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Criteria for Membership of the
Mean Lipschitz Spaces

D. Walsh

Abstract. Our aim is to characterize the elements in certain function spaces by means of the
Cesáro means and/or partial sums of their Fourier series. Firstly, we seek to extend known
results for the Besov spaces Bs

pq (1 ≤ p, q < ∞) to the case where q = ∞. Secondly, we
consider the Mean Lipschitz spaces Λ(p, s). We confine attention to the values 1 ≤ p < ∞ and
0 < s ≤ 1 for the parameters. For s < 1, the spaces Bs

p∞ and Λ(p, s) coincide. For the case
p = 1 certain counter-examples are provided; some positive results are also given. We then
treat the case s = 1 and consider the spaces B1

p∞ and Λ(p, 1) separately. Analogues of some
known results for the spaces Λs are given.
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1. Introduction

This paper has its origins in a couple of sources. Firstly it seeks to extend the results
obtained in [5] for the Besov spaces Bs

pq (1 ≤ p, q < ∞) to the case where q = ∞.
Most of these results carry over in a straightforward manner. The second source was
the interesting and comprehensive article [2] on the Mean Lipschitz spaces Λ(p, s), and
the desire to extend in one respect results obtained there characterizing the members of
these classes by their Fourier partial sums. Since the spaces Bs

p∞ and Λ(p, s) coincide
except when s = 1 (and, more generally, for s a positive integer), it is appropriate to
consider both classes together and to compare the cases in which they differ.

We shall confine attention to the values 1 ≤ p < ∞ and 0 < s ≤ 1 for the parameters.
Exceptions to the general case are to be expected at the endpoints p = 1 and s = 1.
The Bs

pq spaces are distinguished by the fact that they contain for every f its conjugate
function; they are self conjugate in the terminology of [2], whereas Λ(1, 1) and Λ(∞, 1) =
Λ1 are not (see [2]). The spaces Λ(p, s) decrease as either p or s increases while the
other index remains fixed. Also, Bs

pq1
⊂ Bs

pq2
if q1 < q2. For ps > 1 we know that

Bs
p∞ ⊂ λβ for every β with 0 < β < ps − 1 (see, e.g., [8: Section 3.4]). However,

if ps = 1, then Bs
p∞ and Λ(p, s) contain some non-continuous functions [2, 8]. In

particular, log(1 − eit) ∈ B1
1∞ although not to Λ(1, 1), while the space Λ(1, 1) can be

identified with the space of functions of bounded variation [4].
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The paper is organised as follows. In Section 1 we consider the case 1 < p < ∞.
In Theorem 4, we characterize Bs

p∞ using the Cesáro means and partial sums of the
Fourier series of a member function. Here we are restricted to the range 0 < s < 1.
In Section 2, we consider the case p = 1 and provide certain counter-examples; some
positive results are also given which are restricted to the Cesáro means. In Section 3 the
case s = 1 is treated. For 1 ≤ q < ∞, we show how Theorem 4 has to be modified and
the result for the partial sums is better than that for the Cesáro means. For q = ∞, we
regard B1

p∞ as a generalization of the Zygmund class Λ∗ and we prove an analogue of a
well known result for this class. The next section considers the Mean Lipschitz spaces
Λ(p, 1). For 1 < p < ∞, we obtain parallels of earlier results. Lastly, we consider the
case Λ(1, 1) which may be viewed as a generalization of Λ1, and again are able to prove
an analogue of a well known result for this class.

2. Preliminaries

Let D denote the unit disc, ∂D the unit circle, and Lp = Lp(∂D) the usual Lebesgue
space when 0 < p < ∞. For p ≥ 1 we denote the norm of a function f ∈ Lp by ‖f‖p.

Let
∆tf(eix) = f(ei(x+t))− f(eix)

∆m
t = ∆t(∆m−1

t ).

For 0 < s ≤ 1, the Lipschitz class Λs is the space of 2π-periodic functions on [−π, π]
for which |∆tf(eix)| = O(|t|s) uniformly in x. A generalization is the mean Lipschitz
class Λ(p, s) consisting of all functions f for which ‖∆tf‖p = O(|t|s) for t > 0; Λ(p, s)
reduces to Λs when p = ∞. The Zygmund class Λ∗ consists of all continuous 2π-periodic
functions f such that |∆2

t f(eix)| = O(|t|) uniformly in x.
Suppose now that f is analytic in D. If 0 ≤ r < 1, let

Mp(f, r) =
(

1
2π

∫ π

−π

|f(reit)|p dt

) 1
p

(0 < p < ∞)

denote the integral mean of f of order p. It is well known that Mp(f, r) is an increasing
function of r on [0, 1) and that the class of functions f for which supr<1 Mp(f, r) < ∞ is
the familiar Hardy space Hp [3]. For 1 ≤ p < ∞ and 0 < s ≤ 1, f ∈ Λ(p, s) if and only
if Mp(f ′, r) = O

(
(1− r)s−1

)
. Let P denote the projection defined on the trigonometric

polynomials by

Peint =
{

0 if n < 0
eint if n ≥ 0

and elsewhere by linearity. By the theorem of M. Riesz, P extends to a bounded operator
from Lp to Hp for 1 < p < ∞, and PLp = Hp [3].

