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Pseudodifferential Operators on R"
with Variable Shifts

V.S. Rabinovich

Abstract. The aim of the paper is the study of pseudodifferential operators with shifts of the
form

AU(ZE) = a’j(maD)th + bj(an)ng

j=1 j=1

where a;(z, D) € OPST)y and b;(z, D) € OPS{'y¢ (¢ > 0) are pseudodifferential operators in
the Hormander classes, and th and ng are shift operators of the form

Vi u(x) = u(x — hj) (z € R")
r)=u

Ty;u( (z — g;(x))
where h; € R™ and the mappings g; : R"™ — R™ have infinitely differentiable coordinate
functions bounded with all their derivatives. We will investigate the Fredholm and semi-

Fredholm properties of the operator A acting from H*(R™) into H*~™(R") applying the limit
operators method.
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0. Introduction

The aim of the paper is the study of the Fredholm and semi-Fredholm properties of the
operator

N N
Au(z) = Z aj(z, D)Vi, + Z b;(z, D), (1)

acting from H*(R™) into H*~"(R") where
aj(r, D) € OPST and bj(z,D) € OPST;° (¢ >0)
are pseudodifferential operators in the well-known Hérmander classes (see, for instance,
[20]), and V},; and T, are shift operators of the form
Vi, u(z) = u(x — hy)

r e R"
Tyu@) = u(e—gy@) )
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where h; € R™ and the coordinate functions of the mappings g; : R™ — R" are infinitely
differentiable and bounded with all their derivatives. Moreover, we suppose that g; are
slowly oscillating at infinity.

Note that the study of integral operators with constant shifts on the half-line R
goes back to the well-known book [5] (see also the recent monograph [4]). Differential-
difference operators of form (1), where g; € R™ and the coefficients satisfy some addi-
tional conditions, are studied in the papers [13, 14|, and pseudodifferential operators
with shifts on compact manifolds are investigated in the books [1 - 3] (see also the book
[9] dealing with ordinary differential operators with shifts). One can find in these books
an extensive bibliography on the topic.

But this paper is the first where general pseudodifferential operators with variable
shifts are studied. Our approach is essentially different from those of the cited papers
and is based on the limit operators method. This method allows us to reduce the
investigation of the Fredholm property of operators (1) to the problem of invertibility
of limit operators with a simpler structure than that of the original operators (1). In
our case, the limit operators are of two kinds:

1) pseudodifferential operators with constant shifts

2) operators of the form Zj\il ¢V, , where ¢; are infinitely differentiable functions
bounded with all their derivatives.

The method of limit operators has been developed in the papers [10 - 12, 15, 17, 18] for
the study of the Fredholm property of wide classes of pseudodifferential and convolution
operators on R™ and Z"™. Note also that the method of limit operators recently was
applied to the investigation of one-dimensional singular integral operators with slowly
oscillating shifts [8].

Here we use an abstract scheme for the limit operators method presented in the
paper [19].
The structure of the paper is as follows:

In Section 1 we present the abstract scheme of the limit operators method, and in
Section 2 an auxiliary material on pseudodifferential operators needed in what follows.
In Section 3 we consider a C*-algebra generated by pseudodifferential operators of zero
order with shifts and apply the abstract scheme of Section 1 for the investigation of
operators in this algebra. At last, in Section 4 we use the results of Section 3 for the
study of the Fredholm property of operators (1).

1. Axiomatic approach to the limit operators method

We start with recalling the axiomatic scheme for the application of the limit operators
method developed in [19]. Let H be a Hilbert space and L(H) the C*-algebra of all
bounded linear operators acting on H. Suppose that we are given

(A1) operators P, P € L(H) with PP = PP = P.
(A2) acountable set {U, }qen of unitary operators on H such that, with P, = U, PU}
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and P, = U, PU,

Yo IPaul® = Jul®  and Y [Paul® < Cllulf? (2)

acN aEA

for all w € H with a constant C' > 0 independent of u.

A3) a sequence (Wy)ren of unitary operators on H and an associated sequence
q
(Dg)ken of mappings from A into itself such that WkU = Up, (a)Wy for all

a € A and k € N, and such that the operators Pk = WkPWk converge strongly
to the identity operator on H. We also set P, = W, PW} and Py o = Wi, P, W}

as well as ﬁk@ = Wkﬁawg
(A4) a bounded sequence (Q,)ren of operators in L(H) such that:

- there is a distinguished set B of sequences in A which contains all sequences
(B, for which there exist a k € N and a sequence r,,, — 0o in N such that

P8, Qr, 70  (meN) (3)

- every subsequence of a sequence in B belongs to B

- the set B is invariant with respect to each of the mappings Dy, i.e. if (5,,) € B,
then (Dyfy,) € B for every k

- for each r € N and each sequence (5,,) € B,
mli_n)loo Us, Q:Ugp, =1. (4)
Since both U, and W}, are unitary operators, one also has

Y MPoul® =llul®  and Y| Peaull® < Offul?

aEA acA

for allu € H and k£ € N and
Pk,aﬁk,a = ﬁk,aPk,a = Pk,a

for all « € A and k € N.
Definition 1. We say that the operator Ag is the limit operator of A € L(H) with
respect to the sequence § = (3;) € B if there exists ky € N such that for every k > ko

lim (U3, AUs, — Ag)Py|| = lim ||(Py)* (U}, AU, — Ag)|| = 0.

Jj—o0 Jj—o0

The set of all limit operators of A with respect to sequences in B will be denoted by
limB(A).

