 341%: “belong to L(0,7)”.

e The proof of Proposition 6.1 shall be modified as follows. For all 7 € (0, T
and a fixed constant k > 2||0,00|| we define

Y(r)={f e H'(0,7; H) N L>(0,7;V) | f(0) =6, and
||6tfH%2(O,T;H) + ||a$f|‘%°°(O,T;H) < ’%2}'

Hence S maps Y (1) into H(0,7; H) N L>°(0,7; V) and it is compact and
continuous. It is straightforward to exploit the dependence of C' on & in
(6.5) - (6.7), suitably rewritten on the time interval (0, 7). In particular,
one obtains that, for sufficiently small 7, the operator S takes values in
Y (7), namely Problem 1e has a local in time solution (6., x.). Following
the arguments of Section 8 up to estimate (8.8) and then recovering the
bounds of Section 6, we obtain that 9, x(0,) = dxxc(¢,) = 0 a.e. in (0,7)



and (6., x.) is bounded in H*(0,T*; Hx H)NL>(0,T*; V x H3(Q2)), where
T* is the supremum of all 7 for which there exists a solution to Problem
le in [0, 7). Hence, standard prolongation arguments ensure that (0., x.)
may be extended to a global solution to Problem 1e on the whole interval
(0,7).
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Page 342! is C(1 + [|xol® + ||fn\|%2(0’t;H) + /5 ||8tun||%2(0’S;H) ds).

The last term in the right-hand side of page 342 is
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The subscript € is missing in the second estimate of Subsection 8.2. More-
over, we shall modify it as
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In Subsection 8.5 we shall just integrate on €2 and exploit (8.6)2 in order
to get that x. is bounded in L>°(0,T; W). Whence, relation (8.10) should
be suitably modified as ||B(xc)| Lo (0,7;m) < C.

The convergences in (9.1)4 — (9.1)5 are weak star in W1H°°(0,T; H) N
L>(0,T; W) and L*°(0,T; H), respectively.

Page 349, line 5: “liminf”.
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Addendum.

With respect to (3.2)7 we are actually in the position of proving the stronger
result

Lemma 1. Let (6,x,n) be a solution to Problem 1. Then there exists a
constant 0, > 0 such that § > 0, a.e. in Q.

Proof. It suffices to repeat the argument of Lemma 7.1 with the choice ©(t) :=
(0(t) — 0" exp (= [|0ix|lLr(0,6:2(02)))) (¢ € (0,T)). Indeed, we are still in the
position of applying both the same sign considerations and the Gronwall lemma
and deduce that 6 > 6* exp ( — HatX”L1(07T;L:>o(Q))) =:0, >0 a.e. in Q.