Given f(eit) ∼ ∑∞
−∞ aneint, we write

sn(f)(eit) =
n∑

k=−n

akeikt (n ≥ 0)

σn(f)(eit) =
n−1∑

k=−(n−1)

(
1− |k|

n

)
akeikt (n ≥ 1)
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for the partial sums and Cesàro means of the Fourier series for f , respectively. Let

K0(t) = 0

Kn(t) =
n−1∑

k=−(n−1)

(
1− |k|

n

)
eikt (n ≥ 1)

be Fejér’s kernel and

V0(t) = 0

V2m(t) = 2K2m(t)−Km(t) (m ≥ 1)

V2m+1(t) = V2m(t) (m ≥ 1)

de la Vallée Poussin’s kernel. It is clear that the Fourier coefficients of V2m satisfy

V̂2m(k) =





1 if |k| ≤ m
2m−|k|

m if m ≤ |k| ≤ 2m
0 if |k| ≥ 2m.

(1)

We also define the kernels Wn for integral n. Namely, if n ≥ 1, then Wn is a trigono-
metric polynomial such that Ŵn is a linear function on the intervals [2n−1, 2n] and
[2n, 2n+1], Ŵn(2n) = 1 and Ŵn = 0 outside (2n−1, 2n+1). If n < 0, then Wn = W−n.
We let W0(z) = z̄ + 1 + z.

We write Vn(f) for

(Vn ∗ f)(x) =
1
2π

∫ π

−π

f(eit)Vn(x− t) dt,

the convolution of f with Vn. These kernels can be used to characterize the Besov spaces
Bs

pq. For 1 ≤ p < ∞, s > 0 and an arbitrary integer m > s, we define the Besov space
Bs

pq by

Bs
pq =

{
f ∈ Lp :

∫ π

−π

‖∆m
t f‖q

p

|t|1+sq
dt < ∞

}
(1 ≤ q < ∞)

Bs
p∞ =

{
f ∈ Lp : sup

t>0
|t|−s‖∆m

t f‖p < ∞
}

(q = ∞).

It is well known that this definition is independent of the choice of m (see, e.g., [9:
Chapter 5]). The proof there is for the real line but, as noted in [7], the corresponding
statements can be proved in a similar way for functions on the unit circle.

An alternative description of the Besov spaces can be given in terms of the kernels
Wn as the class of all functions in Lp such that

‖f‖ =
( ∞∑
−∞

2|n|sq‖Wn(f)‖q
p

) 1
q

< ∞ (1 ≤ q < ∞)

‖f‖ = sup
n

2|n|s‖Wn(f)‖p (q = ∞)
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where the norm on the left is the Besov-space norm of f and is equivalent to the first
norm [7]. For a discussion of these spaces see [6, 8 - 10]. It is clear that the Riesz
projection is a bounded operator from Bs

pq to itself. Let As
pq denote the subspace of

Bs
pq consisting of analytic functions. We may characterize As

p∞ as follows. The analytic
function f ∈ As

p∞ if and only if

‖f‖A = ‖f‖p + sup
0<r<1

(1− r)m−sMp(f (m); r) < ∞.

We observe that Bs
p∞ = Λ(p, s) for 0 < s < 1 but the second space is a proper subspace

of the first for s = 1. For example, with p > 1, the function f(z) = (1− z)1−
1
p belongs

to A1
p∞ but not to Λ(p, 1).

Let Pn denote the class of trigonometric polynomials of degree not exceeding n, and
let

dp(f,Pn) = inf
{‖f − g‖p : g ∈ Pn

}
.

The following theorem is well known [6 - 8]:

Theorem A. For 1 ≤ p < ∞ and s > 0 the following statements are equivalent:

(i) f ∈ As
p∞

(ii) dp(f,Pn) = O(n−s)

(iii) ‖f − Vn(f)‖p = O(n−s)

(iv) ‖f − V2n(f)‖p = O(2−ns)

(v) ‖Wn(f)‖p = O(2−ns).

Suppose f is an analytic function. For each statement above we interpret the the-
orem as saying there is a corresponding norm on f and all these norms are equivalent.
Thus with (ii) we associate the norm ‖f‖p +supn nsdp(f,Pn). This remark applies also
to Theorems B, 1, 2, 4, 6, 8, 9 below (and to the corresponding theorems in [5]). The
constants associated with any pair of norms can be found by a perusal of the proof of
the equivalences concerned.

The following known lemma from [5] states that under certain conditions a converse
of Bernstein’s Theorem [11] on polynomials holds .

Lemma 1. Suppose that f is a polynomial whose Fourier coefficients are supported
on [n, 2n]. For every p, 1 ≤ p ≤ ∞, there exists a constant Cp > 0 such that ‖f ′‖p ≥
Cpn‖f‖p.

In the theorems that follow C denotes a positive constant though not always the
same one. All sums without limits are taken from 1 to ∞.

We have the following extension of Theorem A, the proof of which follows easily
from that in [5].

Theorem B. For p ≥ 1 and s > 0, f ∈ As
p∞ if and only if ‖V2n(f) − Vn(f)‖p =

O( 1
ns ).
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3. Results for the spaces Bs
p∞

3.1 The case 1 < p < ∞. The first two theorems below follow in a straightforward
manner from the corresponding proofs in [5]. Accordingly we simply state the results;
we also state Lemma 2 from [5] which is used in the proof of Theorem 2 and later in
Theorem 2′ below.