The limit operators have the following elementary properties:
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Let 8 € B and let A,B € L(H) be operators for which the limit operators Ag and
Bg exist. Then:

(a) [[Ap]l < [lAl-

(b) (A+ B)g exists and (A+ B)g = Ag + Bgs.

(c) (A*)g exists and (A*)z = (Ap)*.

(d) If C,C,, € L(H) are operators with ||C — C,|| — 0 and if the limit operators
(Cn)p exist for all sufficiently large n, then Cg ezists and ||Cz — (Cy)g| — 0.

Definition 2. Let Ag(H,{Px,}) denote the set of all operators A € L(H) with
the following properties:

(a) limg— oo ||[Pr,a, A]|| = 0 and limg_, ||[Pk,a, A*]|| = 0 uniformly with respect to
a € A.

(b) Every sequence in B possesses a subsequence [ for which the limit operator Ag
exists.

(c) There is a ko € N such that Py oA = Py o AP o for all k > k.
Further, let A(H,{Py.}) denote the closure of Ay(H,{Px.o}) in L(H).

Let v(A) = inf) s =1 [|Af| refer to the lower norm of the operator A € L(H). It is
well-known that A is invertible from the left if and only if #(A) > 0 and invertible from
the right if and only if v(A*) > 0. Thus, A is invertible if and only if both v(A) > 0
and v(A*) > 0.

For every non-zero (but not necessarily closed) subspace L of H we also consider
the lower norm of the restriction Al of A onto L. If, in particular, L is the range of a
non-zero operator P € L(H), then we call

v(Alpmy) = ||PlJIfl|\f:1 |APf||

the lower norm of A relative to P. The following result has been proved in [19].

Theorem 3. Let A € A(H). Then
liminf (A = inf Ap).
iminfv(Ale.m) =, inf | v(4s) (5)
2. Auxiliary material on pseudodifferential operators

We say that A = Op(a) = a(z, D) is a pseudodifferential operator in the class OPS) , (0 <[]
p < 1) with symbol a(z, &) if

(Au)(z) = Op(a)u(z) = a(z, D)u(x) = / ¢ | a(w, &)’ u(y) dy
n Rn
u e CP(R™)
and a(x, ) satisfies the estimates

070¢ a(z,€)] < Capl&)™ 71 ((6) = (L +[€[1)"/2, Cap > 0) (6)
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for all multiindices a = (aq, ..., ) and G = (B4, ..., Bn), and A is a pseudodifferential
operator with double symbol a(z,y,&) € S5 ¢ if

(4u)(@) = Opata)ute) = [ e [ alw, e uty)dy
u € C§°(R™)
where a satisfies the estimates
\afagaga(x,y,f)] < Ca6w<f>m_p|a| (Capy > 0)

for all multi-indices a = (o, ...,a), 6 = (61,...,0n) and v = (71, ..., 7n). We denote
the class of such operators as OPSY .

It is well-known that every pseudodifferential operator A = Opy(a) with double
symbol a € 82’070 is a pseudodifferential operator in the class OPS&O and its symbol
oa(z,€) is defined as

oa(r,&) = (v, +y,& +n)e " dydn

R2n

where the double integral is understood as oscillatory [20, 21]. It follows from the well-
known Calderon-Vaillancourt theorem [21] that A € OPS, is a bounded operator in
L?(R™) and
lAu| <C Y sup  |90ga(x,€)| (7)
Jaf+]5]<m (78R
where the constant C > 0 and m € N are independent of A.

Definition 4 (see [6]). We say that the symbol a € S}, is slowly oscillating at
infinity if for all multi-indeces «, 3

10508 a(x, )| < Co g(x) (€)™ 1"

where lim, .o Cq g(z) = 0 for all @ and 8 # 0. We denote the class of slowly oscil-
lating symbols by SLJ', and the corresponding class of pseudodifferential operators by
OPSLY,

Proposition 5 (see [6]). Let A; = Op(a;) € OPSLZ% (1 =1,20<p< ).
Then A1As € OPSLm“Lm2 and A1 Ay = Op(b) where b(z,§) = a(z,&)b(x, &) + r(x,§)

and r satisfies the estzmates
|020¢ (2, €)| < Caplx)(g)mHmamrelel

where limy_,o Co g(x) = 0 for all a« and B. If p > 0, then Op(r) : H*(R") —
Hs=m=m2(R™) 4s a compact operator.

We will denote by Cp°(R"™) the class of C'*°-functions on R™ bounded with all their
derivatives.
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Proposition 6. Let ¢ € Cp°(R™), let o and ¢, o are defined as oo (y) = ¢(y — @)
and pro(x) = @a(¥) for y € R™ and let A€ OPSY . Then

rlggo 1A, ro ]l = TIEEO 1[4, ora(D)]]| =0 (8)

uniformly with respect to o € Z™.

Formula (8) follows easily from the formula for composition of pseudodifferential
operators and estimate (7).

