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Pseudodifferential Operators on Rn

with Variable Shifts

V.S. Rabinovich

Abstract. The aim of the paper is the study of pseudodifferential operators with shifts of the
form

Au(x) =
NX

j=1

aj(x, D)Vhj +
NX

j=1

bj(x, D)Tgj

where aj(x, D) ∈ OPSm
1,0 and bj(x, D) ∈ OPSm−ε

1,0 (ε > 0) are pseudodifferential operators in
the Hörmander classes, and Vhj and Tgj are shift operators of the form

Vhj u(x) = u(x− hj)

Tgj u(x) = u(x− gj(x))
(x ∈ Rn)

where hj ∈ Rn and the mappings gj : Rn → Rn have infinitely differentiable coordinate
functions bounded with all their derivatives. We will investigate the Fredholm and semi-
Fredholm properties of the operator A acting from Hs(Rn) into Hs−m(Rn) applying the limit
operators method.
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0. Introduction

The aim of the paper is the study of the Fredholm and semi-Fredholm properties of the
operator

Au(x) =
N∑

j=1

aj(x, D)Vhj +
N∑

j=1

bj(x,D)Tgj (1)

acting from Hs(Rn) into Hs−m(Rn) where

aj(x,D) ∈ OPSm
1,0 and bj(x,D) ∈ OPSm−ε

1,0 (ε > 0)

are pseudodifferential operators in the well-known Hörmander classes (see, for instance,
[20]), and Vhj and Tgj are shift operators of the form

Vhj u(x) = u(x− hj)

Tgj u(x) = u(x− gj(x))
(x ∈ Rn)
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where hj ∈ Rn and the coordinate functions of the mappings gj : Rn → Rn are infinitely
differentiable and bounded with all their derivatives. Moreover, we suppose that gj are
slowly oscillating at infinity.

Note that the study of integral operators with constant shifts on the half-line R+

goes back to the well-known book [5] (see also the recent monograph [4]). Differential-
difference operators of form (1), where gj ∈ Rn and the coefficients satisfy some addi-
tional conditions, are studied in the papers [13, 14], and pseudodifferential operators
with shifts on compact manifolds are investigated in the books [1 - 3] (see also the book
[9] dealing with ordinary differential operators with shifts). One can find in these books
an extensive bibliography on the topic.

But this paper is the first where general pseudodifferential operators with variable
shifts are studied. Our approach is essentially different from those of the cited papers
and is based on the limit operators method. This method allows us to reduce the
investigation of the Fredholm property of operators (1) to the problem of invertibility
of limit operators with a simpler structure than that of the original operators (1). In
our case, the limit operators are of two kinds:

1) pseudodifferential operators with constant shifts

2) operators of the form
∑M

j=1 cjVhj , where cj are infinitely differentiable functions
bounded with all their derivatives.

The method of limit operators has been developed in the papers [10 - 12, 15, 17, 18] for
the study of the Fredholm property of wide classes of pseudodifferential and convolution
operators on Rn and Zn. Note also that the method of limit operators recently was
applied to the investigation of one-dimensional singular integral operators with slowly
oscillating shifts [8].

Here we use an abstract scheme for the limit operators method presented in the
paper [19].

The structure of the paper is as follows:

In Section 1 we present the abstract scheme of the limit operators method, and in
Section 2 an auxiliary material on pseudodifferential operators needed in what follows.
In Section 3 we consider a C∗-algebra generated by pseudodifferential operators of zero
order with shifts and apply the abstract scheme of Section 1 for the investigation of
operators in this algebra. At last, in Section 4 we use the results of Section 3 for the
study of the Fredholm property of operators (1).

1. Axiomatic approach to the limit operators method

We start with recalling the axiomatic scheme for the application of the limit operators
method developed in [19]. Let H be a Hilbert space and L(H) the C∗-algebra of all
bounded linear operators acting on H. Suppose that we are given

(A1) operators P, P̂ ∈ L(H) with PP̂ = P̂P = P .

(A2) a countable set {Uα}α∈Λ of unitary operators on H such that, with Pα = UαPU∗
α
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and P̂α = UαP̂U∗
α,

∑

α∈Λ

‖Pαu‖2 = ‖u‖2 and
∑

α∈Λ

‖P̂αu‖2 ≤ C‖u‖2 (2)

for all u ∈ H with a constant C > 0 independent of u.

(A3) a sequence (Wk)k∈N of unitary operators on H and an associated sequence
(Dk)k∈N of mappings from Λ into itself such that WkUα = UDk(α)Wk for all
α ∈ Λ and k ∈ N, and such that the operators P̂k = WkP̂W ∗

k converge strongly
to the identity operator on H. We also set Pk = WkPW ∗

k and Pk,α = WkPαW ∗
k

as well as P̂k,α = WkP̂αW ∗
k .

(A4) a bounded sequence (Qr)r∈N of operators in L(H) such that:

- there is a distinguished set B of sequences in Λ which contains all sequences
(βm) for which there exist a k ∈ N and a sequence rm →∞ in N such that

Pk,βmQrm 6= 0 (m ∈ N) (3)

- every subsequence of a sequence in B belongs to B
- the set B is invariant with respect to each of the mappings Dk, i.e. if (βm) ∈ B,

then (Dkβm) ∈ B for every k

- for each r ∈ N and each sequence (βm) ∈ B,

lim
m→∞

U∗
βm

QrUβm = I. (4)

Since both Uα and Wk are unitary operators, one also has

∑

α∈Λ

‖Pk,αu‖2 = ‖u‖2 and
∑

α∈Λ

‖P̂k,αu‖2 ≤ C‖u‖2

for all u ∈ H and k ∈ N and

Pk,αP̂k,α = P̂k,αPk,α = Pk,α

for all α ∈ Λ and k ∈ N.

Definition 1. We say that the operator Aβ is the limit operator of A ∈ L(H) with
respect to the sequence β = (βj) ∈ B if there exists k0 ∈ N such that for every k ≥ k0

lim
j→∞

∥∥(U∗
βj

AUβj −Aβ)P̂k

∥∥ = lim
j→∞

∥∥(P̂k)∗(U∗
βj

AUβj −Aβ)
∥∥ = 0.

The set of all limit operators of A with respect to sequences in B will be denoted by
limB(A).

The limit operators have the following elementary properties:
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Let β ∈ B and let A,B ∈ L(H) be operators for which the limit operators Aβ and
Bβ exist. Then:

(a) ‖Aβ‖ ≤ ‖A‖.
(b) (A + B)β exists and (A + B)β = Aβ + Bβ.
(c) (A∗)β exists and (A∗)β = (Aβ)∗.
(d) If C, Cn ∈ L(H) are operators with ‖C − Cn‖ → 0 and if the limit operators

(Cn)β exist for all sufficiently large n, then Cβ exists and ‖Cβ − (Cn)β‖ → 0.

