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Complements on Growth Envelopes
of Spaces with Generalized Smoothness

in the Sub-Critical Case

M. Bricchi and S. D. Moura

Abstract. We describe the growth envelope of Besov and Triebel-Lizorkin spaces Bσ
pq(Rn)

and F σ
pq(Rn) with generalized smoothness, i.e. instead of the usual scalar regularity index

σ ∈ R we consider now the more general case of a sequence σ = {σj}j∈N0 . We take under
consideration the range of the parameters σ, p, q which, in analogy to the classical terminology,
we call sub-critical.
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1. Introduction

Let As
pq be either Bs

pq (Besov spaces) or F s
pq (Triebel-Lizorkin spaces) defined in the

whole Euclidean space Rn. Suppose also that the parameters s, p, q are chosen so that
As

pq ⊂ Lloc
1 but As

pq 6↪→ L∞. Of interest in this case is the singularity behaviour of
f ∈ As

pq, usually expressed in terms of the distribution function mf and the non-
increasing rearrangement f∗.

We shall be more precise in the sequel: here we remark that answers of final character
on this subject can be found in the works of D. Haroske [12, 13] and H. Triebel [20],
where the notion of the growth envelope EGAs

pq of the spaces As
pq appears as a useful

refinement of the above mentioned tools and as a compact and elegant description of
the singularity behaviour of elements in the considered spaces.

Quite recently A. Caetano and S. D. Moura have taken into consideration in [5] the
same type of problem sketched above, now for the wider class of spaces A

(s,Ψ)
pq (where

again A stands either for B or F ). These spaces, in rough terms, can be considered
as a perturbed version of the classical spaces As

pq, where the usual regularity index s
is replaced by a couple (s,Ψ) in which Ψ plays the role of a finer tuning smoothness
parameter. Apart from their own interest, these spaces with perturbed smoothness arise
naturally in the theory of function spaces defined on some fractal-type sets (see [2, 3,
8, 9, 17, 18]).
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The present paper can be considered a twin paper to [5] in the following sense:
instead of considering only perturbed versions to the usual Besov and Triebel-Lizorkin
spaces, we take into consideration function spaces (of Besov and Triebel-Lizorkin type)
with generalized smoothness Aσ

pq, where now σ is a sequence. Spaces of this type have
been studied by many mathematicians. We refer to [10] for results, references and
comments. An application of these spaces (or, from another point of view, a natural
motivation for their definition) can be found in [4].

Then we restrict our attention (as it is done in [5]) to a non-limiting case which, in
analogy to the classical and the perturbed situation, we call sub-critical case. Mutatis
mutandis, all the techniques used in [5] (in particular, the powerful tool of interpolation
with a function parameter and the atomic representation of the involved spaces) can be
applied also in this very general case.

We end up with the growth envelope of spaces with generalized smoothness EGAσ
pq

and this result generalizes in a unified way both the classical and the perturbed sub-
critical cases.

2. General notation

In this paper we shall adopt the following general notation: N denotes the set of all
natural numbers, N0 = N ∪ {0}, Rn (n ∈ N) denotes the Euclidean n-space and
R = R1. We use the equivalence ∼ in

ak ∼ bk or ϕ(r) ∼ ψ(r)

always to mean that there are two numbers c1 > 0 and c2 > 0 such that

c1ak ≤ bk ≤ c2ak or c1ϕ(r) ≤ ψ(r) ≤ c2ϕ(r)

for all admitted values of the discrete variable k or the continuous variable r, respectively.
Here ak, bk are positive numbers and ϕ,ψ are positive functions. The word “positive”
is always used to mean “strictly positive”, both for functions and for real numbers.

Given two quasi-Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the
natural embedding of X into Y is continuous. If not otherwise indicated, log is always
taken with respect to base 2. We consider here only function spaces defined on Rn and
therefore in most cases we shall omit “Rn” from the notation.

