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Expansions of Certain del bar Closed Forms
via Fourier-Laplace Transform
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Abstract. We derive Laurent-type expansions of ∂-closed (0, n− 1)-forms in certain domains
in Cn. These expansions involve the Bochner-Martinelli kernel and its derivatives and are
based on the Fourier-Laplace transform.
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1. Introduction

If D is an open set in Cn and f is a C∞-function in D, one sets ∂f to be the (0, 1)-form

∂f =
∑ ∂f

∂zj
dzj

where

∂f

∂zj
=

1
2

(
∂f

∂xj
+ i

∂f

∂yj

)
(zj = xj + iyj ; xj , yj ∈ R, j = 1, . . . , n)

and, in general, if
u =

∑
fj1...jqdzj1 ∧ . . . ∧ dzjq

is a (0, q)-form with C∞-coefficients in D, then

∂u =
∑

∂fj1...jq ∧ dzj1 ∧ . . . ∧ dzjq .

A (0, q)-form u is called ∂-closed if it satisfies the differential equation ∂u = 0. The
set of ∂-closed (0, q)-forms with C∞-coefficients in D will be denoted by Z

(0,q)

∂
(D). In

particular, Z
(0,0)

∂
(D) is the set O(D) of holomorphic functions in D.
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A (0, q)-form u is called ∂-exact in D, if there exists a (0, q − 1)-form v with C∞-
coefficients in D such that ∂v = u. The set of ∂-exact (0, q)-forms in D will be denoted
by B

(0,q)

∂
(D). Recall also the definition of the ∂-cohomology groups

H
(0,q)

∂
(D) = Z

(0,q)

∂
(D)/B

(0,q)

∂
(D).

In certain cases the sets Z
(0,n−1)

∂
(D) and H

(0,n−1)

∂
(D) play, in a sense, the role of the

set of holomorphic functions in D. These phenomena in several complex variables have
attracted the attention of many mathematicians including Andreotti, Grauert, Griffiths,
Henkin and Norguet. More relevant for what we do here is [2], where we showed that the
space H

(0,n−1)

∂
(Cn−{0}) is infinite-dimensional by constructing explicitly an infinite set

of ∂-closed forms whose classes in H
(0,n−1)

∂
(Cn − {0}) are linearly independent. These

forms were constructed by differentiating appropriately the Bochner-Martinelli kernel.
In this paper we will show that the set {ηk} of these forms is maximal in the sense

that any class [θ] in H
(0,n−1)

∂
(Cn − {0}) has an expansion of the form

[θ] =
∑

k

ck[ηk] (ck ∈ C).

To describe this expansion more precisely, let us consider the Bochner-Martinelli kernel

M(z, w) =
βn

|z − w|2n

n∑

j=1

(−1)j−1(zj − wj)dz1 ∧ . . . (j) . . . ∧ dzn (z 6= w)

where βn = (−1)
n(n−1)

2
(n−1)!
(2πi)n .

For each k = (k1, . . . , kn), where kj are non-negative integers, let us define the
(0, n− 1)-forms

ηk(z) =
∂k1+...+knM(z, w)

∂wk1
1 · · · ∂wkn

n

∣∣∣∣
w=0

.

Since ∂zM(z, w) = 0, it follows that ∂ηk = 0, i.e. ηk ∈ Z
(0,n−1)

∂
(Cn − {0}). With this

notation we will prove the following theorem.

Theorem 1. Every θ ∈ Z
(0,n−1)

∂
(Cn − {0}) has an expansion of the form

θ =
∑

k

ckηk + ∂v

where ck ∈ C and v is a (0, n− 2)-form with C∞-coefficients in Cn − {0}.
In the above theorem we assume that n ≥ 2. The analogous statement in the case

n = 1 is the Laurent expansion stated as follows: Every holomorphic function in C−{0}
has an expansion of the form

∞∑

k=1

ck

zk
+ a function holomorphic in C.
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Moreover, these expansions are unique as far as the coefficients ck are concerned. Of
course, part of what we have to do in the proof of this theorem is to deal with the
appropriate convergence of the series which appear in the expansions. This is based on
an estimate, which follows from an inequality satisfied by the Fourier-Laplace transform
of a ∂-closed (0, n − 1)-form in Cn − {0} and the Cauchy inequality, and it is a gener-
alization to several variables of a part of Polya’s classical proof of the representation of
analytic functionals by their Borel transform. (See [1, 4].)