Definition 2. Let A0(H, {Pk,α}) denote the set of all operators A ∈ L(H) with
the following properties:

(a) limk→∞ ‖[Pk,α, A]‖ = 0 and limk→∞ ‖[Pk,α, A∗]‖ = 0 uniformly with respect to
α ∈ Λ.

(b) Every sequence in B possesses a subsequence β for which the limit operator Aβ

exists.
(c) There is a k0 ∈ N such that Pk,αA = Pk,αAP̂k,α for all k ≥ k0.

Further, let A(H, {Pk,α}) denote the closure of A0(H, {Pk,α}) in L(H).

Let ν(A) = inf‖f‖=1 ‖Af‖ refer to the lower norm of the operator A ∈ L(H). It is
well-known that A is invertible from the left if and only if ν(A) > 0 and invertible from
the right if and only if ν(A∗) > 0. Thus, A is invertible if and only if both ν(A) > 0
and ν(A∗) > 0.

For every non-zero (but not necessarily closed) subspace L of H we also consider
the lower norm of the restriction A|L of A onto L. If, in particular, L is the range of a
non-zero operator P ∈ L(H), then we call

ν(A|P (H)) = inf
‖Pf‖=1

‖APf‖

the lower norm of A relative to P . The following result has been proved in [19].

Theorem 3. Let A ∈ A(H). Then

lim inf
r→∞

ν(A|Qr(H)) = inf
Aβ∈limB(A)

ν(Aβ). (5)

2. Auxiliary material on pseudodifferential operators

We say that A = Op(a) = a(x,D) is a pseudodifferential operator in the class OPS0
ρ,0 (0 ≤

ρ ≤ 1) with symbol a(x, ξ) if

(Au)(x) = Op(a)u(x) = a(x, D)u(x) =
∫

Rn

dξ

∫

Rn

a(x, ξ)ei(x−y,ξ)u(y) dy

u ∈ C∞0 (Rn)

and a(x, ξ) satisfies the estimates

|∂β
x∂α

ξ a(x, ξ)| ≤ Cαβ〈ξ〉m−ρ|α| (〈ξ〉 = (1 + |ξ|2)1/2, Cαβ > 0) (6)
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for all multiindices α = (α1, ..., αn) and β = (β1, ..., βn), and A is a pseudodifferential
operator with double symbol a(x, y, ξ) ∈ S0

ρ,0,0 if

(Au)(x) = Opd(a)u(x) =
∫

Rn

dξ

∫

Rn

a(x, y, ξ)ei(x−y,ξ)u(y) dy

u ∈ C∞0 (Rn)

where a satisfies the estimates

|∂β
x ∂γ

y ∂α
ξ a(x, y, ξ)| ≤ Cαβγ〈ξ〉m−ρ|α| (Cαβγ > 0)

for all multi-indices α = (α1, ..., αn), β = (β1, ..., βn) and γ = (γ1, ..., γn). We denote
the class of such operators as OPS0

ρ,0,0.

It is well-known that every pseudodifferential operator A = Opd(a) with double
symbol a ∈ S0

ρ,0,0 is a pseudodifferential operator in the class OPS0
ρ,0 and its symbol

σA(x, ξ) is defined as

σA(x, ξ) =
1

(2π)n

∫∫

R2n

a(x, x + y, ξ + η)e−i(y,η) dydη

where the double integral is understood as oscillatory [20, 21]. It follows from the well-
known Calderon-Vaillancourt theorem [21] that A ∈ OPS0

0,0 is a bounded operator in
L2(Rn) and

‖Au‖ ≤ C
∑

|α|+|β|≤m

sup
(x,ξ)∈R3n

|∂β
x∂α

ξ a(x, ξ)| (7)

where the constant C > 0 and m ∈ N are independent of A.

Definition 4 (see [6]). We say that the symbol a ∈ Sm
ρ,0 is slowly oscillating at

infinity if for all multi-indeces α, β

|∂β
x ∂α

ξ a(x, ξ)| ≤ Cα,β(x)〈ξ〉m−ρ|α|

where limx→∞ Cα,β(x) = 0 for all α and β 6= 0. We denote the class of slowly oscil-
lating symbols by SLm

ρ,0 and the corresponding class of pseudodifferential operators by
OPSLm

ρ,0.

Proposition 5 (see [6]). Let Aj = Op(aj) ∈ OPSL
mj

ρ,0 (j = 1, 2; 0 ≤ ρ ≤ 1).
Then A1A2 ∈ OPSLm1+m2

ρ,0 and A1A2 = Op(b) where b(x, ξ) = a(x, ξ)b(x, ξ) + r(x, ξ)
and r satisfies the estimates

|∂β
x ∂α

ξ r(x, ξ)| ≤ Cα,β(x)〈ξ〉m1+m2−ρ−ρ|α|

where limx→∞ Cα,β(x) = 0 for all α and β. If ρ > 0, then Op(r) : Hs(Rn) →
Hs−m1−m2(Rn) is a compact operator.

We will denote by C∞b (Rn) the class of C∞-functions on Rn bounded with all their
derivatives.
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Proposition 6. Let ϕ ∈ C∞b (Rn), let ϕα and ϕr,α are defined as ϕα(y) = ϕ(y−α)
and ϕr,α(x) = ϕα(y

r ) for y ∈ Rn and let A ∈ OPS0
0,0. Then

lim
r→∞

‖[A,ϕr,αI]‖ = lim
r→∞

‖[A,ϕr,α(D)]‖ = 0 (8)

uniformly with respect to α ∈ Zn.

Formula (8) follows easily from the formula for composition of pseudodifferential
operators and estimate (7).

Let f(x) ∈ C∞0 (Rn) with f(−x) = f(x), 0 ≤ f(x) ≤ 1 for all x ∈ Rn and

f(x) =





1 if |xi| ≤ 2
3

0 if |xi| ≥ 3
4

(i = 1, ..., n)

and let fk(x) = f(x
k ) (k ∈ N).

Proposition 7. Let a ∈ S0
0,0 and ak(x, y, ξ) = a(x, ξ)fk(x− y). Then

lim
k→∞

‖Op(a)−Opd(ak)‖ = 0.

Proof. It is easy to check that ak(x, y, ξ) ∈ S0
0,0,0. Then

Op(a)−Opd(ak) = Opd(bk)

where bk(x, y, ξ) = a(x, ξ)ψk(x− y) with ψk = 1− fk. The symbol of Bk = Opd(bk) is
given as

σBk
(x, ξ) =

1
(2π)n

∫∫
a(x, ξ + η)ψk(y)e−i(y,η)dydη

=
1

(2π)n

∫∫
〈y〉−2l1〈Dη〉2l1

{〈η〉−2l2a(x, ξ + η)〈Dy〉2l2ψk(y)
}
e−i(y,η)dydη.