3. The class IB, admissible sequences and related indices

As briefly mentioned in the introduction, we shall take into consideration function spaces
of Besov and Triebel-Lizorkin type with generalized smoothness, i.e. spaces where the
usual regularity index is replaced by a more general sequence. In this section we explain
the class of sequences we shall be interested in and some related basic results.

In the sequel we shall be concerned also with the technique of interpolation with
a function parameter. Here we collect necessary definitions and results on this topic
following [6, 16].
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Definition 3.1. A positive and continuous function g : (0,∞) → R belongs to the
class B if

g(t)−1 = g(t−1) (3.1)

g(t) := sup
s>0

g(ts)
g(s)

< ∞

for all t > o. If g ∈ B, then the upper and lower Boyd indices αg and βg of g are well
defined by

αg = lim
t→∞

log g(t)
log t

and βg = lim
t→0

log g(t)
log t

,

respectively.

Remark 3.2. The class B has been defined in analogy to the class B considered in
[16]. The latter class differs from the former by condition (3.1), which was not required
for B. Our additional requirement (3.1) is simply convenient and does not play any
crucial role.

Notice that for any g ∈ B one has

g(τ−1)−1g(s) ≤ g(τs) ≤ g(τ)g(s) (s, τ > 0). (3.2)

The class of sequences we shall consider has been introduced in [10]. Its definition reads
as follows.

Definition 3.3. A sequence σ = {σj}j∈N0 is said to be admissible if σj > 0 for
j ∈ N0 and there exist two constants d0 > 0 and d1 > 0 such that

d0σj ≤ σj+1 ≤ d1σj (j ∈ N0). (3.3)

Of course, a sequence {σj}j∈N0 is admissible if and only if σj+1
σj

is bounded away
from 0 and infinity uniformly in j. We insist on this observation and define, in analogy
to the continuous case, the lower and upper Boyd indices of a given admissible sequence
as follows.

Definition 3.4. Let σ = {σj}j∈N0 be an admissible sequence. Define

σj = inf
k≥0

σj+k

σk
and σj = sup

k≥0

σj+k

σk
, (j ∈ N0).

Then we let

ασ = lim
j→∞

log σj

j
and βσ = lim

j→∞
log σj

j
(3.4)

be the upper and lower Boyd index of the given sequence σ, respectively.

Remark 3.5. The above definition is well posed: the sequence {log σj}j∈N is sub-
additive and hence the left-hand side limit in (3.4) exists and is finite (since σ is an
admissible sequence). The corresponding assertions for the lower counterpart βσ can be
read off observing that log σj = − log(σ−1)j . Notice that if σ is an admissible sequence,
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then σjσk ≤ σj+k ≤ σkσj for any j, k ∈ N0. In particular, σ1 and σ1 are the best
possible constants d0 and d1 in (3.3), respectively.

The Boyd index ασ of an admissible sequence σ (and its lower counterpart βσ)
describes the asymptotic behaviour of the σj ’s and provides more information than
simply σ1 and, what is more, is stable under the equivalence of sequences: if σ ∼ τ ,
then ασ = ατ as one readily verifies.

Observe also that given ε > 0, there are two constants c1 = c1(ε) > 0 and c2 =
c2(ε) > 0 such that

c12(βσ−ε)j ≤ σj ≤ σj ≤ c22(ασ+ε)j (j ∈ N0). (3.5)

In particular, for each ε > 0,

c12(βσ−ε)j ≤ σj ≤ c22(ασ+ε)j (j ∈ N0) (3.6)

for some constants c1 = c1(ε) > 0 and c2 = c2(ε) > 0.

For our later purposes, given an admissible sequence σ it is useful to construct a
function Σ in B which interpolates σ. The exact definition is of no interest: it suffices
to consider any positive and continuous function Σ: (0,∞) → R in the class B with
Σ(2j) ∼ σj for j ∈ N0. An example can be given by the construction

Σ(t) =

{
σ−1

0

{
(2−jt− 1)(σj+1 − σj) + σj

}
if t ∈ [2j , 2j+1), j ∈ N0

Σ(t−1)−1 otherwise.
(3.7)

Somehow unexpectedly, it turns out that the lower and upper Boyd indices of any
such interpolating function do coincide with the corresponding indices of the starting
sequence. In the following proposition we state the rigorous assertions.