Let f(z) € C°(R™) with f(—z) = f(x), 0 < f(z) <1 for all z € R™ and

fx) = (i=1,..n)

NI UL )

and let fr(r) = f(¥) (k€N).
Proposition 7. Let a € 5'8’0 and a*(x,y,€) = a(z,€) fu(x —y). Then

Jim [|Op(a) = Opa(a®)]| = 0.
Proof. It is easy to check that a*(x,vy,&) € 58’070. Then
Op(a) — Opa(a®) = Opa(bF)

where b*(x,7,¢) = a(x, &)Y (z — y) with 1, = 1 — fi. The symbol of By = Opg(b¥) is
given as

op,(,§) = # // a(xz, &+ U)wk(y)e_i(y’”)dydn
= @ //<y>2l1 <D?7>2l1 {<n>72l2 a(l‘,ﬁ + 77) <Dy>2l2¢k (y)}efi(y’n)dydn,

Let 211 >n+ 1 and 2l5 > n. Then

= Q

|O-Bk(x7§)| <

> sup|dfa(x, ¢

<21, ¢

where the constant C' > 0 does not depend on a and k. In the same way we obtain the
estimates

C
0070, (2,€)| < Y. supldfdfa(a. €.

k
yI<2ti+la] ©
Now the Calderon-Vaillancourt theorem provides that limy_,o || Bl =01

Note that the operators Zj.\jzl aj(x, D)Vy, where a;j(x,D) € OPSY} belong to
OPSI,.

In what follows we need some class of symbols 517?0 C ST-
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Definition 8. We say that a symbol a € g{rfo if a € ST and there exists a function
ap € C°(R? x S™~1) such that

lim sup ) 1€ a(x, &) — ao <x, é—‘ﬂ =0.

1§l —=—+00 (2,6)eRrn xRz \{0}

Proposition 9. Let a € 59’0 and a sequence h,, — oo. Then there exists a subse-
quence hy,, and a symbol ay, € SRO such that, for all o, B and for an arbitrary compact
K CR?,

lim sup ’858?&(33 + by, &) — 858?%(&5)} =0. 9)
k=00 K xRy

Proof. Let ]@? be the compactification of Rf obtained by association to each ray
outgoing from the origin the infinitely distant point. All derivatives with respect to =
of a symbol a € 5’?0 can be considered as continuous functions on R} x ]1/15? By the
Arcela-Ascoly theorem the sequence a(x + hyy,, §) has a subsequence a(z + hy,, , §) such
that

lim sup |8§a(w + by, &) — Gfah(x,fﬂ =0
k=00 K xRy

for each compact K C R?. Taking into account that for all « # 0 and 3
5lim sup |8§8§‘a(w,§)| =0

we obtain that there exists a subsequence h,,, such that

lim sup \afjaga@: + Mg, §) — 8583%(9575)} =0
k=00 K xRy

for each compact K C R? and for all multi-indeces o and 3. It follows from (9) that

If we set A )
Spa('r) = Zﬁezn f(a: — ﬁ) (a € Zn),

then
Z Wi(z) =1 and 0<p,(z) <1 (r € R™).

aEeZm

To apply the abstract scheme of the limit operators method we set
Uy =Vy (@€eZ™), (Vou)(z)=u(zr— )

and R
P=yyl, P=q¢l

for ¢ € C3°(R™) with supp¢ = {z € R" : |z| < 1} and ¢(x) = 1 on the ball {z € R™:
|z| < 2}. The sequence {Wj}ren is a sequence of dilations
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Further,
Py = (Vawo)l, Pro =Py
Po=(Vad)l, Po=0il, Pro=m(Vad)y "

where ¢r(z) = ¢r(f) and
(Qr:::XrI

where x,. is the characteristic function of the set {z € R™ : |z| > r} (r € N). It is

evident that
S Preull® = D lleraull® = [ul?

aEZ™ aEZ™
T

where o () = ©(F — a). It is easy to prove that
> 1Peaul® < 2" ul®.

aEL™

Then conditions (A1) - (A4) are fulfilled with A = Z™ and B being the set of all sequences
in Z™ tending to infinity.

Proposition 10. Let A = a(x,D) € OP:S'V?’O. Then each sequence Z™ > hy, — o0
has a subsequence h,,, defining a limit operator Ay, € OPS’?,O.

Proof. It follows from Proposition 9 that the sequence h,, has a subsequence A,
such that (9) holds. The Calderon-Vaillancourt theorem implies

HIBJ (thnlk a(:z:,D)thlc - ah(x,D)) H
= 1P(a(@ + hmny,, D) = an(, D)) |
< sup Z |8§8§‘a(x+hmk,£) —658?&“3:,5)’
#ISIEER o) 11p1<N
— 0

if & — oo, for every 5 € N. In the same way, applying the formulas of composition of
pseudodifferential operators and the Calderon-Vaillancourt theorem, we obtain

lim [|(V;,! a(z, D)Vh,, —an(x, D)) Py =0

k— k

for every j e N1
Corollary 11. The inclusion OPSV?’O C A(Ly(R™)) holds.

Proposition 12. Let A = Op(a) € OPSLY ;N OP§?7O. Then all limit operators
for A are invariant with respect to the operators Vj,.

Proof. By the Lagrange formula and by Definition 4,
a(z" + hn, &) — a(@” + b, §)]
< sup Z 00,a((1 — )3 + ta" + hy, &) | |2/ — 2"
tG(O,l)jzl
— 0

if h,, — 00. Thus the limit lim,, oo a(z + hy,, &) = ap(€) does not depend on z. It
means that the limit operator A, = ax(D) is invariant with respect to shifts i
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3. Algebra of pseudodifferential operators of zero order
with shifts

Let g = (g1,-.-,9n) : R — R"™ where

(o) g; € Cy°(R™) forall j=1,...,n

(B) the mapping F, : R" — R", o — z — g(z) is invertible

(7) limz—oo ||dg(z)]| = 0.

Proposition 13. The set of the mappings © — x — g(x) satisfying conditions («) —
(y) is a group.