Let 2l1 > n + 1 and 2l2 > n. Then

|σBk
(x, ξ)| ≤ C

k

∑

|γ|≤2l1

sup
x,ξ

|∂γ
ξ a(x, ξ|

where the constant C > 0 does not depend on a and k. In the same way we obtain the
estimates

|∂α
ξ ∂β

x σBk
(x, ξ)| ≤ C

k

∑

|γ|≤2l1+|α|
sup
x,ξ

|∂γ
ξ ∂β

xa(x, ξ|.

Now the Calderon-Vaillancourt theorem provides that limk→∞ ‖Bk‖ = 0

Note that the operators
∑N

j=1 aj(x,D)Vhj where aj(x,D) ∈ OPSm
1,0 belong to

OPSm
0,0.

In what follows we need some class of symbols S̃m
1,0 ⊂ Sm

1,0.
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Definition 8. We say that a symbol a ∈ S̃m
1,0 if a ∈ Sm

1,0 and there exists a function
a0 ∈ C∞b (Rn

x × Sn−1) such that

lim
|ξ|→+∞

sup
(x,ξ)∈Rn

x×Rn
ξ
\{0}

∣∣∣ |ξ|−ma(x, ξ)− a0

(
x,

ξ

|ξ|
)∣∣∣ = 0.

Proposition 9. Let a ∈ S̃0
1,0 and a sequence hm →∞. Then there exists a subse-

quence hmk
and a symbol ah ∈ S0

1,0 such that, for all α, β and for an arbitrary compact
K ⊂ Rn

x,
lim

k→∞
sup

K×Rn
ξ

∣∣∂β
x ∂α

ξ a(x + hmk
, ξ)− ∂β

x ∂α
ξ ah(x, ξ)

∣∣ = 0. (9)

Proof. Let R̃n
ξ be the compactification of Rn

ξ obtained by association to each ray
outgoing from the origin the infinitely distant point. All derivatives with respect to x

of a symbol a ∈ S̃0
1,0 can be considered as continuous functions on Rn

x × R̃n
ξ . By the

Arcela-Ascoly theorem the sequence a(x + hm, ξ) has a subsequence a(x + hmk
, ξ) such

that
lim

k→∞
sup

K×Rn
ξ

∣∣∂β
x a(x + hmk

, ξ)− ∂β
xah(x, ξ)

∣∣ = 0

for each compact K ⊂ Rn
x . Taking into account that for all α 6= 0 and β

lim
ξ→∞

sup
x
|∂β

x ∂α
ξ a(x, ξ)| = 0

we obtain that there exists a subsequence hmk
such that

lim
k→∞

sup
K×Rn

ξ

∣∣∂β
x∂α

ξ a(x + hmk
, ξ)− ∂β

x∂α
ξ ah(x, ξ)

∣∣ = 0

for each compact K ⊂ Rn
x and for all multi-indeces α and β. It follows from (9) that

ah ∈ S0
1,0

If we set

ϕ2
α(x) =

f(x− α)∑
β∈Zn f(x− β)

(α ∈ Zn),

then ∑

α∈Zn

ϕ2
α(x) = 1 and 0 ≤ ϕα(x) ≤ 1 (x ∈ Rn).

To apply the abstract scheme of the limit operators method we set

Uα = Vα (α ∈ Zn), (Vαu)(x) = u(x− α)

and
P = ϕ0I, P̂ = φI

for φ ∈ C∞0 (Rn) with supp φ = {x ∈ Rn : |x| ≤ 1} and φ(x) = 1 on the ball {x ∈ Rn :
|x| ≤ 3

4}. The sequence {Wk}k∈N is a sequence of dilations

(γku)(x) = k−
n
2 u

(x

k

)
.
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Further,
Pα = (Vαϕ0)I, Pk,α = γkPαγ−1

k

P̂α = (Vαφ)I, P̂k = φkI, P̂k,α = γk(Vαφ)γ−1
k

where φk(x) = φk(x
k ) and

Qr = χrI

where χr is the characteristic function of the set {x ∈ Rn : |x| ≥ r} (r ∈ N). It is
evident that ∑

α∈Zn

‖Pk,αu‖2 =
∑

α∈Zn

‖ϕk,αu‖2 = ‖u‖2

where ϕk,α(x) = ϕ(x
k − α). It is easy to prove that

∑

α∈Zn

‖P̂k,αu‖2 ≤ 2n‖u‖2.

Then conditions (A1) - (A4) are fulfilled with Λ = Zn and B being the set of all sequences
in Zn tending to infinity.

Proposition 10. Let A = a(x,D) ∈ OPS̃0
1,0. Then each sequence Zn 3 hm → ∞

has a subsequence hmk
defining a limit operator Ah ∈ OPS0

1,0.

Proof. It follows from Proposition 9 that the sequence hm has a subsequence hmk

such that (9) holds. The Calderon-Vaillancourt theorem implies
∥∥P̂j

(
V −1

hmk
a(x,D)Vhmk

− ah(x,D)
)∥∥

= ‖P̂j

(
a(x + hmk

, D)− ah(x, D)
)∥∥

≤ sup
|x|≤j,ξ∈Rn

∑

|α|+|β|≤N

∣∣∂β
x∂α

ξ a(x + hmk
, ξ)− ∂β

x∂α
ξ ah(x, ξ)

∣∣

→ 0

if k → ∞, for every j ∈ N. In the same way, applying the formulas of composition of
pseudodifferential operators and the Calderon-Vaillancourt theorem, we obtain

lim
k→∞

∥∥(
V −1

hmk
a(x, D)Vhmk

− ah(x,D)
)
P̂j‖ = 0

for every j ∈ N
Corollary 11. The inclusion OPS̃0

1,0 ⊂ A(L2(Rn)) holds.

Proposition 12. Let A = Op(a) ∈ OPSL0
1,0 ∩ OPS̃0

1,0. Then all limit operators
for A are invariant with respect to the operators Vh.

Proof. By the Lagrange formula and by Definition 4,∣∣a(x′ + hm, ξ)− a(x′′ + hm, ξ)
∣∣

≤ sup
t∈(0,1)

n∑

j=1

∣∣∂xj a
(
(1− t)x′ + tx′′ + hm, ξ

)∣∣ |x′ − x′′|

→ 0

if hm → ∞. Thus the limit limm→∞ a(x + hm, ξ) = ah(ξ) does not depend on x. It
means that the limit operator Ah = ah(D) is invariant with respect to shifts
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3. Algebra of pseudodifferential operators of zero order
with shifts

Let g = (g1, . . . , gn) : Rn → Rn, where
(α) gj ∈ C∞b (Rn) for all j = 1, ..., n

(β) the mapping Fg : Rn → Rn, x 7→ x− g(x) is invertible
(γ) limx→∞ ‖dg(x)‖ = 0.

Proposition 13. The set of the mappings x 7→ x−g(x) satisfying conditions (α)−
(γ) is a group.

Proof. Indeed:
1) Let Fg1(x) = x− g1(x) and Fg2(x) = x− g2(x). Then

(Fg2 ◦ Fg1)(x) = Fg2+g1◦g2 .