2. The Fourier-Laplace transform
of ∂-closed (0, n− 1)-forms in Cn − {0}

Let θ ∈ Z
(0,n−1)

∂
(Cn − {0}). For ζ ∈ Cn, define

Fθ(ζ) =
∫

z∈S

e〈ζ,z〉θ(z) ∧ ω(z)

where 〈ζ, z〉 =
∑

ζjzj , ω(z) = dz1∧. . .∧dzn and S is a simple closed surface surrounding
the point 0 ∈ Cn. (By a simple closed surface S, surrounding 0, we mean that S = ∂Ω
where Ω ⊂ Cn is a bounded open set with smooth boundary and with 0 ∈ Ω. For our
purposes in this section, however, Ω could be just a ball centered at 0.) Since ∂θ = 0,
we have dz[e〈ζ,z〉θ(z) ∧ ω(z)] = 0. Therefore, by Stokes’s theorem, the above integral is
independent of the choice of the surface S and defines an entire function Fθ : Cn → C
which depends only on θ. This function is the Fourier-Laplace transform of θ.

It is also easy to see that the function Fθ satisfies the following estimate:
For every δ > 0 there is a constant Cδ > 0 so that

|Fθ(ζ)| ≤ Cδe
δ|ζ| (ζ ∈ Cn). (1)

Indeed, it suffices to notice that for every ε > 0

Fθ(ζ) =
∫

|z|=ε

e〈ζ,z〉θ(z) ∧ ω(z).

Next we will use the expansion of the entire function Fθ in order to prove Theorem 1.

3. Proof of Theorem 1

A straightforward computation shows that

∂k1+...+knM(z, w)
∂wk1

1 · · · ∂wkn
n

= βnn(n + 1) · · · (n + k1 + . . . + kn − 1)

× (z1 − w1)k1 · · · (zn − wn)kn

|z − w|2(n+k1+...+kn)

×
n∑

j=1

(−1)j−1(zj − wj)dz1 ∧ . . . (j) . . . ∧ dzn
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and therefore

ηk1,...,kn
(z) = βnn(n + 1) · · · (n + k1 + . . . + kn − 1)

× zk1
1 · · · zkn

n

|z|2(n+k1+...+kn)

n∑

j=1

(−1)j−1zjdz1 ∧ . . . (j) . . . ∧ dzn.

Now we consider the power series expansion of the entire function Fθ:

Fθ(ζ) =
∑

k1,...,kn≥0

ck1,...,kn
ζk1
1 · · · ζkn

n

(
(ζ1, . . . , ζn) ∈ Cn

)
.

Then, by (1) and the Cauchy inequalities, for δ > 0

|ck1,...,kn | ≤ Cδ
eδ(R1+...+Rn)

Rk1
1 · · ·Rkn

n

(R1, . . . , Rn > 0).

Applying this inequality with R1 = k1
δ , . . . , Rn = kn

δ we obtain that for every δ > 0

|ck1,...,kn | ≤ Cδ
(δe)k1+...+kn

kk1
1 · · · kkn

n

for all k1, . . . , kn. (2)

We claim that
∑

k1,...,kn≥0

n(n + 1) · · · (n + k1 + . . . + kn − 1)|ck1,...,kn |sk1
1 · · · skn

n < ∞ (3)

for every s1, . . . , sn > 0. Since (2) holds for every δ > 0, to prove (3) it suffices to show
that ∑

k1,...,kn≥0

n(n + 1) · · · (n + k1 + . . . + kn − 1)
kk1
1 · · · kkn

n

σk1
1 · · ·σkn

n < ∞ (4)

for some σ1, . . . , σn > 0. Let us first consider the series

∑

n≤k1≤...≤kn

n(n + 1) · · · (n + k1 + . . . + kn − 1)
kk1
1 · · · kkn

n

σk1
1 · · ·σkn

n . (5)

Writing

n(n + 1) · · · (n + k1 + . . . + kn − 1)
kk1
1 · · · kkn

n

σk1
1 · · ·σkn

n

=
n · · · (n + k1 − 1)

(2k1)k1
· · ·

(n + k1 + . . . + kn−1) · · · (n + k1 + . . . + kn − 1)
[(n + 1)kn]kn

(2σ1)k1 · · · [(n + 1)σn]kn
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and observing that n ≤ k1 ≤ . . . ≤ kn implies

n · · · (n + k1 − 1)
(2k1)k1

...
(n + k1 + . . . + kn−1) · · · (n + k1 + . . . + kn − 1)

[(n + 1)kn]kn





≤ 1

we see that the general term of (5) is dominated by

(2σ1)k1 · · · [(n + 1)σn]kn .