Proposition 3.6.
(i) Let g ∈ B. Then the interpolated sequence γ = {g(2j)}j∈N0 is admissible.
(ii) Let σ be an admissible sequence. Let Σ: (0,∞) → R be a function in B such

that Σ(2j) ∼ σj (j ∈ N0) (for instance, the function defined in (3.7)). Then

βσ = βΣ ≤ αΣ = ασ.

Proof. The proof of statement (i) follows immediately from the estimation

g(2−1)−1 ≤ g(2j+1)
g(2j)

≤ g(2)

which is readily true by virtue of (3.2).
The proof of statement (ii) is not difficult but admittedly tedious: Fixing ε > 0,

(3.5) and (3.6) hold true for some constants c1 > 0 and c2 > 0 (depending on ε).
Afterwards one has to estimate from above the quotients

Σ(2j+k)
Σ(2k)

(j, k ∈ Z).
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In order to do this one has to take into consideration separately the following six cases:
1) j > 0, k > 0
2) j > 0, k ≤ 0, j + k > 0
3) j > 0, k ≤ 0, j + k ≤ 0
4) j ≤ 0, k < 0
5) j ≤ 0, k ≥ 0, j + k > 0
6) j ≤ 0, k ≥ 0, j + k ≤ 0.

By the definition of Σ and the properties of the admissible sequence σ one gets

Σ(2j+k)
Σ(2k)

≤ cε max
{
2(βσ−ε)j , 2(ασ+ε)j

}
(j, k ∈ Z) (3.8)

for some constant cε independent of j and k.
We show in detail how one steps from the discrete estimation (3.8) to the continuous

one. By (3.2) there are two constants c1 > 0 and c2 > 0 such that

c1Σ(s) ≤ Σ(τs) ≤ c2Σ(s) (s > 0)

uniformly in τ ∈ [2−2, 22]. For t, s ∈ (0,∞), let j, k ∈ Z with 2j ≤ t ≤ 2j+1 and
2k ≤ s ≤ 2k+1. Then, for appropriately chosen τ, τ ′ ∈ [2−2, 22],

Σ(ts)
Σ(s)

=
Σ(2j+kτ)
Σ(2kτ ′)

≤ c
Σ(2j+k)
Σ(2k)

≤ c′ε max
{
2(βσ−ε)j , 2(ασ+ε)j

}

≤ c′′ε max
{
tβσ−ε, tασ+ε

}
.

This shows that

log Σ(t) ≤ cε + max
{
(βσ − ε) log t, (ασ + ε) log t

}
(t > 0).

Hence,
log Σ(t)

log t

{≥ o(1) + βσ − ε for t < 1
≤ o(1) + ασ + ε for t > 1.

This finally proves βσ − ε ≤ βΣ and ασ + ε ≥ αΣ. Since one always has βf ≤ αf for
any f ∈ B (see [16: p. 184]) and ε > 0 was arbitrarily chosen, we can infer that

βσ ≤ βΣ ≤ αΣ ≤ ασ.

To conclude the proof we have to show the converse inequalities, i.e., we must
prove βσ ≥ βΣ and αΣ ≥ ασ. Fortunately, this turns out to be the easiest part as
Σ(2j) ∼ σj (j ∈ N0) and, by (3.2),

σj+k

σk
∼ Σ(2j+k)

Σ(2k)
≤ Σ(2j) (j, k ∈ N0).

Hence, σj ≤ cΣ(2j) (j ∈ N0). Therefore ασ ≤ αΣ. Proceeding analogously we can
derive the desired estimation also for the lower indices and finally conclude the proof
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Example 3.7. We consider some examples of admissible sequences.