It is evident that g2 + g1 ◦ g2 satisfies conditions (α) − (γ) if g1 and g2 satisfy these
conditions.

2) It follows from (β) that the mapping Fg is invertible. Hence

y = (Fg ◦ F−1
g )(y) = F−1

g (y)− (g ◦ F−1
g )(y).

Thus
F−1

g (y) = y + (g ◦ F−1
g )(y)

where g ◦ F−1
g satisfies conditions (α)− (γ)

We consider shift operators Tg of the form

(Tgu)(x) = u(x− g(x)).

The class of all shifts Tg where g satisfies conditions (α)−(γ) will be denoted by R(Rn).

Proposition 14. Let g satisfy conditions (α)−(γ). Then the operator Tg is bounded
on L2(Rn).

Proof. We have

‖Tgu‖2 =
∫

Rn

|u(Fg(x))|2dx =
∫

Rn

|u(y)|2|det dF−1
g (y)| dy ≤ C‖u‖2

where C = supy∈Rn |det dF−1
g (y)| < ∞ by conditions (β) and (γ)

Proposition 15.
1) Let Tg1 , Tg2 ∈ R(Rn). Then Tg1Tg2 = Tg1+g2◦g1 ∈ R(Rn).
2) Let Tg ∈ R(Rn). Then Tg is invertible and (Tg)−1 ∈ R(Rn) also. Moreover,

(Tg)−1 = Tg̃ where g̃(y) = −g(F−1(y)).
3) Let Tg ∈ R(Rn). Then (Tg)∗ = |det Fg(x)|(Tg)−1.

Proof. Assertions 1) and 2) follow from Proposition 13, assertion 3) can be proved
by simple calculations
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Proposition 16. Let Tg ∈ R(Rn). Then

lim
δ→0

‖[ϕk,αI, Tg]‖ = 0

uniformly with respect to α ∈ Zn.

Proof. For every u ∈ L2(Rn) one has

‖[ϕk,αI, Tg]u‖ ≤ sup
x∈Rn

∣∣ϕk,α(x)− ϕk,α(x + g(x))
∣∣ ‖Tgu‖

≤ C sup
x∈Rn

∣∣∣ϕ
(x

k
− α

)
− ϕ

(x + g(x)
k

− α
)∣∣∣ ‖u‖.

The function g is bounded due to assumption (α) and ϕ is uniformly continuous on Rn.
Then given ε > 0 there exist k0 such that for k > k0

sup
x∈Rn,α∈Zn

∣∣∣ϕ
(x

k
− α

)
− ϕ

(x− g(x)
k

− α
)∣∣∣ < ε.

This implies the assertion

Here are a few instances where requirements (α)− (δ) are satisfied.

Example 17. If g is a constant function, then evidently Tg = Vg ∈ R(Rn).

Example 18. Let
(Tgu)(x) = u(x− g(x))

and let conditions (α) and (γ) be fulfilled. If one of the conditions

max
1≤j≤m

m∑

k=1

sup
x

∣∣∣∂gj(x)
∂xk

∣∣∣ < 1 or max
1≤k≤m

m∑

j=1

sup
x

∣∣∣∂gj(x)
∂xk

∣∣∣ < 1 (10)

is satisfied, then Tg ∈ R(Rn). Indeed, conditions (10) imply that

Fg : Rn → Rn, x 7→ x− g(x)

is a contraction. Thus, by the Banach fixed point theorem, Fg is invertible, that is
condition (β) holds.

Proposition 19.
(a) If A = a(x,D) is in OPSm

1,0 or in OPS̃m
1,0 and Tg ∈ R(Rn), then also TgAT−1

g

is in OPSm
1,0 or in OPS̃m

1,0, respectively. Moreover,

TgAT−1
g = OP

(
a(F (x), (dF (x))tξ

)|detF ′(x)|+ R (11)

where R ∈ OPSm−1
1,0 .

(b) If A = a(x, D) ∈ OPSLm
1,0, then R = Op(r(x, ξ)), where

|∂β
x∂α

ξ r(x, ξ)| ≤ Cα,β(x)〈ξ〉m−1−|α|

with
lim

x→∞
Cα,β(x) = 0 (12)

for all α and β.

Proof. The proof follows from the well-known theorem on the change of variables
in pseudodifferential operators (see, for instance, [20: Chapter 1/p. 31 - 38])
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Let us consider the operators of the form

AMN =
M∑

j=1

aj(x,D)Vhj
+

N∑

j=1

bj(x,D)Tgj
(13)

where aj(x,D) ∈ OPS̃0
1,0, bj(x,D) ∈ OPS−ε

1,0 (ε > 0) and Tgj
∈ R(Rn).

Proposition 20. The sum, product and adjoint for operators of form (13) again
is an operator of form (13).

Proof. The proof for the sum is evident. Let us consider the product
(
a1(x,D)Vh1 + b1(x,D)Tg1

)(
a2(x,D)Vh2 + b2(x, D)Tg2

)

= a1(x,D)a2(x− h1, D)Vh1+h2 + (b1(x,D)Tg1a2(x, D)T−1
g1

)Tg1Vh2

+ a1(x,D)b2(x− h1, D)Vh1Tg2 + (b1(x,D)Tg1b2(x, D)T−1
g1

)Tg1Tg2

= a(x, D)Vh1+h2 + c1(x,D)Tg1Vh2 + c2(x,D)Vh1Tg2 + c3(x, D)Tg1Tg2

where
a(x,D) = a1(x,D)a2(x− h1, D) ∈ OPS̃0

1,0

and by Proposition 19 and according to the formula for composition of pseudodifferential
operators [20] cj(x, D) ∈ OPS−ε

1,0. By Proposition 15,

Tg1Vh2 , Vh1Tg2 , Tg1Tg2 ∈ R(Rn).

Thus the product of operators of form (13) is again an operator of form (13). At last,
simple calculations, using the fact that the adjoint operator of a(x,D) ∈ OPS−ε

1,0 (ε ≤ 0)
in L2(Rn) is an operator in OPS−ε

1,0 demonstrate that the adjoint operator to AMN is
again an operator of form (13)

Definition 21. We denote by P the closure in B(L2(Rn)) of the set of all operators
(13) and by J the closure in B(L2(Rn)) of the set of operators of the form

N∑

j=1

bj(x,D)Tgj (14)

where bj(x,D) ∈ OPS−ε
1,0 (ε > 0) and Tgj ∈ R(Rn).

It follows from Proposition 20 that P is a C∗-algebra and J is a two-sided ideal in
P.

Proposition 22. Let T ∈ J and χ ∈ C∞0 (Rn)). Then χT and Tχ are compact
operators.

Proof. It is evident for operators of form (14). For the proof of the statement for
operators in J we use standard density arguments

Let us consider the question of existence of limit operators for operators in the
algebra P with respect to the set {Vα}α∈Zn .
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Proposition 23. The C∗-algebra P is contained in A(L2(Rn), {Pk,α}).
Proof. 1) Let AMN be an operator of form (14). Then Propositions 6, 7 and 16

provide the validity of assertions (a) and (c) of Definition 2. For general operators in P
the validity of these assertions follows from usual density arguments.