Therefore, series (5) converges if 2σ1 < 1, . . . , (n+1)σn < 1, i.e. if σ1 < 1
2 , . . . , σn < 1

n+1 .
Since the general term of the series in (4) is symmetric with respect to k1, . . . , kn, we
conclude that (4) holds provided σj < 1

n+1 for j = 1, 2, . . . , n, and this implies (3).
Next, writing the factor

zk1
1 · · · zkn

n

|z|2(n+k1+...+kn)

of ηk1,...,kn(z) in the form

1
|z|2n

(
z1

|z|2
)k1

· · ·
(

zn

|z|2
)kn

we see that (3) implies that the series

η(z) =
∑

k1,...,kn≥0

ck1,...,knηk1,...,kn(z)

converges and defines a (0, n− 1)-form with C∞-coefficients in Cn−{0}. Moreover, (3)
gives

∂η = ∂

( ∑

k1,...,kn≥0

ck1,...,knηk1,...,kn

)
=

∑

k1,...,kn≥0

ck1,...,kn∂ηk1,...,kn = 0,

i.e. η ∈ Z
(0,n−1)

∂
(Cn − {0}).

We claim that
∫

z∈S

e〈ζ,z〉(θ(z)− η(z)) ∧ ω(z) = 0 (ζ ∈ Cn). (6)

To prove this, we will compute the integrals
∫

z∈S

e〈ζ,z〉ηk1,...,kn(z) ∧ ω(z).
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By the Bochner-Martinelli formula (see [6]), for f ∈ O(Cn),

∫

z∈S

f(z)M(z, w) ∧ ω(z) = f(w) (for w close to 0 ∈ Cn).

Applying to the above equation the operator

∂k1+...+kn

∂wk1
1 · · · ∂wkn

n

and evaluating at w = 0, we obtain

∫

z∈S

f(z)ηk1,...,kn(z) ∧ ω(z) =
∂k1+...+knf(w)
∂wk1

1 · · · ∂wkn
n

∣∣∣∣
w=0

.

Setting f(z) = e〈ζ,z〉 (with ζ fixed), we find that

∫

z∈S

e〈ζ,z〉ηk1,...,kn(z) ∧ ω(z) = ζk1
1 · · · ζkn

n .

But by (3), the series

∑

k1,...,kn≥0

ck1,...,kne〈ζ,z〉ηk1,...,kn(z) ∧ ω(z)

converges uniformly for z ∈ S, and therefore

∫

z∈S

e〈ζ,z〉η(z) ∧ ω(z) =
∑

k1,...,kn≥0

ck1,...,kn

∫

z∈S

e〈ζ,z〉ηk1,...,kn(z) ∧ ω(z)

=
∑

k1,...,kn≥0

ck1,...,knζk1
1 · · · ζkn

n

= Fθ(ζ).

Since Fθ(ζ) =
∫

z∈S
e〈ζ,z〉θ(z) ∧ ω(z), (6) follows.

According to [3: Lemma 5], a ∂-closed (0, n − 1)-form χ(z) in Cn − {0} is ∂-exact
(in Cn − {0}) if and only if

∫

z∈S

e〈ζ,z〉χ(z) ∧ ω(z) = 0 (ζ ∈ Cn).

Therefore (6) implies that θ−η is ∂-exact in Cn−{0}, i.e. there exists a (0, n−2)-form
v in Cn−{0} so that θ− η = ∂v. This gives the expansion of Theorem 1 and completes
its proof.
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4. A calculus of residues

Suppose that θ ∈ Z
(0,n−1)

∂
(B(0, ε) − {0}) where B(0, ε) = {z ∈ Cn : |z| < ε} (ε > 0).