Lemma 2. Let pn be a polynomial of degree n. For 1 ≤ p < ∞ and 1− 1
2n ≤ r < 1,

we have ‖pn‖p ≤ 2Mp(pn; r).

Our first theorem is not unexpected. The norm associated with statement (iii) for
instance is supn ‖sn(f)‖A.

Theorem 1. For 1 ≤ p < ∞ and s > 0, the following statements are equivalent:
(i) f ∈ As

p∞
(ii) ‖σn(f)‖A = O(1)
(iii) ‖sn(f)‖A = O(1).

Let rn = 1− 1
2n .

Theorem 2. For 1 < p < ∞ and 0 < s < m, the following statements are equiva-
lent:

(i) f ∈ As
p∞

(ii) Mp(f (m), rn) = O(nm−s)

(iii) ‖s(m)
n (f)‖p = O(nm−s)

(iv) ‖σ(m)
n (f)‖p = O(nm−s).

Remark. The norm associated with statement (iii) for instance is given by ‖f‖p+ supn ns−m‖s(m)
n ‖p.

Corollary 3. For 1 < p < ∞ and 0 < s < 1, f ∈ As
p∞ if and only if

‖sn(f)− σn+1(f)‖p = O
(

1
n+1

)s
.

Proof. Since

sn(f)(z)− σn+1(f)(z) =
zs′n(f)(z)

n + 1
, (2)

we can apply Theorem 2 with m = 1

The proof of the next theorem is given in full.

Theorem 4. Suppose 1 < p < ∞ and 0 < s < 1. The following statements are
equivalent:

(i) f ∈ As
p∞

(ii) ‖σ2n(f)− σn(f)‖p = O( 1
ns )

(iii) ‖f − σn(f)‖p = O( 1
ns )

(iv) ‖f − sn(f)‖p = O( 1
ns )

(v) ‖s2n(f)− sn(f)‖p = O( 1
ns ).
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Proof. The order of proof is (i) ⇔ (ii), (i) ⇔ (iii), (i) ⇒ (iv) ⇒ (v) ⇒m (i).
Step (i) ⇒ (ii): Writing f(z) =

∑∞
0 akzk and ζ = eit, we have

σ2n(f)(ζ)− σn(f)(ζ) =
1
2n

n−1∑

k=0

kakζk +
2n−1∑

k=n

(
1− k

2n

)
akζk

=
1
2n

ζs′n−1(f)(ζ) +
1
2

Rn(f)(ζ).

(3)

It is easy to check from (1) that

Rn(f)(ζ) = ζnP
{
ζ−n

(
V2n(f)(ζ)− Vn(f)(ζ)

)}

and therefore there exists a constant Cp > 0 such that for all n ≥ 1

‖Rn(f)‖p ≤ Cp‖V2n(f)− Vn(f)‖p. (4)

Since
‖σ2n(f)− σn(f)‖p ≤ 1

2n‖s′n−1(f)‖p + 1
2‖Rn(f)‖p,

it follows now from Theorem 2 and Theorem B that (ii) holds.
Step (ii) ⇒ (i): The sequence {σ2n(f)} is a Cauchy sequence in Lp and therefore

converges to a limit which is f . Also,

‖f − σ2k(f)‖p ≤
∞∑

j=k

∥∥σ2j+1(f)− σ2j (f)
∥∥

p
≤ Cp

∞∑

j=k

1
2js

≤ Cp
1

2ks
.

It follows that dp(f,Pn) = O(n−s) holds, initially for dyadic integers, and then for all
n. Theorem A completes the proof.

Step (i) ⇒ (iii): We write

f − σ2n(f) = f − (
2σ2n(f)− σn(f)

)
+ σ2n(f)− σn(f)

=
(
f − V2n(f)

)
+

(
σ2n(f)− σn(f)

)

and therefore

‖f − σ2n(f)‖p ≤ ‖f − V2n(f)‖p + ‖σ2n(f)− σn(f)‖p.

Invoking Theorem A and the fact that (i) ⇒ (ii) gives statement (iii) for even n. For
the case of odd integers we write

f − σ2n+1(f) =
(
f − σ4n+2(f)

)
+

(
σ4n+2(f)− σ2n+1(f)

)
.

Using what we have already proved we conclude that statement (iii) holds.
Step (iii) ⇒ (i): It is evident that (iii) ⇒ (ii) and we already know that (ii) ⇒ (i).
Step (i) ⇒ (iv): Since

f − sn(f) =
(
f − σn+1(f)

)
+

(
σn+1(f)− sn(f)

)
,

the fact that (i)⇒ (iii) and Corollary 3 together yield (iv). Step (iv)⇒ (v) is immediate.
Step (v) ⇒ (i) follows from an argument similar to that in Step (ii) ⇒ (i). The proof is
complete
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Remark. Theorem 4 does not hold for s ≥ 1. If s > 1 and f(z) = z then ‖f −
σn(f)‖p = 1/n and (i) does not imply (iii). Similarly (i) does not imply (ii). To see
that the same conclusion holds for s = 1, we first state a result for gap series which we
shall use several times. If f(eit) ∼ ∑∞

−∞ akei2kt is in L1, then f ∈ Lp for all p ≥ 1 and
there exists a constant Cp > 0 such that ‖f‖1 ≤ ‖f‖p ≤ Cp‖f‖1 [1: Chapter 11/Section
5].