2) Let us consider the existence of limit operators for generators of the algebra
P. First we consider the operator A = a(x,D)Vh, where a(x, D) ∈ OPS̃0

1,0. Then
V −1

pm
AVpm

= a(x + pm, D)Vh. It follows from Proposition 9 that there exists a subse-
quence pmk

and an operator ap(x,D) ∈ OPS0
1,0 such that for every j ∈ N

lim
k→∞

∥∥P̂j

(
a(x + pmk

, D)− ap(x,D)
)∥∥

= lim
k→∞

∥∥(
a(x + pmk

, D)− ap(x,D)
)
P̂j

∥∥

= 0.

The last equalities imply

lim
k→∞

∥∥P̂j

(
a(x + pmk

, D)Vh − ap(x,D)Vh

)∥∥ = 0

for each j ∈ N and

lim
k→∞

∥∥(
a(x + pmk

, D)Vh − ap(x,D)Vh

)
P̂j

∥∥ = 0

for large enough j. Thus ap(x,D)Vh is a limit operator of a(x,D)Vh.

Let us consider the operator B = b(x,D)Tg where b(x,D) ∈ OPS−ε
1,0 (ε > 0) and

Tg ∈ R(Rn). Then
V−pmBVpm = b(x + pm, D)V −1

pm
TgVpm .

First we consider the operator Tg ∈ R(Rn). Then one has

(V −1
pm

TgVpmu)(x) = u(x− g(x + pm)).

Since the functions x 7→ g(x + pm) are uniformly bounded with respect to m ∈ N
and equicontinuous on compact subsets of Rn, the Arzelà-Ascoli theorem implies the
existence of a subsequence p̃ of p such that the functions x 7→ g(x + p̃m) converge
uniformly on compacts in Rn to a certain bounded function gp̃. Note that the function
gp̃ is constant, that is gp̃ ∈ Rn.

We proceed with showing that the strong limit of the operators V −1
p̃m

TgVp̃m as m →
∞ exists and that

s− lim
m→∞

V −1
p̃m

TgVp̃m = Tgp̃ . (15)

Let u ∈ C∞0 (Rn). Thus u is uniformly continuous on Rn, and there exists a compact
subset Ω of Rn such that u(x + g(p̃m + x))− u(x + gp̃) = 0 whenever x /∈ Ω (recall that
g is bounded). Further, it is evident from the definition of gp̃ that, for arbitrary δ > 0,
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there exists a k0 ∈ N such that, for all k ≥ k0 and all x ∈ Ω, |g(p̃m + x) − gp̃)| < δ.
Since u is uniformly continuous, for each ε > 0 there exists a m0 ∈ N such that

sup
x∈Ω

∣∣u(x− g(p̃m + x))− u(x + gp̃)
∣∣ < ε (m ≥ m0).

Thus limk→∞ V −1
p̃m

TgVp̃mu = Tgp̃u for every u ∈ C∞0 (Rn). Since these functions form a
dense subset of L2(Rn), this implies (15).

Let the sequence p̃m be such that the strong limit (15) exists and for every j ∈ N

lim
m→∞

∥∥P̂j

(
b(x + p̃m, D)− bp̃(x, D)

)∥∥

= lim
m→∞

∥∥(
b(x + p̃m, D)− bp̃(x,D)

)
P̂j

∥∥

= 0.

(16)

The operators P̂jb(x+ p̃m, D) and b(x+ p̃m, D)P̂j are compact by Proposition 22, hence
P̂jbp̃(x,D) and bp̃(x,D)P̂j are compact also. Thus applying (15) and (16) we obtain

lim
m→∞

∥∥P̂j

(
b(x + p̃m, D)V −1

p̃m
TgVp̃m − bp̃(x,D)Tgp̃

)∥∥ = 0.

For the dual condition observe that, due to the boundedness of g, for every fixed j
one can find an N such that

P̂NV −1
p̃m

TgVp̃m P̂j = V −1
p̃m

TgVp̃m
P̂j

P̂NTgp̃ P̂j = Tgp̃ P̂j

for all m. Consequently,

∥∥(
b(x + p̃m, D)V −1

p̃m
TgVp̃m − bp̃(x, D)Tgp̃

)
P̂j

∥∥
≤ ∥∥(

b(x + p̃m, D)− bp̃(x,D)
)
P̂NV −1

p̃m
TgVp̃m P̂j

∥∥
+

∥∥bp̃(x,D)P̂N

(
V −1

p̃m
TgVp̃m − Tgp̃

)
P̂j

∥∥.

(17)

The first term in the right side part of (17) tends to 0 by (16) and by uniformly bound-
edness of the sequence V −1

p̃m
TgVp̃m , the second term tends to 0 by formula (15) and by

compactness of bp̃(x,D).

Thus we proved that if AMN has form (13) and pm →∞, there exists a subsequence
p̃m which defines the limit operator (AMN )p̃. The assertion of the proposition for
arbitrary operators in P follows from property (d) of limit operators. Thus assertion
(d) of Definition 2 holds

We denote by Lim∞A the set of all limit operators Aα of A defined by the sequences
{Pk,αm} with αm →∞.

Theorem 3 yields the following result.
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Theorem 24. Let A ∈ P. Then

lim inf
r→∞

ν
(
A|Qr(L2(Rn))

)
> 0 (18)

if and only if
inf

{
ν(Aα) : Aα ∈ Lim∞(A)

}
> 0. (19)

Let, for ψ ∈ C∞b (Rn), ψr be defined as ψr(x) = ψ(x
r ). We denote by D′ the subset

of bounded operators A in L(L2(Rn)) such that

lim
r→∞

‖[A,ψrI]‖ = 0

for every function ψ ∈ C∞b (Rn) where ψrI is the operator of multiplication by ψ. It is
easy to see that D′ is a C∗-subalgebra of L(L2(Rn)) and, by Proposition 6, P ⊂ D′.

Let ρ ∈ C∞(Rn) with

ρ(x) =
{

1 if |x| ≥ 2
0 if |x| ≤ 1

and let ρr(x) = ρ(x
r ). We introduce the two-sided ideal J ′ in D′ as containing all

operators A ∈ D′ such that

lim
r→∞

‖ρrA‖ = lim
r→∞

‖AρrI‖ = 0.

Proposition 25. Condition (18) holds if and only if there exists an operator L′ ∈
D′ such that

L′A = I + T ′ (20)

where T ′ ∈ J ′.

Proof. Let condition (18) hold. Then there exist δ > 0 and r0 > 0 such that
(
χr0A

∗Aχr0u, χr0u
) ≥ δ2‖χr0u‖2

where χr0 is the operator of multiplication by the characteristic function of the set
{x ∈ Rn : |x| > r0}. This inequality implies the existence of an operator B ∈ D′ such
that BAχr0 = χr0 . This implies

BA = I −BA(1− χr0)I + (1− χr0)I.