Then the proof of Theorem 1 can be carried out in this case too and the conclusion is
that θ can be written in the form

θ =
∑

k

ckηk + ∂v

where v is a (0, n− 2)-form in B(0, ε)− {0} and

ck =
1

k1! · · · kn!
∂k1+...+kn

∂ζk1
1 · · · ∂ζkn

n

∣∣∣∣
ζ=0

( ∫

|z|=r

e〈ζ,z〉θ(z) ∧ ω(z)
)

=
1

k1! · · · kn!

∫

|z|=r

zk1
1 · · · zkn

n θ(z) ∧ ω(z)

for 0 < r < ε. Notice that although the expansion θ =
∑

k ckηk + ∂v holds in B(0, ε)−
{0}, the series

∑
k ckηk converges in Cn−{0} and defines there a ∂-closed (0, n−1)-form,

i.e.
∑

k ckηk ∈ Z
(0,n−1)

∂
(Cn − {0}).

More generally, let us associate to each point α ∈ Cn the differential forms

ηk(z; α) =
∂k1+...+knM(z, w)

∂wk1
1 · · · ∂wkn

n

∣∣∣∣
w=α

= βnn(n + 1) · · · (n + k1 + . . . + kn − 1)

× (z1 − α1)k1 . . . (zn − αn)kn

|z − α|2(n+k1+...+kn)

×
n∑

j=1

(−1)j−1(zj − αj)dz1 ∧ . . . (j) . . . ∧ dzn.

Then every θ ∈ Z
(0,n−1)

∂
(B(α, ε)− {α}) has an expansion of the form

θ =
∑

k

ck(α)ηk(· ;α) + ∂v

where

ck(α) =
1

k1! · · · kn!

∫

|z−α|=r

(z1 − α1)k1 · · · (zn − αn)knθ(z) ∧ ω(z) (0 < r < ε)

and v is a (0, n − 2)-form in B(α, ε). Thus the coefficient c0(α) =
∫
|z−α|=r

θ(z) ∧ ω(z)
may be thought of as the residue of θ at α, and then the coefficient ck(α) is the residue,
at the point α, of the differential form

1
k1! · · · kn!

(z1 − α1)k1 · · · (zn − αn)knθ(z).
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Notice also that if f ∈ O(B(α, ε)), then

f(z)θ(z) ∧ ω(z) =
∑

k

ck(α)f(z)ηk(z;α) ∧ ω(z) + d
[
f(z)v(z) ∧ ω(z)

]

and therefore, by Stokes’s formula and the uniform convergence of the series on the
sphere |z − α| = r,

∫

|z−α|=r

f(z)θ(z) ∧ ω(z) =
∑

k

ck(α)
∫

|z−α|=r

f(z)ηk(z; α) ∧ ω(z)

=
∑

k

ck(α)
∂k1+...+knf(z)
∂zk1

1 · · · ∂zkn
n

∣∣∣∣
z=α

.

Now we can prove the following theorem.

Theorem 2. Let us consider an open set Ω ⊂ Cn of the form Ω = D−(G1∪. . .∪GN )
where D is a pseudoconvex set and G1, . . . , GN are compact convex sets in Cn so that
Gl ⊂ D and Gl ∩ Gm = ∅ for l 6= m. Let us also consider simple closed surfaces Sl,
each one around the set Gl and close to it. Then the following statements hold:

(I) A differential form χ ∈ Z
(0,n−1)

∂
(Ω) is ∂-exact (in Ω) if and only if

∫

z∈Sl

e〈ζ,z〉χ(z) ∧ ω(z) = 0 (7)

for every l = 1, . . . , N and ζ ∈ Cn.