(i) For s ∈ R, σ = {2sj}j∈N0 is readily an admissible sequence with βσ = ασ = s.

(ii) Let Φ: (0, 1] → R be a slowly varying function (or equivalent to a slowly varying
one) in the sense of [1]. Then, for s ∈ R, σ = {2sjΦ(2j)}j∈N0 is an admissible sequence.
Also here we have βσ = ασ = s.

(iii) In view of [4: Proposition 1.9.7], the case σ = {2sjΨ(2−j)}j∈N0 , where now Ψ
is an admissible function in the sense of [8], can be regarded as a special case of (ii). We
recall that an admissible function Ψ is a positive monotone function defined on (0, 1]
such that Ψ(2−2j) ∼ Ψ(2−j) (j ∈ N0).

(iv) More generally, given any function of the form

Σ(t) ∼ exp
{∫ t

1
ξ(s) ds

s

}
(3.9)

where ξ is a measurable bounded function, the sequence σ = {Σ(2j)}j∈N0 is admissible.

One could prove that ασ is the infimum of the upper bounds of all functions ξ
representing Σ as in (3.9) and that βσ is the supremum of their lower bounds. Con-
versely, one could even assert that any admissible sequence σ can be represented as
σ = {Σ(2j)}j∈N0 where Σ has form (3.9). We skip details and we refer to the mono-
graph [1], where in view of our Proposition 3.6 and after an appropriate translation in
the language of OR-functions the above assertion can be derived easily from Theorem
2.2.7 on page 74.

4. Function spaces

4.1 Function spaces of generalized smoothness. The definition of Besov and
Triebel-Lizorkin spaces in terms of a generalized smoothness has been already considered
in some generality: see, for instance, [6, 11, 14 - 16]. We refer to the paper [10] of
W. Farkas and H.-G. Leopold which represents a unified and general approach on this
topic.

In view of the main Definition 4.4 below, we now collect usual notation and basic
concepts. The Schwartz class of all C∞ functions decreasing rapidly together with all
their derivatives is denoted by S(Rn) and its dual space of all tempered distributions by
S ′(Rn). If f ∈ S ′(Rn), then Ff and F−1f denote the Fourier and the inverse Fourier
transform of f , respectively.

Definition 4.1. By a resolution of unity Φ = {ϕj}j∈N0 we mean a sequence of
compactly supported smooth functions such that

suppϕ0 ⊂
{
ξ ∈ Rn : |ξ| ≤ 2

}

suppϕj ⊂
{
ξ ∈ Rn : 2j−1 ≤ |ξ| ≤ 2j+1

}
(j ≥ 1)

∞∑

j=0

ϕj(ξ) = 1 (ξ ∈ Rn), sup
ξ∈Rn

|Dαϕj(ξ)| ≤ cα2−j|α| (α ∈ Nn
0 ).
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Definition 4.2. If Φ = {ϕj}j∈N0 is a resolution of unity and f ∈ S ′(Rn), then we
set

ϕj(D)f = F−1(ϕjFf)

for j ≥ 0.

Definition 4.3. If {aj(x)}j∈N0 is a sequence of functions defined in Rn, then we
put

‖aj |`q(Lp)‖ =
∥∥{‖aj |Lp(Rn)‖}j |`q

∥∥
‖aj |Lp(`q)‖ =

∥∥ ‖{aj(·)}j |`q‖|Lp(Rn)
∥∥.

Now we are ready for the main definition of this section.

Definition 4.4. Let Φ = {ϕj}j∈N0 be a resolution of unity and let σ be an admis-
sible sequence.

(i) Let 0 < p, q ≤ ∞. Then

Bσ
pq =

{
f ∈ S ′(Rn) : ‖σjϕj(D)f |`q(Lp)‖ < ∞

}
.

(ii) Let 0 < p, q ≤ ∞ with p < ∞. Then

F σ
pq =

{
f ∈ S ′(Rn) : ‖σjϕj(D)f |Lp(`q)‖ < ∞

}
.