Since (1− χr0)I ∈ J ′, we obtain

T = −BA(1− χr0)I + (I − χr0)I ∈ J ′.

Conversely, let (20) hold. Multiplying (20) from the right by the operator ρrI we
obtain LAρrI = (I + T )ρrI. We take r such that ‖TρrI‖ < 1 and let r0 be such that
χr0ρrI = χr0I. Then LAχr0I = (I + TρrI)χr0I. Thus

(I + TφrI)−1LAχr0I = χr0I.

The last equality implies (18)
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Let us consider the dual case of applications of the abstract scheme. In this case the
unitary operators Uα = V̂α (α ∈ Zn) where (V̂αu)(x) = ei(α,x)u(x), W ′

k = γ1/k (k ∈ N),
P ′k,α = ϕk,α(D), φk(D) = P̂ ′k, Q′

r = χr(D) and B is the set of all subsequences αm ∈ Zn

such that αm →∞.

Proposition 26. The C∗-algebra P is contained in A0(L2(Rn), {P ′k,α}).
Proof. It is enough to check conditions (a) - (c) of Definition 2 for the generators

of P. For operators of the form A = a(x,D)Vh where a(x,D) ∈ OPS̃0
1,0, conditions (a)

and (c) follow from Propositions 6 and 7 because A ∈ OPS0
0,0.

Let us consider the operator B = b(x,D)Tg where b(x,D) ∈ OPS−ε
1,0 (ε > 0) and

Tg ∈ R(Rn). We set ψk,α(D) = I − ϕk,α(D). Then

∥∥ψk,α(D)b(x,D)Tg

∥∥ =
∥∥V̂ −1

αk ψk,0(D)V̂αkb(x,D)V̂ −1
αk Tg

∥∥
=

∥∥ψk,0(D)b(x,D + αk)V̂ −1
αk Tg

∥∥
≤ C

∥∥ψk,0(D)b(x,D + αk)
∥∥.

Since b(x,D) ∈ OPS−ε
1,0 (ε > 0) and suppψk,0 ⊂ {ξ ∈ Rn : |ξ| ≥ k}, by the Calderon-

Vaillancourt theorem,
lim

k→∞

∥∥ψk,0(D)b(x,D + αk)
∥∥ = 0

uniformly with respect to α. Thus,

lim
k→∞

∥∥ψk,α(D)b(x,D)Tg

∥∥ = 0 (21)

uniformly with respect to α. In the same way,
∥∥b(x,D)Tgψk,α(D)

∥∥ =
∥∥TgT

−1
g b(x,D)Tgψk,α(D)

∥∥
≤ C

∥∥T−1
g b(x,D)Tgψk,α(D)

∥∥
→ 0

(22)

if k → ∞, uniformly with respect to α, since T−1
g b(x, D)Tg is a pseudodifferential

operator of the class OPS−ε
1,0 (ε > 0). Formulas (21) and (22) imply assertion (a) of

Definition 2. Assertion (c) of Definition 2 follows from Proposition 7.
Let us consider the existences of the limit operators with respect to the unitary

operators V̂α. Let Zn 3 αm →∞. Then

V̂ −1
αm

AV̂αm = a(x,D + αm)ei(h,αm)Vh.

There exist an infinitely distant point ηω corresponding to the point ω ∈ Sn−1 and a
subsequence αmj → ηω. The numerical sequence ei(h,αmj

) is bounded, thus there exists
a convergent subsequence. We will suppose that the same sequence ei(h,αmj

) converges
to a complex number qα with |qα| = 1. Let

a(x, ηω) = lim
t→∞

a(x, tω),
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the last limit being uniformly with respect to x ∈ Rn. Then by the Calderon-Vaillancourt
theorem we obtain

lim
k→∞

∥∥P̂ ′k
(
V̂ −1

αmk
AV̂αmk

− a(x, ηω)qαVh

)∥∥

= lim
k→∞

∥∥(
V̂ −1

αmk
AV̂αmk

− a(x, ηω)qαVh

)
P̂ ′k

∥∥

= 0.

Thus the limit operators for a(x,D)Vh are operators of weighted shifts, that is the
operators cVh, where c(x) = a(x, ηω)qα.

Let us show that all limit operators for B = b(x,D)Tg, where b(x, D) ∈ OPS−ε
1,0

(ε > 0) and Tg ∈ R(Rn), are 0-operators. Indeed,

V̂ −1
αm

BV̂αm = b(x,D + αm)V̂ −1
αm

TgV̂αm .

It easy to check that for each k ∈ N

lim
m→∞

∥∥P̂ ′kb(x,D + αm)
∥∥ = lim

m→∞
∥∥b(x,D + αm)P̂ ′k‖ = 0.

This implies

∥∥P̂ ′kb(x,D + αm)V̂ −1
αm

TgV̂αm

∥∥ ≤ C
∥∥P̂ ′kb(x, D + αm)

∥∥ → 0

and ∥∥b(x,D + αm)V̂ −1
αm

TgV̂αm
P̂ ′k

∥∥ =
∥∥b(x,D + αm)P̂ ′N V̂ −1

αm
TgV̂αm

P̂ ′k
∥∥

≤ C
∥∥b(x,D + αm)P̂ ′N

∥∥
→ 0

if αm →∞. Thus the limit operators for the operator AMN have the form

(AMN )α =
M∑

j=1

aj(x, ηω)q(α)
j Vhj (23)

where aj(x, ηω) ∈ C∞b (Rn) and |q(α)
j | = 1. Property (d) of the limit operators provides

the validity of assumption (b) of Definition 2. Moreover, all limit operators of A ∈ P
with respect to the family {V̂α}α∈Zn belong to the C∗-algebra Q which is the closure in
B(L2(Rn) of operators of form (23)

We denote by Lim′
∞A the set of all limit operators of A defined by the sequences

{V̂αm} with αm →∞. As a corollary of Theorem 3 we obtain

Theorem 27. Let A ∈ P. Then the condition

lim
r→∞

ν
(
A|Q′r(L2(Rn))

)
> 0 (24)
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holds if and only if
inf

Aβ∈(Lim∞ A)′
ν(Aβ) > 0. (25)

We denote by D′′ the subset of bounded operators A in L(L2(Rn)) such that

lim
r→∞

‖[A,ψr(D)]‖ = 0

for each function ψ(ξ) ∈ C∞b (Rn). It is easy to see that D′′ is a C∗-subalgebra of
L(L2(Rn)) and P ⊂ D′′. We introduce the two-sided ideal J ′′ in D′′ which contains all
operators A ∈ D′′ such that

lim
r→∞

‖ρr(D)A‖ = lim
r→∞

‖Aρr(D)‖ = 0.

Proposition 28. Condition (24) holds if and only if there exists an operator L′′ ∈
D′′ such that

L′′A = I + T ′′ (26)
where T ′′ ∈ J ′′.