(II) Every θ ∈ Z
(0,n−1)

∂
(D−{α1, . . . , αN}), where α1, . . . , aN ∈ D, has an expansion

of the form

θ =
N∑

l=1

∑

k

ck(αl)ηk(· ;αl) + ∂v

where v is a (0, n− 2)-form with C∞-coefficients in D − {α1, . . . , αN}.
Proof. Statement (I): The one direction follows from Stokes’s formula. The other

direction is a generalization of [3: Lemma 5] and its proof is similar in this case too, but
we will nevertheless outline it. First we exhaust the set Ω with a sequence of compact
sets of the form

K = {λ ≤ 0} − ({ρ1 < 0} ∪ . . . ∪ {ρN < 0})

so that {λ < 0} is a bounded strictly pseudoconvex set with smooth boundary and
the sets {ρ1 < 0}, . . . , {ρN < 0} are strictly convex neighborhoods of the convex sets
G1, . . . , GN . In other words, the sets {λ < 0} should exhaust the pseudoconvex set D,
while the sets {ρl < 0} shrink down to the set Gl, for l = 1, . . . , N .

Fixing such a set K, we consider the map γ : (∂K)× int(K) → Cn as follows: For
(ζ, z) ∈ (∂K) × int(K), {γj(ζ, z)}n

j=1 is defined to be a Henkin-Ramirez map of the
strictly pseudoconvex set {λ < 0}, if ζ ∈ {λ = 0}, and

γj(ζ, z) =
∂ρl

∂ζj
(z) if ζ ∈ {ρl = 0}.
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(For exhaustions of pseudoconvex sets by strictly pseudoconvex domains and construc-
tions of Henkin-Ramirez maps, see [5, 7].) Then

n∑

j=1

(ζj − zj)γj(ζ, z) 6= 0 for (ζ, z) ∈ (∂K)× int(K)

and therefore we may write down the Cauchy-Leray formula

u = ∂z(Tq−1u) + Tq(∂u) + Lγ
q (u) (8)

for (0, q)-forms u in a neighborhood of K (notation is as in [3: p. 912]).

Now if χ ∈ Z
(0,n−1)

∂
(Ω) satisfies (7), it follows as in the proof of [3: Lemma 5] that

Lγ
n−1(χ) = 0, and therefore (8) gives χ = ∂z(Tn−2χ) in int(K). Now the conclusion

that χ is ∂-exact in Ω follows from [3: Lemma 4], and this completes the proof of part
(I).

Statement (II): Let θ ∈ Z
(0,n−1)

∂
(D − {α1, . . . , αN}). For each l and k, define

ck(αl) =
1

k1! · · · kn!

∫

|z−αl|=r

(z1 − αl
1)

k1 · · · (zn − αl
n)knθ(z) ∧ ω(z)

where r > 0 is sufficiently small. Then, by what we said in Section 4, the series

∑

k

ck(αl)ηk(· ; αl)

converges and defines a ∂-closed (0, n− 1)-form in Cn − {αl}. Therefore

χ = θ −
N∑

l=1

∑

k

ck(αl)ηk(· ; αl) ∈ Z
(0,n−1)

∂
(D − {α1, . . . , αN})

and it is easy to check that

∫

|z−αl|=r

e〈ζ,z〉χ(z) ∧ ω(z) = 0

for every l = 1, . . . , N and ζ ∈ Cn. Therefore it follows from part (I) that χ = ∂v for
some (0, n−2)-form v with C∞-coefficients in D−{α1, . . . , αN}. This gives the required
expansion of θ and completes the proof of part (II)
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5. A residue formula

Recall that if S : S2n−1 → Cn − {α} is a closed surface which does not pass through
the point α, then the integral

δS(α) =
∫

S
M(z, α) ∧ ω(z) =

∫

S2n−1
S∗[M(z, α) ∧ ω(z)]

is an integer which is the index of the surface S around the point α. It is easy to see
that ∫

S
ηk(z; α) ∧ ω(z) =

{
δS(α) if k = (0, . . . , 0)
0 otherwise.

Thus, with the notation of Theorem 2,

∫

S
θ(z) ∧ ω(z) =

N∑

l=1

c0(αl)δS(αl)

provided that S is a surface in D which does not pass through any of the points αl.
More generally, if f ∈ O(D), then

∫

S
f(z)θ(z) ∧ ω(z) =

N∑

l=1

(
δS(αl)

∑

k

ck(αl)
∂k1+...+knf(z)
∂zk1

1 · · · ∂zkn
n

∣∣∣∣
z=αl

)
.

Finally, it is easy to see that the above formulas hold if S is any surface of the more
general form S = ∂Ω → Cn (smooth), provided that αl 6∈ S(∂Ω) for every l.
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