Remark 4.5.
(i) The classical Besov and Triebel-Lizorkin spaces Bs

pq and F s
pq (s ∈ R) are

subsumed in the above definitions for σ = {2sj}j∈N0 (and, of course, we stick at the

usual notation in this case, avoiding the cumbersome expression B
{2sj}
pq ). As in the

classical case, the spaces Bσ
pq and F σ

pq are independent, up to equivalent quasi-norms,
from the chosen resolution of unity appearing in their definition.

(ii) In [10] the definition of Besov and Triebel-Lizorkin is more general: one can
consider more general systems Φ of compactly supported smooth functions ϕj , inducing
a fourth parameter N = {Nj}j∈N0 , linked to the size of the supports of the ϕj , to
appear. We do not go into detail, since the above formulation is sufficient for our future
purposes.

As we remarked above, the spaces Bσ
pq and Fσ

pq coincide with the usual Besov and
Triebel-Lizorkin spaces Bs

pq and F s
pq, respectively, for σ = {2sj}j∈N0 . If we let σ =

{2sjΨ(2−j)}j∈N0 , where Ψ is an admissible function, then σ is an admissible sequence
(see Example 3.7/(iii)). The corresponding Besov and Triebel-Lizorkin spaces coincide,
respectively, with the spaces B

(s,Ψ)
pq and F

(s,Ψ)
pq introduced by D. Edmunds and H. Triebel

in [8, 9] and also considered by S. D. Moura in [17, 18]. In analogy to our notational
agreement confessed above, also in this case we preserve the original notation.

Now we deal with some embedding assertions.

Proposition 4.6. Let 0 < p, q, q1, q2 ≤ ∞ (p < ∞ in the F -case) and let σ be an
admissible sequence. Then, for s1, s2 ∈ R with s2 < βσ ≤ ασ < s1, As1

pq1
↪→ Aσ

pq ↪→ As2
pq2

.

Proof. By our assumptions and thanks to (3.6) there exist two constants c > 0
and c′ > 0 such that c2s2j ≤ σj ≤ c′2s1j (j ∈ N0). Then by standard arguments one
concludes the proof
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We shall also need the following sharp embedding assertion.

Proposition 4.7. Let 0 < p1 < p < p2 ≤ ∞, 0 < q ≤ ∞ and σ be an admissible
sequence. Let σ′ and σ′′ be two admissible sequences defined by

σ′j = 2n( 1
p1
− 1

p )jσj and σ′′j = 2n( 1
p2
− 1

p )jσj (j ∈ N0).

Then
Bσ′

p1u ↪→ Fσ
pq ↪→ Bσ′′

p2v

if and only if 0 < u ≤ p ≤ v ≤ ∞.

Proof. We outline the proof, following essentially the arguments used for the proof
of [5: Proposition 3.4] taking now advantage of a general lifting operator as it appears
in [10: Theorem 3.1.8]. More precisely, for a given admissible sequence τ we consider
the operator Iτ defined by the symbol µ(t) =

∑∞
j=0 τjϕj(t), where {ϕj}j∈N0 is a fixed

resolution of unity. This means that Iτ acts on Aσ
pq as

Iτf = F−1(µFf) (f ∈ Aσ
pq).

Then Iτ maps isomorphically Aσ
pq onto Aστ−1

pq and ‖Iτ · |Aστ−1

pq ‖ is an equivalent quasi-
norm in Aσ

pq. As a consequence we also get that I−1
τ = Iτ−1 .

Let s1, s2, s be such that s1 − n
p1

= s− n
p = s2 − n

p2
.

In the above commutative diagram the vertical arrows stand for the lift Iτ (or its
inverse), where τ = {2−sjσj}j∈N0 , and the horizontal arrows for the natural injection.
The desired result then follows directly from necessary and sufficient conditions for the
embeddings corresponding to the lower part of the diagram (cf. [7: pp. 44 - 45]

4.2 Generalized Lorentz spaces. Following [16] we recall the definition of generalized
Lorentz spaces, for we shall make use of this type of spaces in the sequel.