Proof. Indeed:

1) Let Fy,(z) =z — g1(z) and F,,(z) = x — g2(x). Then

(ng © Fgl)('r) - ng+g1092~

It is evident that g, + g1 o g2 satisfies conditions (a) — () if g1 and gy satisfy these
conditions.

2) It follows from (8) that the mapping F, is invertible. Hence

y=FoF, )(y)=F; ' (y) — (90 F, ) ().
Thus
Fyl(y) =y + (g0 Fy )
where g o F;"! satisfies conditions (a) — (v)

We consider shift operators T} of the form

(Tyu)(z) = u(x — g(x)).
The class of all shifts T;, where g satisfies conditions (&) — () will be denoted by R(R™).

Proposition 14. Let g satisfy conditions (a)— (7). Then the operator T, is bounded
on L?(R™).

Proof. We have

Tyl = [ uFy(e))Pde = [ Jut)PlderdF; @)l dy < Clul?

n

where C' = sup, ¢ |det dF, ' (y)| < oo by conditions () and () i

Proposition 15.

1) Let Ty, , Ty, € R(R™). Then Ty, Ty, = Tg,+g,09: € R(R™).

2) Let T, € R(R™). Then T, is invertible and (T,)~' € R(R™) also. Moreover,
(Tg) ™" = T where g(y) = —g(F~'(y)).

3) Let T, € R(R™). Then (T,)* = |det Fy(z)|(T,)"*.

Proof. Assertions 1) and 2) follow from Proposition 13, assertion 3) can be proved
by simple calculations il
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Proposition 16. Let T, € R(R™). Then
I LT =
tim [[ps.al T, = 0

uniformly with respect to o € Z™.

Proof. For every u € L?(R") one has

Ilor,al, Tolul| < sup |ra() — Gral@ + g(@))] | Tyull
reR™
T x4 g(
<0 sup [o(¥ —a) — o(THAD o) ju).
rER™

The function g is bounded due to assumption («) and ¢ is uniformly continuous on R™.
Then given € > 0 there exist kg such that for k > kg

(5 -) - o{ £ o) <o

Here are a few instances where requirements () — (6) are satisfied.

sup
TER™ aeZ™

This implies the assertion H

Example 17. If g is a constant function, then evidently T, =V, € R(R").

Example 18. Let
(Tyu)(z) = u(z — g(z))

and let conditions («) and (vy) be fulfilled. If one of the conditions

max E sup M‘ <1 or 1I<r}€a<xm g sup 8517k ‘ <1 (10)
== k=1

is satisfied, then T, € R(R"). Indeed, conditions (10) 1mp1y that
Fy: R" = R", z—2—g(x)
is a contraction. Thus, by the Banach fixed point theorem, Fj is invertible, that is
condition (3) holds.
Proposition 19.
(a) If A= a(x, D) is in OPSTY orin OP§T0 and Ty € R(R™), then also TyAT, !
is in OPSTYy or in OPSTY, respectively. Moreover,
T,AT, " = OP(a(F(x), (dF(x))'¢)|det F'(z)| + R (11)
where R € OPSTOA.
(b) If A= a(z,D) € OPSLYY, then R = Op(r(x,§)), where
|05 0¢r(2,€)] < Capla)(€)m 11"
with
mlin;o Cop(z)=0 (12)

for all o and (3.

Proof. The proof follows from the well-known theorem on the change of variables
in pseudodifferential operators (see, for instance, [20: Chapter 1/p. 31 - 38]) I
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Let us consider the operators of the form

M N
Ayn =Y aj(x,D)Vi, + > bj(x,D)T,, (13)

j=1 j=1

where a;(z, D) € OPSY , bj(x,D) € OPS;§ (¢ >0) and T, € R(R™).

Proposition 20. The sum, product and adjoint for operators of form (13) again
is an operator of form (13).

Proof. The proof for the sum is evident. Let us consider the product

(a1(z, D)V, + b1(z, D)Ty, ) (az(x, D)V, + ba(x, D)Ty,)
= ay(z, D)az(x — h1, D) Vi, 4y + (b1 (2, D) Ty, az(x, D)T, )Ty, Vs,
+ al(xa D)bZ('T - h17 D)Vh1T92 + (bl (I, D)Tg1 b2<x7 D)Tg_ll)Tnggz

= CL(.’L‘, D>Vh1+h2 +c1 (CE, D)Tg1 Vh2 + 02('7;7 D)Vh1T92 + CS(xa D)Tg1ng

where ~
a(z,D) = ai(z,D)az(x — hy, D) € OPSRO
and by Proposition 19 and according to the formula for composition of pseudodifferential
operators [20] ¢;(z, D) € OPS| . By Proposition 15,
Tg1 Vh27 Vhl ng ) Tgl ng S R(Rn>

Thus the product of operators of form (13) is again an operator of form (13). At last,
simple calculations, using the fact that the adjoint operator of a(z, D) € OPS|§ (e <0)

in Ly(R™) is an operator in OPS; 5 demonstrate that the adjoint operator to Ay/n is
again an operator of form (13) il

Definition 21. We denote by P the closure in B(L?(R™)) of the set of all operators
(13) and by J the closure in B(L?(R™)) of the set of operators of the form

N
ij(:b, D)Ty, (14)
j=1

where b;(z, D) € OPS; 5 (¢ > 0) and Ty, € R(R").

It follows from Proposition 20 that P is a C*-algebra and J is a two-sided ideal in
P.

Proposition 22. Let T € J and x € C§°(R™)). Then xT and Tx are compact
operators.