Consider now the gap series f(z) =
∑∞

1 akz2k

. According to Theorem A, f ∈ A1
p∞

if and only if supk 2k‖Wk(f)‖p < ∞. Since Wk(f) = akz2k

it is clear that f ∈ A1
p∞

if and only if supk 2k|ak| < ∞. Consequently the condition is independent of p ≥ 1.
Assume p > 1 and that 2kak = 1 for all k so that f ∈ A1

p∞. Consider the proof of the
first implication in Theorem 4 and apply (4) and Theorem B; it follows that ‖σ2n(f)−
σn(f)‖p = O( 1

n ) if and only if ‖s′n−1(f)‖p = O(1). Take n = 2k and apply the quoted
result to the gap series ‖s′n(f)‖p; this yields constants C1, C2 independent of f and n,
such that C1‖s′n(f)‖p ≤ ‖s′n(f)‖2 ≤ C2‖s′n(f)‖p. But ‖s′n(f)‖2 = {∑k

j=1(2
j |aj |)2}1/2 =

k1/2 which is unbounded as k increases and therefore ‖s′n(f)‖p 6= O(1). It follows that
(i) does not imply (ii). It is evident now that (i) does not imply (iii) either.

We can give an application of Theorem 4 to the rate at which ‖f(reix) − f(eix)‖p

→ 0 as r → 1. Let f ∈ As
p∞. Using summation by parts, we have

f(reix)− f(eix) = (1− r)
∞∑
0

(
sn(f)(eix)− f(eix)

)
rn

which yields

‖f(reix)− f(eix)‖p ≤ (1− r)‖f − f(0)‖p + (1− r)
∞∑

n=1

‖sn − f‖pr
n

≤ (1− r)‖f − f(0)‖p + C(1− r)
∞∑

n=1

rn

ns

≤ (1− r)‖f − f(0)‖p + C(1− r)s.

Therefore lim supr→1
‖f(reix)−f(eix)‖p

(1−r)s < ∞.

3.2 The case p = 1. The results stated for the case 1 < p < ∞ do not remain true
in full for p = 1. The problem is that the Riesz theorem does not hold when p = 1.
While the results for sn fail, those for σn hold with some exceptions. We shall use two
lemmas from [5] but first we note that the kernels Wn satisfy ‖Wn‖1 ≤ 3 for all n, and
that f =

∑∞
−∞Wn(f) if f is a trigonometric polynomial (see [7]).

Lemma 3. Suppose f is a polynomial with coefficients supported on [2k, 2k+1].
Then ‖f‖A is equivalent to 2ks‖f‖1.

Proof. By hypothesis f = Wk(f) + Wk+1(f) and therefore

‖f‖′ = sup 2ns‖Wn(f)‖1
= sup

{
2ks‖Wk(f)‖1, 2(k+1)s‖Wk+1(f)‖1

}

≤ 6.2(k+1)s‖f‖1.
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On the other hand, ‖f‖1 ≤ ‖Wk(f)‖1 + ‖Wk+1(f)‖1 and therefore 2ks‖f‖1 ≤ 2‖f‖′.
The result now follows from Theorem A

We shall use the symbol ≈ to denote the relation “ is equivalent to” used above.

Lemma 4. The following estimates hold for large n:
(a)

∥∥∑n
k=0(1− k

n )eikx
∥∥

1
≈ log n.

(b)
∥∥∑n

k=1 keikx
∥∥

1
≈ n log n.

Suppose that f(z) =
∑2n

n akzk. For such polynomials f , Lemma 1 implies that
‖f ′‖1 ≈ n‖f‖1.

We now construct counterexamples to show how some parts of the theorems break
down.

Let f(z) =
∑2k+1

j=2k ajz
j where

aj =

{
j−2k

2k−1 if 2k ≤ j ≤ 2k + 2k−1

2k+1−j
2k−1 if 2k + 2k−1 ≤ j ≤ 2k+1.

With z = eit, we can write f(z) = z2k+2k−1
K2k−1(z) and so ‖f‖1 = 1. Next we take

n = 2k + 2k−1 and we estimate ‖sn(f)‖1. Since

sn(f)(z) = z2k
n∑

j=2k

ajz
j−2k

= z2k
2k−1∑
m=0

m

2k−1
zm

and since ‖sn‖1 = ‖lsn‖1 we have

‖sn(f)‖1 =
∥∥∥∥

2k−1∑
0

m

2k−1
z−m

∥∥∥∥
1

=
∥∥∥∥

2k−1∑
0

m

2k−1
z2k−1−m

∥∥∥∥
1

=
∥∥∥∥

2k−1∑
0

(1− j

2k−1
)zj

∥∥∥∥
1

≈ log n

by Lemma 4/(a). Now the norm associated with statement (iii) of Theorem 1 is
supm ‖sm(f)‖A. By Lemma 3, ‖f‖A ≈ 2ks‖f‖1 = 2ks and ‖sn(f)‖A ≈ 2ks‖sn(f)‖1 ≈
2ks log 2k. It follows that there does not exist a constant C such that ‖sn(f)‖A ≤ C‖f‖A

for all f and arbitrary n, and so (i) does not imply (iii) in Theorem 1.
Next consider Theorem 2 with f and n as above. Lemma 1 combined with Bern-

stein’s Theorem on polynomials yield a constant C independent of f and n such that

Cn‖sn(f)‖1 ≤ ‖s′n(f)‖1 ≤ n‖sn(f)‖1.
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Now choose m > s > 0 and apply the same reasoning m times to yield

Cmnm‖sn(f)‖1 ≤ ‖s(m)
n (f)‖1 ≤ nm‖sn(f)‖1.