First of all we recall that for an a.e. finite measurable function f defined on Rn its
distribution function mf is defined as

mf (λ) = |{|f(x)| > λ}| (λ ≥ 0)

where the outer | · | denotes the Lebesgue measure. The non-increasing rearrangement
f∗ of f is then defined by

f∗(t) = inf
{
λ ≥ 0 : mf (λ) ≤ t

}
(t ≥ 0)

where we agree on inf ∅ = ∞.
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Definition 4.8. If ϕ ∈ B and 0 < q ≤ ∞, then the generalized Lorentz space Lq(ϕ)
is the set of all complex measurable functions f on Rn such that

‖f |Lq(ϕ)‖ :=





( ∫∞
0

(
ϕ(t)f∗(t)

)q dt
t

)1/q

if 0 < q < ∞
supt∈(0,∞) ϕ(t)f∗(t) if q = ∞

is finite.

Remark 4.9. If ϕ(t) = t
1
p (1 + | log t|)a with 0 < p ≤ ∞ and a ∈ R, then Lq(ϕ)

is the Lorentz-Zygmund space Lpq(log L)a, which in turn is the classical Lorentz space
Lpq if a = 0.

5. Growth envelopes

As we mentioned, the concept of growth envelope has been introduced by D. Haroske in
[12] and was considered also by H. Triebel in [20]. Here we quote the basic definitions
and results concerning growth envelopes. However, we shall be rather concise and refer
mainly to [5, 12, 20] for heuristics, motivations and details on this subject.

The growth envelope function involves the concept of non-increasing rearrangement.
So we restrict ourselves to function spaces Aσ

pq which are contained in Lloc
1 .

On the other hand, the cases of interest for studying the growth envelope concern
function spaces which are not embedded into L∞. So, it seems reasonable to take into
consideration the spaces Aσ

pq with

0 < p, q ≤ ∞, n( 1
p − 1)+ < βσ ≤ ασ < n

p (5.1)

where a+ = max(a, 0) for a ∈ R. As a matter of fact, by virtue of Proposition 4.6
and by the known characterization for As

pq ↪→ L∞ and As
pq ↪→ Lloc

1 in terms of s, p, q

the above conditions (5.1) guarantee Aσ
pq ↪→ Lloc

1 and Aσ
pq 6↪→ L∞. On the other hand,

in a similar way, ασ < n( 1
p − 1)+ or βσ > n

p lead to Aσ
pq 6↪→ Lloc

1 and Aσ
pq ↪→ L∞,

respectively. For the spaces As
pq and A

(s,Ψ)
pq conditions (5.1) result in n( 1

p −1)+ < s < n
p

which corresponds to the so-called sub-critical case. In analogy, we refer also to (5.1)
as to the sub-critical case.

Definition 5.1. Let σ, p, q as in (5.1). We call growth envelope function of Aσ
pq any

positive non-increasing continuous function EGAσ
pq which is equivalent to

EG |Aσ
pq(t) := sup

{
f∗(t) : ‖f |Aσ

pq‖ ≤ 1
}

(t ∈ (0, 1]) (5.2)

in some interval (0, ε], for some 0 < ε < 1.
Let H(t) := − log EGAσ

pq(t) (t ∈ (0, ε]) and let µH be the associated Borel measure
on (0, ε]. Consider 0 < u ≤ ∞. Then the couple

EGAσ
pq := ([EGAσ

pq], u) (5.3)
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is called growth envelope for Aσ
pq when

( ∫

(0,ε]

( f∗(t)
EGAσ

pq(t)

)v

µH(dt)
) 1

v

≤ c ‖f |Aσ
pq‖

(modification if v = ∞) for some constant c = c(v) and all f ∈ Aσ
pq if and only if

u ≤ v ≤ ∞.