Proof. It is evident for operators of form (14). For the proof of the statement for
operators in J we use standard density arguments B

Let us consider the question of existence of limit operators for operators in the
algebra P with respect to the set {V, }aezn.
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Proposition 23. The C*-algebra P is contained in A(L2(R™), {Pg.o}).

Proof. 1) Let Apn be an operator of form (14). Then Propositions 6, 7 and 16
provide the validity of assertions (a) and (c) of Definition 2. For general operators in P
the validity of these assertions follows from usual density arguments.

2) Let us consider the existence of limit operators for generators of the algebra
P. First we consider the operator A = a(x, D)V}, where a(z,D) € OP§?70. Then
V, LAV, = a(z + pm, D)V, Tt follows from Proposition 9 that there exists a subse-
quence p,,, and an operator a,(x, D) € OPS?’O such that for every j € N

lim [P (a(@ + puny., D) = ay(z, D))
= lim |(a(@ + pmy, D) = ay(w, D)) Pj|
= 0.

The last equalities imply

lim ||ﬁj (a(z + Py, D)Vi — ap(z, D)V3)|| =0

k—oo

for each j € N and

lim [|(a(x + iy, D)Vi — ap(w, D)V3) Pj| = 0

k— o0

for large enough j. Thus a,(z, D)V} is a limit operator of a(x, D)V},.

Let us consider the operator B = b(z, D)T, where b(x, D) € OPS; 5 (¢ > 0) and
T, € R(R"). Then
Vep. BVp,, =b(x + pm, D)V, 1T V..

First we consider the operator T, € R(R™). Then one has
(Voo TgVo, ) (@) = u(z — g(z + pm)).-

Since the functions z — g(x + p,,) are uniformly bounded with respect to m € N
and equicontinuous on compact subsets of R™, the Arzela-Ascoli theorem implies the
existence of a subsequence p of p such that the functions = +— g(x + p,,) converge
uniformly on compacts in R" to a certain bounded function g;. Note that the function
gp is constant, that is g5 € R™.

We proceed with showing that the strong limit of the operators Vﬁ:anng'm as m —

oo exists and that
s— lim_ Vo Ty Vs, =Ty, (15)
Let w € Cg°(R™). Thus u is uniformly continuous on R™, and there exists a compact
subset © of R™ such that u(z + g(pm + x)) — u(z + g5) = 0 whenever x ¢ €2 (recall that
g is bounded). Further, it is evident from the definition of g; that, for arbitrary ¢ > 0,
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there exists a kg € N such that, for all £ > k¢ and all x € Q, |g(pm + ) — g5)| < 0.
Since u is uniformly continuous, for each € > 0 there exists a mg € N such that

Sug‘u(x—g(ﬁm—l-x)) —u(z+gp)| <e (m > my).
BAS

Thus limg_ o0 Vﬁ:angVﬁmu = Ty, u for every u € Cg°(R"). Since these functions form a
dense subset of L?(R™), this implies (15).

Let the sequence p,, be such that the strong limit (15) exists and for every j € N
Tim_||P; (b(x + B, D) = by(, D)) |
= lm_[[ (@ + . D) — by, D)) By 1o

m—

= 0.

The operators ﬁjb(x + P, D) and b(z + Py, D)ﬁj are compact by Proposition 22, hence
Pjbs(z, D) and b;(z, D)P; are compact also. Thus applying (15) and (16) we obtain

||, (62 + s DIV Ty Vi, — s DYT,,)| = 0

m—00

For the dual condition observe that, due to the boundedness of g, for every fixed j
one can find an NV such that

PNV TV, P = Vi M T,V;, P
ﬁNTgﬁ]Sj = Tgﬁﬁj

for all m. Consequently,

| (b(2 + B, D)V M T, Vi, — b2, D)T,, ) Bj|
< |[(b(x + pm, D) —bﬁ(x,D))ﬁN%;ng%mﬁjH (17)
+ [[ba(a, D) Px (V;, 1 Ty Vi, — Ty, ) B .

The first term in the right side part of (17) tends to 0 by (16) and by uniformly bound-
edness of the sequence %:angVﬁm, the second term tends to 0 by formula (15) and by
compactness of bs(x, D).

Thus we proved that if Ay;n has form (13) and p,, — oo, there exists a subsequence
Pm which defines the limit operator (Aa;n)s. The assertion of the proposition for
arbitrary operators in P follows from property (d) of limit operators. Thus assertion
(d) of Definition 2 holds

We denote by Lim., A the set of all limit operators A, of A defined by the sequences
{Px.qa,, } With a,, — oo.

Theorem 3 yields the following result.
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Theorem 24. Let A € P. Then
limian(A|QT(L2(Rn))) >0 (18)

if and only if
inf {v(Aq) : A € Limao(A)} > 0. (19)

Let, for ¢ € Cy°(R™), 4, be defined as () = ¢(%). We denote by D’ the subset
of bounded operators A in L(L?(R™)) such that

lim |[[A, ¢ 1]|| =0

r—00

for every function ¢ € Cy°(R™) where 1,1 is the operator of multiplication by . It is
easy to see that D’ is a C*-subalgebra of L(L?(R")) and, by Proposition 6, P C D’.

Let p € C>°(R"™) with
(o= {1 ile]>2
PRET=0 if|z) <1
and let p.(z) = p(%£). We introduce the two-sided ideal J’ in D’ as containing all
operators A € D’ such that
lim ||p Al = lim [|Ap,I|| =0.

Proposition 25. Condition (18) holds if and only if there exists an operator L' €
D’ such that
LA=1+T (20)

where T" € J'.