Consequently

ns−m‖s(m)
n (f)‖1 ≈ ns‖sn(f)‖1 ≈ ns log n ≈ log n‖f‖A.

Therefore there does not exist a constant C such that nm−s‖s(m)
n (f)‖1 ≤ C‖(f)‖A .

This says that (i) does not imply (iii) in Theorem 2 .
Moving on to Theorem 4 with the same f , we let 2n = 2k + 2k−1. Then s2n(f) −

sn(f) = s2n(f) and

‖s2n(f)‖1 ≈ log 2n ≈ (2n)−s log 2n‖f‖A.

We conclude that (i) does not imply (v).

3.3 Some positive results. We now state some positive results for the case p = 1.
First, there is the following substitute for Theorem 1:

Theorem 1′. Suppose s > 0. Then:

(i) f ∈ As
1∞ if and only if ‖σn(f)‖A = O(1).

(ii) If ‖sn(f)‖A = O(1), then f ∈ As
1∞.

Proof. The arguments are exactly the same as in Theorem 1

We have a substitute for Theorem 2 as follows:

Theorem 2′. Suppose s > 0 and m is an integer such that m > s. Then:

(i) f ∈ As
1∞ if and only if ‖σ(m)

n (f)‖1 = O(nm−s).

(ii) If ‖s(m)
n (f)‖1 = O(nm−s), then f ∈ As

1∞.

Proof. (i): For the step “if” the argument is the same as in Theorem 2/(iv) ⇒ (i).
For the step “only if” apply Lemma 2 to the polynomial σn(zmf (m)(z)) and follow the
argument in Theorem 2, noting that ‖σn(f)‖1 ≤ ‖f‖1.

(ii): The proof is the same as in Theorem 2/(iv) ⇒ (i), replacing σn by sn

The following lemma is an adaptation of [5: Lemma 6] for the case q = ∞ and the
proof is the same.

Lemma 5. Suppose s > 0 and f ∈ As
1∞. There is a constant C independent of n

and f such that ‖σ2n+1(f)− σ2n(f)‖1 ≤ C(2n)−1 log 2n for n ≥ 1.

We can now prove an analogue of [5: Theorem 8]; a different argument is needed
here.
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Theorem 4′. Suppose that 0 < s < 1. The following statements are equivalent:
(i) f ∈ As

1∞
(ii) ‖σ2n(f)− σn(f)‖1 = O(n−s)
(iii) ‖f − σn(f)‖1 = O(n−s).

Proof. (ii) ⇒ (i): The proof of the same implication in Theorem 4 applies.
(i) ⇒ (ii): We start with two identities:

V2n(f)− σ2n(f) = σ2n(f)− σn(f) (5)
V2n(f)− Vn(f) = 2

(
σ2n(f)− σn(f)

)
+

(
σn(f)− Vn(f)

)

so that
V4n(f)− V2n(f) = 2

(
σ4n(f)− σ2n(f)

)
+

(
σ2n(f)− V2n(f)

)
. (6)

Now choose an integer n. Suppose that 2r ≤ n < 2r+1 and write n in binary form as

n = q0 + q12 + . . . + qr−12r−1 + 2r

where each qk = 0 or qk = 1. Let p0 = 1, and for 1 ≤ k ≤ r we let

pk = qr−k + qr−k+12 + . . . + qr−12k−1 + 2k.

Thus pr = n and it can be checked that pk = qr−k + 2pk−1. From (5) and (6) we have

σ4n(f)− σ2n(f) =
1
2
(
V4n(f)− V2n(f) + σ2n(f)− σn(f)

)

while
σ4n+2(f)− σ2n+1(f)

= 1
2

(
V4n+2(f)− V2n+1(f)

)
+ 1

2

(
σ2n(f)− σn(f)

)
+ 1

2

(
σ2n+1(f)− σ2n(f)

)
.

Taking norms gives the obvious inequalities. By Theorem B, there is an M such that
∥∥V2m(f)− Vm(f)

∥∥
1
≤ M

1
ms

for all m. From these inequalities and from Lemma 5 we deduce
∥∥σ2pk

(f)− σpk
(f)

∥∥
1
≤ M

2ps
k

+
1
2

∥∥σpk
(f)− σpk−1(f)

∥∥
1

+
C log pk

2pk
.

On replacing k by r above and iterating the procedure, we obtain∥∥σ2pr (f)− σpr (f)
∥∥

1

≤ M
( 1

2ps
r

+
1

22ps
r−1

+ . . .
1

2rps
1

)
+ C

( log pr

2pr
+

log pr−1

22pr−1
+ . . . +

log p1

2rp1

)

≤ M
( 1

2rs+1
+

1
2(r−1)s+2

+ . . . +
1

2r+1

)
+ C

( 1
2rs+1

+
1

2(r−1)s+2
+ . . . +

1
2r+1

)

≤ C

2rs+1

(
1 +

1
21−s

+ . . . +
1

2r(1−s)

)

≤ C

ns

and statement (ii) holds. For step (ii) ⇒ (iii) we refer to the proof of Theorem 4/(i) ⇒
(iii). Step (iii) ⇒ (i) follows from Theorem A. The proof of the theorem is complete
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Theorem 5. Suppose that 0 < s and any one of the following conditions is satisfied:

(i) supn ns‖f − σn(f)‖1 < ∞
(ii) supn ns‖σ2n(f)− σn(f)‖1 < ∞
(iii) supn ns‖f − sn(f)‖1 < ∞
(iv) supn ns‖s2n(f)− sn(f)‖1 < ∞.