Remark 5.2.
(i) The function EG |Aσ

pq (for the prescribed range of parameters) is always non-
increasing unbounded and positive on some interval (0, ε], with 0 < ε ≤ 1. This assertion
can be easily obtained by Proposition 4.6 and the corresponding assertions for As

pq (see
[20: pp. 189 - 190/12.6]). An equivalent continuous function to EG |Aσ

pq can be then
easily exhibited.

(ii) If ‖ · |Aσ
pq‖1 and ‖ · |Aσ

pq‖2 are two equivalent quasi-norms, then (in obvious no-
tation) EG |1Aσ

pq ∼ EG |2Aσ
pq, so that the definition of the growth envelope is independent

of the particular quasi-norm considered in the space taken into consideration.
(iii) The brackets [·] in (5.3) mean that we take the equivalence class of all possible

envelope functions EGAσ
pq. In the future we shall be less rigorous and we shall adopt

the following sloppy convention: if we write, say, EGBσ
pq = (f(t), q) where f is a distin-

guished function (maybe not continuous or not monotone), then we tacitly assert that
f is equivalent to some EGAσ

pq in some neighbourhood (0, ε) of zero.
(iv) If H is as in the above definition, the corresponding Borel measure µH is defined

on [a, b] ⊂ (0, ε] as µH([a, b]) = H(b) − H(a) and then prolonged in the usual way on
the σ-field of all Borel sets. If H is continuously differentiable, then dµH

dt = H ′(t). We
shall use this below in (6.15).

6. Results

Now we are ready for the main results of this paper.

Proposition 6.1. Let 0 < p, q ≤ ∞ and σ be an admissible sequence with

n
(

1
p − 1

)
+

< βσ ≤ ασ < n
p . (6.1)

Let Σ ∈ B with Σ(2j) ∼ σj (j ∈ N0) (for instance, the function defined in (3.7)). Then

EG |Bσ
pq(t) ≤ c t−

1
p Σ(t

1
n ) (t ∈ (0, 1]) (6.2)

and, for each v ∈ (q,∞], there exists a constant c(v) > 0 such that

( ∫ 1

0

(
t

1
p Σ(t−

1
n ) f∗(t)

)v dt

t

) 1
v

≤ c ‖f |Bσ
pq‖ (6.3)

(with modification (6.9) if v = ∞) for all f ∈ Bσ
pq.
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Proof. Thanks to (6.1) it is clearly possible to choose two real numbers s1 and s2

such that
n
(

1
p − 1

)
+

< s1 < βσ ≤ ασ < s2 < n
p . (6.4)

Let us consider the function g defined by

g(t) = t−
s1

s2−s1 Σ(t
1

s2−s1 ) (t > 0).

By straightforward calculations, it follows that

g(t) = sup
s>0

g(ts)
g(s)

= t−
s1

s2−s1 Σ(t
1

s2−s1 ) (t > 0)

and hence, g belongs to the class B. Moreover, taking into account (6.4) and Proposition
3.6,

αg = − s1

s2 − s1
+

αΣ

s2 − s1
=
−s1 + ασ

s2 − s1
< 1

βg = − s1

s2 − s1
+

βΣ

s2 − s1
=
−s1 + βσ

s2 − s1
> 0.

Thus, we can apply [16: Theorem 13] complemented by [6: Remark 5.4] to conclude
that, for each v ∈ (0,∞],

Bσ
pv = (Bs1

p1, B
s2
p1)g,v (6.5)

where in the right-hand side is an interpolation space with a function parameter.
On the other hand, if r1, r2 are defined by the equations si − n

p = − n
ri

(i = 1, 2),
then ri ∈ (1,∞) and ri > p, and

Bsi
p1 ↪→ Lri (i = 1, 2) (6.6)

(cf., e.g., [19: 11.4/(iii) and 10.5/(i)]). By virtue of [16: Theorem 3] we get

(Lr1 , Lr2)g,v = Lv(ϕ) (6.7)

where
ϕ(t) := t

1
r1 g

(
t

1
r1
− 1

r2
)−1 = t

1
p Σ(t

1
n )−1 (t > 0).