Proof. Let condition (18) hold. Then there exist 6 > 0 and ro > 0 such that
(XTOA*AXTOU7XTOU) > 52||Xro“||2

where x,, is the operator of multiplication by the characteristic function of the set
{z € R": |z| > ro}. This inequality implies the existence of an operator B € D’ such
that BAx,, = Xr,- This implies

BA=1—-BA(1 — xpy)L + (1 — xr) 1.
Since (1 — xr,)I € J', we obtain
T=—-BA(1 — xo )l + (I —xro)I € J.

Conversely, let (20) hold. Multiplying (20) from the right by the operator p,I we
obtain LAp,I = (I +T)p,I. We take r such that | Tp,I]| < 1 and let o be such that
XroPrd = Xrol. Then LAx,I = (I +Tp,I)xr,I. Thus

(I+To, 1) *LAX I = X1 1.

The last equality implies (18)
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Let us consider the dual case of applications of the abstract scheme. In this case the
unitary operators U, = Vi, (a € Z™) where (Vou)(z) = €@y (x), Wi =7 (k€N),
Py o = ¢ra(D), ¢r(D) = 16]2, Q) = xr(D) and B is the set of all subsequences a,,, € Z"
such that «,, — .

Proposition 26. The C*-algebra P is contained in Ao(L2(R"), {Fy ,})-

Proof. It is enough to check conditions (a) - (c) of Definition 2 for the generators
of P. For operators of the form A = a(z, D)V}, where a(z, D) € OPS? 0, conditions (a)
and (c) follow from Propositions 6 and 7 because A € OPSy .

Let us consider the operator B = b(z, D)T, where b(z,D) € OPS; 5 (¢ > 0) and
T, € R(R"). We set ¥p.a(D) = I — ¢p.o(D). Then

|95, (D)b(z, DTy || = ||V r.0(D) Varb(z, D)V, |
= ||r,0(D)b(z, D + ak)V T, ol
< C||¢w,0(D)b(z, D + ak) H.
Since b(z, D) € OPS; 5 (¢ > 0) and supp ko C {£ € R™ : [§] > k}, by the Calderon-
Vaillancourt theorem,
Jim |%%,0(D)b(z, D + ak)|| =0
uniformly with respect to a. Thus,

Jim |%%,0(D)b(z, D)Ty|| =0 (21)

uniformly with respect to a. In the same way,

[, D)Tg9ea(D)| = |[TyTy "b(a, D) gwka )|
< C||T, ' b(z, D)Tytpy.o(D)| (22)
— 0

if k& — oo, uniformly with respect to «, since T, Y(xz, D)T, is a pseudodifferential
operator of the class OPS;; (¢ > 0). Formulas (21) and (22) imply assertion (a) of
Definition 2. Assertion (c) of Definition 2 follows from Proposition 7.

Let us consider the existences of the limit operators with respect to the unitary
operators V,. Let Z" 5 «,, — oco. Then

?airjA‘/}am = Cl(x, D + am)@i(haam)vh_

There exist an infinitely distant point 7, corresponding to the point w € S™~! and a

subsequence a;,; — 7,,. The numerical sequence etham;) g bounded, thus there exists

. i (B
a convergent subsequence. We will suppose that the same sequence et (hoim;) converges

to a complex number ¢, with |g,| = 1. Let

a(z,n,) = tlirgo a(z, tw),
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the last limit being uniformly with respect to x € R™. Then by the Calderon-Vaillancourtfij
theorem we obtain

lim || P (V,,,! AV,

k—o0

a('x? nw)quh) H

M

= lim || 1k AVamk - a(%ﬂw)%vh)ﬁlg”

k—>oo

=0.

Thus the limit operators for a(xz, D)V}, are operators of weighted shifts, that is the
operators cVj,, where ¢(z) = a(z, N, )qq-

Let us show that all limit operators for B = b(x, D)Ty, where b(z, D) € OPS|
(¢ >0) and T, € R(R"™), are 0-operators. Indeed,

~

VoiBV,, =b(z,D+an)VilTVa,,.
It easy to check that for each k£ € N

lim HPk z, D+ an)|| = hm Hb 2, D+ ap) Pl = 0.

m—00

This implies
H}A’,;b(a:, D + am)f/afmng‘A/am H < C’Hﬁéb(m, D+ ap,)|| — 0
and
16(2, D + ) Vi 2T,V PL|| = ||0(2, D + @) Py Vi Ty Vi, B |
< C||b(z, D + a.,) Py||
— 0

if o, — 0o. Thus the limit operators for the operator Aj;x have the form

M
AMN Za] CU % qj )th (23)

Jj=1

where a;(x,n,) € C;°(R™) and |qj(.a)| = 1. Property (d) of the limit operators provides
the validity of assumption (b) of Definition 2. Moreover, all limit operators of A € P

with respect to the family {Va}aezn belong to the C*-algebra Q which is the closure in
B(Ly(R™) of operators of form (23) i

We denote by Lim’_A the set of all limit operators of A defined by the sequences
{Va,, } with a,,, — co. As a corollary of Theorem 3 we obtain

Theorem 27. Let A € P. Then the condition

lim V(A|Q/ (L2(Rn))) 0 (24)

r—00
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holds if and only if

inf A : 2
Aﬁe(ﬁ?moo A)’V( 8) >0 (25)

We denote by D” the subset of bounded operators A in L(L?(R™)) such that
Tim [[[A,6,(D))] =0

for each function ¢(£) € C;°(R™). It is easy to see that D" is a C*-subalgebra of
L(L*(R™)) and P C D”. We introduce the two-sided ideal J” in D’ which contains all
operators A € D" such that

Tim (o, (D)A| = lim [[Ap, (D) = 0.
Proposition 28. Condition (24) holds if and only if there exists an operator L" €

D" such that
L'A=T+T" (26)

where T" € J".