The proof is similar to that of Proposition 25 and it is thus omitted .
Theorems 24 and 27 have a very important corollary on semi-Fredholmnes and

Fredholmness of operators in the C∗-algebra P.

Theorem 29. Let A ∈ P. Then A is a Φ+-operator if and only if the conditions

inf
Aβ∈Lim∞ A

ν(Aβ) > 0 (27)

inf
Aβ∈Lim′∞ A

ν(Aβ) > 0 (28)

hold.

Proof. Let conditions (27) - (28) be satisfied. Then there exist bounded operators
L′, L′′ and operators T ′ ∈ J ′ and T ′′ ∈ J ′′ such that L′A = I + T ′ and L′′A = I + T ′′.
The operator L = L′AL′′ − L′ − L′′ is such that LA − I = T ′T ′′. The operator T ′T ′′

is a compact one. To see this let ρr be defined as earlier. Then applying Proposition 6
we obtain

lim
r→∞

‖T ′T ′′ρrI)‖ = lim
r→∞

‖T ′T ′′ρr(D))‖ = 0.

This implies that T ′T ′′ can be approximated by the sequence of compact operators
T ′T ′′(I − ρrI)(I − ρr(D)) as r →∞. Hence T ′T ′′ is a compact operator.

Inversely, let A be a Φ+-operator. Then the a priory estimate

δ‖u‖ ≤ ‖Au‖+ ‖Tu‖δ > 0 (29)

holds where T is a compact operator. Let Uγ (γ ∈ Zn) be one of the sequences of
unitary operators (Vγ) and (V̂γ) defining the limit operator Aγ , and let Lm be Pm or
P ′m. Then it follows from (29) that for every m

δ‖Lmu‖ ≤ ‖U−1
γ AUγLmu‖+ ‖U∗

γ TUγLmu‖ (δ > 0). (30)

The sequences Uγ and U∗
γ weakly converge to zero, consequently, limγ→∞ ‖U∗

γ TUγu‖
= 0. Passing to the limit if γ →∞ in estimate (30) we arrive the estimate

δ‖Lmu‖ ≤ ‖AγLmu‖. (31)

Taking into account that the sequence Lm strongly converges to the unit operator we
can pass to the limit in (31) and obtain (27) - (28)
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The following theorem is a corollary of Theorem 29.

Theorem 30. Let A ∈ P. Then:
(a) A is a Φ−-operator if and only if

inf
{
ν(A∗β) : Aβ ∈ Lim

∞
A

}
> 0

inf
{
ν(A∗β) : Aβ ∈

′
Lim
∞

A
}

> 0.

(b) A is a Fredholm operator if and only if all operators in Lim∞A ∪ Lim′
∞A are

uniformly invertible, i.e. if

sup
{‖A−1

β ‖ : Aβ ∈ Lim∞A ∪ Lim′
∞A

}
< ∞.

Example 31. Let us consider operators of the form

A =
M∑

j=1

aj(x, D)Vhj +
N∑

j=1

bj(x, D)Tgj (32)

where
aj(x,D) ∈ OPS̃0

1,0 ∩OPSL0
1,0

bj(x,D) ∈ OPS−ε
1,0 ∩OPSL−ε

1,0 (ε > 0)

Tgj ∈ R(Rn).

The limit operators for A with respect to the set of unitary operators {Vαm} have the
form

A(α) =
M∑

j=1

a
(α)
j (D)Vhj +

N∑

j=1

b
(α)
j (D)V

g
(α)
j

where
g
(α)
j = lim

m→∞
gj(αm)

a
(α)
j (ξ) = lim

m→∞
aj(αm, ξ)

b
(α)
j (ξ) = lim

m→∞
bj(αm, ξ)

since the symbols aj(x, ξ), bj(x, ξ) and shifts Tgj are slowly oscillating. The operators
A(α) are invariant with respect to the shifts Vh, hence A(α) is invertible in L2(Rn) if
and only if

inf
ξ∈Rn

|Â(α)(ξ)| > 0

where

Â(α)(ξ) =
M∑

j=1

a
(α)
j (ξ)ei(hj ,ξ) +

N∑

j=1

b
(α)
j (ξ)ei(g

(α)
j

,ξ).

Thus we have an effective invertibility condition of limit operators corresponding to the
sequences {Vαm}.
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Moreover, one can show that all limit operators with respect to Vα are uniformly
invertible if and only if

lim
R→∞

inf
|x|>R,ξ∈Rn

∣∣∣∣
M∑

j=1

aj(x, ξ)ei(hj ,ξ) +
N∑

j=1

bj(x,D)ei(gj(x),ξ)

∣∣∣∣ > 0.

The problem of invertibility of limit operators defined by the dual family of unitary
operators {V̂αm

} is more complicated. It follows from the proof of Proposition 26 that
the limit operators have the form

A(α)(ω) =
M∑

j=1

aj(x, ηω)q(α)
j Vhj

(ω ∈ Sn−1) (33)

where
aj(x, ηω) = lim

ξ→ηω

aj(x, ξ)

q
(α)
j = lim

m→∞
ei(hj ,αm)

and the sequence αm → ηω is such that the last limit exists.
The invertibility of operators of form (33) is a difficult problem which can be solved

in some particular cases (see, for instance, monographs [1 - 3]).

4. Pseudodifferential operators of non-zero order
with shifts

In this section we consider pseudodifferential operators of non-zero order with shifts of
the form

A =
M∑

j=1

aj(x, D)Vhj +
N∑

j=1

bj(x, D)Tgj (34)

where
aj(x,D) ∈ OPS̃0

1,0 ∩OPSL0
1,0

bj(x,D) ∈ OPS−ε
1,0 ∩OPSL−ε

1,0 (ε > 0)

Tgj ∈ R(Rn).

We will consider the problem of Fredholmness for the operator A acting from Hs(Rn)
into Hs−m(Rn). Applying the pseudodifferential operators 〈D〉s : Hs → L2(Rn) of
reduction order, which are isomorphisms, we can reduce the problem of Fredholmness
of A : Hs(Rn) → Hs−m(Rn) to the corresponding problem for the operator

Ã = 〈D〉sA〈D〉−(s−m) : L2(Rn) → L2(Rn).

Proposition 32.

1) The operator Ã belongs to the C∗-algebra P.
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2) The limit operators of Ã defined by {Vαk
}, where Zn 3 αk →∞, have the form

Ã(α) =
M∑

j=1

a
(α)
j (D)〈D〉−mVhj

+
N∑

j=1

b
(α)
j (D)〈D〉−mV

g
(α)
j

(35)

where
a
(α)
j (ξ) = lim

k→∞
aj(αk, ξ)

b
(α)
j (ξ) = lim

k→∞
bj(αk, ξ)

g
(α)
j = lim

k→∞
g(αk)

(36)

with the sequence αk such that the limits in (36) exist.