Then f ∈ As
1∞.

Proof. Suppose condition (ii) or (iv) holds. A similar argument to that in (ii) ⇒
(i) of Theorem 4 applies. Theorem A applies to conditions (i) and (iii). The proof is
complete

3.4 The case s = 1. This case is special as indicated earlier. Indeed, in [5] this case
was not considered at all. It was observed there that the implications (i) ⇒ (ii) and (i)
⇒ (iii) of Theorem 4 in [5] do not hold. We first want to fill in this gap in [5] before
continuing. It turns out that

∑
nq−1‖f − σn(f)‖q

p is infinite for all non-constant f but
there is a better result for the partial sums.

Theorem 6. Suppose 1 < p < ∞ and 1 ≤ q < ∞. The following statements are
equivalent:

(i) f ∈ A1
pq

(ii)
∑

nq−1
∥∥f − sn(f)

∥∥q

p
< ∞

(iii)
∑

nq−1
∥∥s2n(f)− sn(f)

∥∥q

p
< ∞.

Proof. (i)⇒ (ii): For each n we can, by a compactness argument, find a polynomial
T = Tn(f) such that dp(f,Pn) = ‖f −T‖p. Write f = T +U so that ‖U‖p = dp(f,Pn).
Let {uk} denote the partial sums of U . For k ≥ n we have sk(f) = T + uk. Therefore

‖f − sk(f)‖p ≤ ‖f − T‖p + ‖uk‖p

≤ dp(f,Pn) + Cp‖U‖
≤ (1 + Cp)dp(f,Pn).

(7)

Letting k = n above, we have

∑
nq−1‖f − sn(f)‖q

p ≤ Cp

∑
nq−1dp(f,Pn)q < ∞

by [5: Theorem A].

The implication (ii) ⇒ (iii) is immediate. The proof of the implication (iii) ⇒ (i)
is the same as in that of (v) ⇒ (i) of [5: Theorem 4]. This completes the proof of the
theorem

Remark. Suppose that f ∈ A1
pq is non-constant. Since

f − σn+1(f) =
(
f − sn(f)

)
+

(
sn(f)− σn+1(f)

)
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it follows from Theorem 6 that
∑

nq−1
∥∥f − σn+1(f)

∥∥q

p
and

∑
nq−1

∥∥sn(f)− σn+1(f)
∥∥q

p

both converge or diverge together. Since

sn(f)(z)− σn+1(f)(z) =
zs′n(f)(z)

n + 1

we are led to consider the sum 1
n

∑ ‖s′n(f)‖q
p. But this is divergent if f is not a constant.

We return to the case q = ∞. The implication (i) ⇒ (ii) of Theorem 4 does not
hold when s = 1. Before discussing this in more detail we mention first a result for the
Zygmund class Λ∗ = B1

∞∞. It is well known (see [11: Theorem 3.15]) that if f ∈ Λ∗,
then ‖σn(f)− f‖∞ = O( log n

n ). The converse is false.

We prove a generalization of the result above for the class A1
p∞. Accordingly, we

have in place of Theorem 4 when s = 1:

Theorem 7.
(a) Suppose 1 < p < ∞. Then f ∈ A1

p∞ if and only if ‖f − sn(f)‖p = O( 1
n ).

(b) Suppose 1 ≤ p < ∞. If f ∈ A1
p∞, then ‖f − σn(f)‖p = O( log n

n ).

Proof. (a) If f ∈ A1
p∞, then (7) and Theorem A give the result. The converse is

obvious.
(b) The proof of the known result above for the Zygmund class adapts readily. We

follow the argument there replacing the sup norm by the p-norm at the appropriate
point

The converse in (b) is false. To see this consider the gap series f(z) =
∑ √

k
2k z2k

.
For each m,

f(z)− σ2m(f)(z) =
∑ √

k

2k
z2k −

m−1∑

k=1

(
1− 2k

2m

)√k

2k
z2k

=
m−1∑

k=1

√
k

2m
z2k

+
∞∑
m

√
k

2k
z2k

.

Taking norms we get

‖f − σ2m‖p ≈ ‖f − σ2m‖2

=
( m−1∑

k=1

k

22m
+

∞∑

k=m

k

22k

) 1
2

≈
√

m2

22m
=

m

2m
≈ log 2m

2m
.

A similar estimate holds for 2m ≤ n < 2m+1. It follows that ‖f − σn(f)‖p = O( log n
n )

for all n. However, it is clear that Wn(f)(z) = n1/2z2n

2n from which 2n‖Wn(f)‖p = n
1
2 .

From Theorem A we conclude that f 6∈ A1
p∞.
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4. Results for the spaces Λ(p, 1)

4.1 The spaces Λ(p, 1). We know that the Λ(p, 1) spaces differ from the B1
p∞ spaces

considered so far and we want to take a look at these now. They fall into two cases
(a) 1 < p < ∞ and
(b) p = 1.