The proof is similar to that of Proposition 25 and it is thus omitted .

Theorems 24 and 27 have a very important corollary on semi-Fredholmnes and
Fredholmness of operators in the C*-algebra P.

Theorem 29. Let A € P. Then A is a ®-operator if and only if the conditions

apetin 47149 =0 27
anetine, 4" AP 20 2%)

hold.

Proof. Let conditions (27) - (28) be satisfied. Then there exist bounded operators
L', L" and operators T" € J" and T” € J” such that /A=1+T' and L"A=1+T".
The operator L = L’AL"” — L' — L" is such that LA — [ = T'T"”. The operator T'T"
is a compact one. To see this let p, be defined as earlier. Then applying Proposition 6

we obtain
lim [ T'T"p, )|l = lim |[T'T"p, (D))]| = 0.
T— 00 T—00
This implies that T’T” can be approximated by the sequence of compact operators
T'T"(I — pI)(I — pr(D)) as 7 — oco. Hence T"T" is a compact operator.
Inversely, let A be a @, -operator. Then the a priory estimate
Olull < | Au][ + [[Tu][d > 0 (29)
holds where T' is a compact operator. Let U, (y € Z™) be one of the sequences of

~

unitary operators (V) and (V) defining the limit operator A, and let L,, be P,, or
P/ . Then it follows from (29) that for every m

S| Lmul| < U AU Lypul| + |[USTUy Lyyul] (5> 0). (30)
The sequences U, and U weakly converge to zero, consequently, lim, ... [[USTU ul
= 0. Passing to the limit if ¥ — oo in estimate (30) we arrive the estimate
S Lt < [ Ay Lonai] (31)
Taking into account that the sequence L,, strongly converges to the unit operator we
can pass to the limit in (31) and obtain (27) - (28) &
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The following theorem is a corollary of Theorem 29.

Theorem 30. Let A € P. Then:
(a) A is a ®_-operator if and only if

inf {v(A%): Ag € LimA} >0

/
inf {v(Aj): Ag € Lim A} > 0.

(b) A is a Fredholm operator if and only if all operators in Lims, AU Lim’_ A are
uniformly invertible, i.e. if

sup {HAEIH : Ag € Lime AU Lim A} < oo.
Example 31. Let us consider operators of the form

M N
A=Y "a;(x,D)Vs, + Y _bj(x,D)T,, (32)
j=1

j=1
where _
a;(x,D) € OPS} ¢NOPSLY ,
bj(z,D) € OPS g NOPSLG (¢ >0)
T,, € R(R").

The limit operators for A with respect to the set of unitary operators {V,, } have the
form

M N
Ay = Y a (D)WVa, + 3 b (D)V o
j=1 j=1 !

where ()
g;" = lm_g;(am)
ol (&) = Tim_a;(am,€)
b(€) = lim bj(am,€)

since the symbols a;(z,§),b;(x,§) and shifts Ty, are slowly oscillating. The operators
A(q) are invariant with respect to the shifts V4, hence A, is invertible in Ly(R™) if
and only if

inf |A(€)] >0

Anf, [A(a) (€]

where
M

N
~ « ilh a i (‘a)7
Ay (©) =3 al ()59 + 3 b (€)el 00,
j=1

j=1

Thus we have an effective invertibility condition of limit operators corresponding to the
sequences {V,, }.
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Moreover, one can show that all limit operators with respect to V, are uniformly
invertible if and only if

lim inf
R—oo0 |z|>R,£€R™

M N
Z a;(x, €)e’h8) 4 Z bj(z, D)e!91(®)0] > 0,
p =1

The problem of invertibility of limit operators defined by the dual family of unitary
operators {V,, } is more complicated. It follows from the proof of Proposition 26 that
the limit operators have the form

M
Awy@) =3 aj(@,n.)e Vi, (we s (33)
j=1
where .
aj(%??w) = lim CLj(l',ﬁ)
E—Nw
¢ = lim eithsan)

m—0o0
and the sequence «,, — 7, is such that the last limit exists.

The invertibility of operators of form (33) is a difficult problem which can be solved
in some particular cases (see, for instance, monographs [1 - 3]).

4. Pseudodifferential operators of non-zero order
with shifts

In this section we consider pseudodifferential operators of non-zero order with shifts of
the form

M N
A=Y aj(z,D)Vi, + Y _bj(x,D)T,, (34)
j=1 j=1

where

a;j(z,D) € OPS) ;N OPSLY
bj(x,D) € OPS g NOPSL; (¢ >0)
T,, € R(R").
We will consider the problem of Fredholmness for the operator A acting from H*(R")
into H*~"(R"™). Applying the pseudodifferential operators (D)® : H® — Ly(R™) of

reduction order, which are isomorphisms, we can reduce the problem of Fredholmness
of A: H*(R™) — H*™(R™) to the corresponding problem for the operator

A= (D)*A(D)=(=™) : Ly(R™) — Ly(R™).

Proposition 32.
1) The operator A belongs to the C*-algebra P.
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2) The limit operators of A defined by {Va, }, where Z™ 3 ay — oo, have the form

M N
A@ =5 DYDY TV, + Y b§“)(D)<D>‘ng;a> (35)
=1 =

7j=1

where

b () = lim b;(an, &) (36)
g§“) = lim g(ay)

with the sequence oy, such that the limits in (36) exist.