3) The limit operators of Ã defined by the sequence {V̂αk
}, where αk → ηω, have

the form

Ã(α) =
M∑

j=1

ãj(x, ηω)d(α)
j Vhj (37)

with
ãj(x, ηω) = lim

ξ→ηω

aj(x, ξ)〈ξ〉−m

d
(α)
j = lim

k→∞
ei(αk,hj)

and the sequence αk → ηω is such that the last limit exists.

Proof. 1) Indeed,

Ã =
M∑

j=1

〈D〉saj(x, D)〈D〉−(s−m)Vhj

+
N∑

j=1

(〈D〉sbj(x,D)Tgj 〈D〉−(s−m)T−1
gj

)Tgj
.

It is evident that

〈D〉saj(x,D)〈D〉−(s−m) ∈ OPS̃0
1,0 ∩OPSL0

1,0.

By Proposition 19, Tgj 〈D〉−(s−m)T−1
gj

are pseudodifferential operators in the class OPS̃
−εj

1,0 ∩
OPSL

−εj

1,0 .

2) Let us consider the limit operators defined by sequences Vαk
with αk →∞. It fol-

lows from Proposition 5 that ãj(x,D) = 〈D〉saj(x,D)〈D〉−(s−m) is a pseudodifferential
operator with symbol

ãj(x, ξ) = aj(x, ξ)〈ξ〉−m + rj(x, ξ)

where rj(x, ξ) satisfies the estimates

|∂β
x ∂α

ξ rj(x, ξ)| ≤ Cαβ(x)〈ξ〉−1 (38)
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with limx→∞ Cαβ(x) = 0 for all α and β. Thus the limit operators for ãj(x,D) defined
by the operators Vαk

with αk →∞ are ã
(α)
j (D) = a

(α)
j (D)〈D〉−m where

a
(α)
j (ξ) = lim

k→∞
aj(αk, ξ) (39)

and the sequence αk → ∞ is such that the limit in (39) exists. Let us consider the
operators

b̃j(x, D) = 〈D〉sbj(x,D)(Tgj
〈D〉−(s−m)T−1

gj
).

By Propositions 5 and 19, b̃j(x, D) is a pseudodifferential operator with symbol

〈ξ〉sbj(x, ξ)〈(F ′gj
(x))tξ〉−(s−m)|detF ′gj

(x)|+ rj(x, ξ)

where rj(x, ξ) satisfies estimates (38). Since limx→∞ dFgj (x) = E where E is the matrix
identity, limx→∞ |detF ′gj

(x)| = 1, and we obtain that the limit operators of b̃j(x, D) are

b̃
(α)
j (D) = b

(α)
j (D)〈D〉−m

where b
(α)
j (ξ) = limk→∞ bj(αk, ξ) and the sequence αk →∞ is such that the last limit

exists.
3) The calculation of limit operators defined by sequences V̂αk

with αk → ηω is
similar to the calculation given in Proposition 26

As a corollary of Theorem 30(b) and Proposition 32 we obtain the following

Theorem 33. The operator A : Hs(Rn) → Hs−m(Rn) of form (34) is Fredholm
if and only if all the limit operators defined in Proposition 32 are uniformly invertible,
that is the limit operators are invertible and the norms of their inverses are uniformly
bounded.

Remark 34. The condition of uniform invertibility of operators (35) on L2(Rn) is

lim
R→∞

inf
|x|>R,ξ∈Rn

∣∣∣∣
M∑

j=1

aj(x, ξ)ei(hj ,ξ) +
N∑

j=1

bj(x,D)ei(gj(x),ξ)

∣∣∣∣〈ξ〉−m > 0.

Let us consider two examples, in which the conditions of Fredholmness have an
effective form.

Example 35. We consider an operator with shifts of the form

A = a(x,D) +
N∑

j=1

bj(x,D)Tgj

where
a(x,D) ∈ OPS̃m

1,0 ∩OPSLm
1,0

bj(x,D) ∈ OPSm−ε
1,0 ∩OPSLm−ε

1,0 (ε > 0)

Tgj ∈ R(Rn).
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In this case Theorem 33 implies that the operator A : Hs(Rn) → Hs−m(Rn) is a
Fredholm one if and only if

(a) limR→∞ inf |x|>R,ξ∈Rn

∣∣a(x, ξ) +
∑N

j=1 bj(x, ξ)ei(gj(x),ξ)
∣∣〈ξ〉−m > 0

(b) inf(x,ω)∈Rn×Sn−1 |ã(x, ηω)| > 0.
Note that the last condition is that of uniform ellipticity of the operator a(x,D) on Rn.

Example 36. Let us consider the operator

A = a1(x,D)Vh1 + a2(x,D)Vh2 +
N∑

j=1

bj(x,D)Tgj

where h1, h2 6= 0, h1 6= h2,

aj(x,D) ∈ OPS̃m
1,0 ∩OPSLm

1,0 (j = 1, 2)

bj(x,D) ∈ OPSm−ε
1,0 ∩OPSLm−ε

1,0 (ε > 0)

Tgj ∈ R(Rn).

The limit operators defined by the sequences {V̂αk
} with αk → ηω have the form

Ã(α) = ã1(x, ηω)d(α)
1 Vh1 + ã2(x, ηω)d(α)

2 Vh2

with
ãj(x, ηω) = lim

ξ→ηω

aj(x, ξ)〈ξ〉−m

d
(α)
j = lim

k→∞
ei(αk,hj)

(j = 1, 2)

and the sequence αk → ηω is such that the last limits exist. In this case one can give
invertibility conditions of Ã(α) on L2(Rn), applying the analysis of the spectrum of the
weighted shift operator C = aVh, where a belongs to the C∗-algebra SO(Rn) defined as
the algebra of bounded continuous functions a on Rn such that

lim
x→∞

sup
y∈K

|a(x + y)− a(x)| = 0

for every compact K ⊂ Rn. It follows from [3: Chapter 1] that if infx∈Rn |a(x)| > 0,
then the spectrum σ(C) of C is the ring

σ(C) =
{

z ∈ C : inf
MSO\Rn

|a(x)| ≤ z ≤ sup
MSO\Rn

|a(x)|
}

(40)

where MSO is the maximal ideal space of SO(Rn) (we consider functions in SO(Rn) as
continuous functions on MSO). It is well-known that

inf
MSO\Rn

|a(x)| = lim
R→∞

inf
|x|>R

|a(x)|

sup
MSO\Rn

|a(x)| = lim
R→∞

sup
|x|>R

|a(x)|. (41)

Formulas (40) - (41) imply that the operator Ã(α) : L2(Rn) → L2(Rn) is invertible if
infx |ã1(x, ηω)| > 0 and infx |ã2(x, ηω)| > 0 and 1 /∈ [m1,M1] where

m1 = lim
R→∞

inf
|x|>R

∣∣∣a2(x, ηω)
a1(x, ηω)

∣∣∣ and M1 = lim
R→∞

sup
|x|>R

∣∣∣a2(x, ηω)
a1(x, ηω)

∣∣∣.
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