For the first case we know that the Riesz projection is a bounded operator on Λ(p, 1)
(see [4: p. 621] and [2]), and so it suffices to consider the subspace of analytic functions.

There are the following analogues of Theorems 2 and 4.

Theorem 8. Suppose 1 < p < ∞. The following statements are equivalent for an
analytic function f :

(i) f ∈ Λ(p, 1)
(ii) ‖s′n(f)‖p = O(1)
(iii) ‖σ′n(f)‖p = O(1).

Proof. Since (i) says that f ′ ∈ Hp, this result is well known

We have a satisfactory analogue of Theorem 4:

Theorem 9. Suppose 1 < p < ∞ and that f is analytic. The following statements
are equivalent:

(i) f ∈ Λ(p, 1)
(ii) ‖σ2n(f)− σn(f)‖p = O( 1

n )

(iii) ‖f − σn(f)‖p = O( 1
n ).

Proof. (i) ⇒ (ii): From the proof of Theorem 4 we have

σ2n(f)(ζ)− σn(f)(ζ) = 1
2nζs′n−1(f)(ζ) +

1
2
Rn(f)(ζ) (8)

with
Rn(f)(ζ) = ζnP

{
ζ−n

(
V2n(f)(ζ)− Vn(f)(ζ)

)}

and therefore there exists a constant Cp > 0 such that for all n ≥ 1

‖Rn(f)‖p ≤ Cp‖V2n(f)− Vn(f)‖p. (9)

Since f ∈ A1
p∞, it follows now from Theorem 8 and Theorem B that (ii) holds.

(ii) ⇒ (i): We first show that ‖V2n(f) − Vn(f)‖p = O( 1
n ). From (5) and (6) we

have ‖V4n(f)− V2n(f)‖p = O( 1
n ) and it remains to consider V4m+2(f)− V2m+1(f). On

writing

V4m+2(f)− V2m+1(f) =
(
V4m+2(f)− V4m(f)

)
+

(
V4m(f)− V2m(f)

)

we need only to consider the first term on the right-hand side. An examination of the
Fourier coefficients of V4m in (1) shows that

V4m+2(f)− V4m(f) =
1

2m(2m + 1)
[
s′4m(f)− s′2m(f)

]
+

a4m+1

2m + 1
ei(4m+1)t.
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We note that f ∈ Lp by (ii). Applying Bernstein’s theorem to the first term on the
right-hand side yields

∥∥V4m+2(f)− V2m+1(f)
∥∥

p
≤ ‖s4m(f)− s2m(f)‖p

m
+ o

( 1
2m + 1

)
= o

( 1
m

)

as m → ∞. We now have ‖Rn(f)‖p = O( 1
n ) from (9). From (8) we have ‖s′n(f)‖p =

O(1) and f ∈ Λ(p, 1) by Theorem 8.
(i) ⇒ (iii): Since f ∈ A1

p∞, the proof of the same implication in Theorem 4 applies.
(iii) ⇒ (i): Well, (iii) ⇒ (ii) and we know that (ii) ⇒ (i). This completes the proof

Remark. By means of Theorem 8 and a similar proof, (i) ⇒ (iv) of Theorem 4
holds here, but the opposite implication does not hold. To see this consider the function

given by the gap series f(z) =
∑

z2k

2k . Then

‖f − s2n‖p ≈ ‖f − s2n‖2 =
{ ∞∑

n+1

1
22k

} 1
2

≈ 1
2n

.

Using Theorem A/(iv), we readily see that f ∈ A1
p∞; but since zf ′(z) =

∑
z2n

it follows
that f ′ /∈ Hq for all q ≥ 1 and the result follows.

4.2 The class Λ(1, 1). We now turn to the class Λ(1, 1) any element of which is
equal a.e. to a function of bounded variation on [−π, π] [4: Lemma 9]. For a general
function f we let f̃ denote its conjugate function. As stated in [4], this class does not
contain the conjugate function of each of its members and therefore is not a Besov space.
Consequently, we do not expect that results analogous to those previously obtained hold
for this class.

First we state a well known result (see [11: Chapter 3/Theorem 13.34]) for the class
Λ1:

‖σn(f)− f‖∞ = O
(

1
n

)
if and only if f̃ ∈ Λ1.

We can extend this to its analogue Λ(1, 1) and the proof is based on the original result:

Theorem 10. f̃ ∈ Λ(1, 1) if and only if ‖σn(f)− f‖1 = O( 1
n ).

Proof. If ‖σn(f)−f‖1 ≤ K 1
n for all n, then the same result holds a fortiori with 1

n

replaced by 1
ns for all s < 1. It follows from Theorem 4′ that f̃ ∈ Λ(1, s); we note that

Λ(1, 1) ⊂ Λ(1, s). Write f = σn(f)+gn so that ‖gn‖1 ≤ K 1
n . For clarity we temporarily

write Tn for σn(f). Then Tn = σn(Tn) + σn(gn) giving

‖Tn − σn(Tn)‖1 = ‖σn(gn)‖1 ≤ ‖gn‖1 ≤ K
1
n

.