3) The limit operators of A defined by the sequence {Vy, }, where oy, — 1, have
the form
) M
Ay = Y 5@, m0)dS Vi, (37)
j=1
with

and the sequence oy — 1, 1S such that the last limit exists.

Proof. 1) Indeed,

9gj

It is evident that
(D)*a;(z, D)(D)~¢~™ € OPSY, N OPSLY ,.

By Proposition 19, T}, (D)‘“‘m)Tg;l are pseudodifferential operators in the class OPgigj ﬂl
OPSLl_’gj .
2) Let us consider the limit operators defined by sequences V,,, with aj, — oo. It fol-

lows from Proposition 5 that a;(z, D) = (D)%a;(x, D){D)~(~™) is a pseudodifferential
operator with symbol

aj(z,§) = a;(x, §)(§) ™™ +1;(z,§)

where r;(x,§) satisfies the estimates

105 0¢7;(x,€)| < Cap(x) (€)™ (38)
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with lim,_, . Cog(x) = 0 for all a and . Thus the limit operators for a;(z, D) defined
by the operators V,, with oy — oo are d;a)(D) = a§a)(D)(D>_m where

a;(€) = lim a;(ax, &) (39)

and the sequence oy — oo is such that the limit in (39) exists. Let us consider the

operators ~
bj(z, D) = (D)*b;(w, D)(T,, (D)=, 1).

By Propositions 5 and 19, Bj(x, D) is a pseudodifferential operator with symbol

(€)°b (a, ) ((Fy, (2))"€) 7™ |det Fy ()] +75(x,€)

where 7;(z, £) satisfies estimates (38). Since lim, .o dFy, () = E where E is the matrix
identity, lim; .o [det F| (z)| = 1, and we obtain that the limit operators of b;(x, D) are

b (D) = o (D)(D)~™

where bga)(f) = limy_, o0 bj (g, §) and the sequence aj, — oo is such that the last limit
exists.

3) The calculation of limit operators defined by sequences Vak with ap, — 7, is
similar to the calculation given in Proposition 26 N

As a corollary of Theorem 30(b) and Proposition 32 we obtain the following

Theorem 33. The operator A : H*(R") — H*"™(R"™) of form (34) is Fredholm
if and only if all the limit operators defined in Proposition 32 are uniformly invertible,
that is the limit operators are invertible and the norms of their inverses are uniformly
bounded.

Remark 34. The condition of uniform invertibility of operators (35) on Lo(R"™) is

M N
li inf , i(hj,€) (. D)et9i (@):8) [ (gy—m )
Rl—r>noo |w|>g:€€R” jz:;aj(x7§)e +;b](’x7 )6 <€> >0

Let us consider two examples, in which the conditions of Fredholmness have an
effective form.

Example 35. We consider an operator with shifts of the form

N
A=a(2. D)+ bz, D)T,,

J=1

where

a(z, D) € OPST"y NOPSLY,
bj(z,D) € OPSTy NOPSLY;* (e >0)
T,, € R(R").
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In this case Theorem 33 implies that the operator A : H*(R") — H* ™(R") is a
Fredholm one if and only if

() imp—oo inf 5|5 peern |a(,§) + Z?; bj(w,&)e’9i @0 (6)=m > 0

(b) inf(w,w)ER"XS"*1 ’Zl(il?,?]w)’ > 0.
Note that the last condition is that of uniform ellipticity of the operator a(z, D) on R™.

Example 36. Let us consider the operator
N

A = ay(x, D)Vi, + az(2, D)Vi, + > bj(2, D)T,,
where hy,hy # 0, hy # ho, -
aj(z, D) € OPSTyNOPSLY, (j=1,2)
bj(z,D) € OPST;*NOPSLY'y* (e >0)
T,, € R(R"™).
The limit operators defined by the sequences {V,, } with ax — 7, have the form
Aty = (2, 00)d{ Vi, + o (@, 1) ds™ Vi,

with _
(o) = Jim ay(z, ()"
: =1,2
d' = lim ei(@k:hs) U )

and the sequence oy — 7, is such that the last limits exist. In this case one can give
invertibility conditions of fl(a) on Lo(R™), applying the analysis of the spectrum of the
weighted shift operator C' = aV},, where a belongs to the C*-algebra SO(R™) defined as
the algebra of bounded continuous functions a on R™ such that

lim sup |a(z +y) —a(z)| =0

T—00 yc K

for every compact K C R". It follows from [3: Chapter 1] that if inf,crn |a(x)| > 0,
then the spectrum o(C') of C' is the ring

= : i <z<
o(C)={zeC:  inf la@|<z< s lofz)l} (40)

where Mgo is the maximal ideal space of SO(R™) (we consider functions in SO(R"™) as
continuous functions on Mgp). It is well-known that

inf |a(x)] = lim inf |a(z)]

Mso\R” R—o0 |:1:|>R (41)
sup |a(x)|= lim sup |a(z)].

Mso\R" R—=00|z>R

Formulas (40) - (41) imply that the operator fl(a) : Loy(R™) — Lo(R™) is invertible if
inf, |@1(z,n,)| > 0 and inf, |a2(x,n,)| > 0 and 1 ¢ [my, M;]| where

a1 (@, 1) a1 (@, 1w)

R—00 |z|>R
Acknowledgement. The author would like to thanks one of the anonymous ref-
erees for imroving the English.

mi = lim inf
R—oo |z|>R
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