In order to see that Tn − σn(Tn) = T̃ ′n
n , suppose that Tn =

∑n−1
j=−n+1 bje

ijt. Then

T̃n = −i

n−1∑

j=1

bje
ijt + i

−1∑

j=−n+1

bje
ijt.
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Differentiating with respect to t we get

T̃ ′n(t) =
n−1∑

j=1

jbje
ijt −

−1∑

j=−n+1

jbje
ijt.

But

Tn − σn(Tn) =
n−1∑

j=−n+1

|j|
n

bje
ijt

=
1
n

{ n−1∑

j=1

jbje
ijt −

−1∑

j=−n+1

jbje
ijt

}

=
T̃ ′n
n

as claimed. Putting these facts together it is clear that ‖T̃ ′n‖1 = ‖σ̃′n(f)‖1 = ‖σ′n(f̃)‖1 ≤
K for all n. This means that if we define a sequence of measures by dµn = σ′n(f̃) dt,
the sequence has a weak star cluster point µ for which ‖µ‖ ≤ K. For each integer m
we have

µ̂(m) =
{

imf̂(m) if m ≥ 0
−imf̂(m) if m < 0.

We note that µ̂(0) = 0. We claim that f̃ is equal a.e. to a function in BV [−π, π]. For,
let us define a function g on −π ≤ x ≤ π by g(x) = µ[−π, x) =

∫ x

−π
dµ. For each integer

m 6= 0, ∫ π

−π

g(x)e−imxdx =
∫ π

−π

e−imx

( ∫ x

−π

dµ(t)
)

dx

=
∫ π

−π

( ∫ π

t

e−imxdx

)
dµ(t)

= −2πi
µ̂(m)

m
.

So µ̂(m) = imĝ(m). It follows that ĝ(m) = i
ˆ̃
f(m) for all m 6= 0. But we know that

g ∈ BV [−π, π] and our claim is proven.
For the converse it suffices to show that if f ∈ Λ(1, 1), then ‖σ̃n(f)− f̃‖1 = O( 1

n ).
Fix a value of n. From the formula for K̃n, where Kn is the Fejér kernel, we have

σ̃n(f)(x)− f̃(x) =
1

nπ

∫ π

0

(
f(x + t)− f(x− t)

) sin nt

(2 sin t
2 )2

dt (10)

=
∫ 1

n

0

+
∫ π

1
n

= P (x) + Q(x),

say. Suppose that ‖∆tf‖1 ≤ M |t| for some M . We have

‖P‖1 ≤ 1
nπ

∫ 1
n

0

2Mtnt
(

2t
π

)−2
dt = O

(
1
n

)
.
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Next suppose that f = g a.e. where g ∈ BV [−π, π]. Bearing in mind the definition
of the conjugate function, it is clear that the left-hand side of (10) has the same value
for all x, whether we use f or g. We assume therefore that on the right-hand side
f ∈ BV [−π, π]. To show that ‖Q‖1 = O( 1

n ), we use an approximation process. We
replace f by σm(f) and Q by Qm above. We know that limm→∞ ‖f − σm(f)‖1 = 0,
and a standard application of Fubini’s theorem shows that limm→∞ ‖Q − Qm‖1 = 0.
Noting that ∣∣∣∣

∫ π

t

sin nu

(2 sin u
2 )2

du

∣∣∣∣ ≤
2

n(2 sin t
2 )2

≤ A

nt2

let Rn(t) denote the integral on the left. So Rn(π) = 0. Let ‖f‖∗ denote the BV -norm
of f and apply integration by parts to the formula for Qm:

Qm(x) = 1
nπ

(
−Rn

(
1
n

)[
σm

(
x + 1

n

)− σm

(
x− 1

n

)]

−
∫ π

1
n

Rn(t)
[
σ′m(x + t) + σ′m(x− t)

]
dt

)

whence

|Qm(x)| ≤ 1
nπ

(∣∣Rn

(
1
n

)∣∣ [∣∣σm

(
x + 1

n

)− σm

(
x− 1

n

)∣∣ ]

+
∫ π

1
n

|Rn(t)| [|σ′m(x + t)|+ |σ′m(x− t)|]dt

)
.

Integrating with respect to x we get

‖Qm‖1 ≤ 1
nπ

(
An

(
2M
n

)
+ 2A‖f‖∗

∫ π

1
n

dt

nt2

)
= O

(
1
n

)

uniformly in m. We have used the fact that
∥∥σm(f)

( ·+ 1
n

)− σm(f)
( · − 1

n

)∥∥
1
≤ 2M 1

n

which follows readily from the definition of σm, and also that ‖σm(f)‖∗ → ‖f‖∗ as
m →∞ [11: Chapter 4]. Letting m →∞, it follows that ‖Q‖1 = O( 1

n ).

Combining our estimates, we get ‖P + Q‖1 = O( 1
n ), and therefore ‖σ̃n(f)− f̃‖1 =

O( 1
n ). This completes the proof

Remark. If only the weaker condition ‖σ2n(f) − σn(f)‖1 = O( 1
n ) holds and f is

analytic, then Theorem 5 with s = 1 says that f ∈ A1
1∞.

If we recall that, for an analytic function f , f ∈ Λ(1, 1) precisely when f ′ ∈ H1, the
following corollary represents a partial addition to the results of Theorems 4′ and 9.

Corollary 11. Suppose that f is analytic. Then ‖σn(f)− f‖1 = O( 1
n ) if and only

if f ′ ∈ H1.
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