In view of the interpolation property, (6.5) - (6.7) imply Bσ
pv ↪→ Lv(ϕ), that is, there

exists a constant c > 0 such that
( ∫ ∞

0

(
t

1
p Σ(t

1
n )−1 f∗(t)

)v dt

t

) 1
v

≤ c ‖f |Bσ
pv‖

for all f ∈ Bσ
pv. If v ≥ q, then Bσ

pq ↪→ Bσ
pv, and hence

( ∫ ∞

0

(
t

1
p Σ(t−

1
n ) f∗(t)

)v dt

t

) 1
v

≤ c ‖f |Bσ
pq‖ (6.8)

for some constant c and for all f ∈ Bσ
pq. This proves (6.3). As for (6.2), this follows

easily by considering just the particular case of v = ∞ in (6.8), that is,

sup
t∈(0,1]

t
1
p Σ(t−

1
n ) f∗(t) ≤ c ‖f |Bσ

pq‖ (6.9)

for all f ∈ Bσ
pq
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Proposition 6.2. Let 0 < p, q ≤ ∞ and let σ be an admissible sequence with
property (6.1). Consider an interpolating function Σ (say, as in (3.7)). Then there exist
ε ∈ (0, 1) and a constant c > 0 such that

EG |Bσ
pq(t) ≥ c t−

1
p Σ(t

1
n ) (t ∈ (0, ε]), (6.10)

and for each v ∈ (0, q) there is no c(v) > 0 such that

( ∫ 1

0

(
t

1
p Σ(t−

1
n ) f∗(t)

)v dt

t

) 1
v

≤ c ‖f |Bσ
pq‖

for all f ∈ Bσ
pq.

Proof. We follow closely the arguments of [20: 15.2] with appropriate modifications
(see also the proof of [5: Proposition 4.2]).

For each j ∈ N, let Aj be given by

Aj(x) = σ−1
j 2j n

p Φ(2jx) (x ∈ Rn)

where Φ is defined by

Φ(x) =
{

exp
(− 1

1−|x|2
)

if |x| < 1
0 if |x| ≥ 1.

Since βσ > n( 1
p − 1)+, Aj is (up to a constant factor) an atom for the space Bσ

pq. It can
be easily seen that

A∗j (d2−jn) ∼ σ−1
j 2j n

p (j ∈ N)

for some d > 0 depending only on the function Φ. By (5.2) and the atomic decomposition
theorem (cf. [10: Theorem 4.4.3]) we infer that

EG |Bσ
pq(d2−jn) ≥ c1A

∗
j (d2−jn) ≥ c2 σ−1

j 2j n
p (j ∈ N)

which implies (6.10).
Assume now that for some v ∈ (0, q) there exists a constant c(v) > 0 such that

( ∫ 1

0

(
t

1
p Σ(t−

1
n ) f∗(t)

)v dt

t

) 1
v

≤ c ‖f |Bσ
pq‖ (6.11)

for all f ∈ Bσ
pq. For each J ∈ N, set

fJ(x) =
J∑

j=1

σ−1
j 2j n

p Φ(2jx− x0) (x ∈ Rn)

with Φ as above and x0 ∈ Zn chosen in such a way that the supports of the functions
Φ(2j ·−x0) (j ∈ N) are disjoint (it is enough to take x0 with |x0| > 3). For k ∈ {1, . . . , J}
one has, for some a, b > 0 depending only on Φ,

mfJ
(b σ−1

k 2k n
p ) ≥ 2a2−kn.



Complements of Growth Envelopes 395

Therefore,
f∗J (a2−kn) ≥ b σ−1

k 2k n
p (k = 1, . . . , J). (6.12)

We remark that, by the atomic decomposition theorem, fJ belongs to Bσ
pq and, more-

over,

‖fJ |Bσ
pq‖ ≤ c

( J∑

j=1

1
) 1

q

= c J
1
q (J ∈ N). (6.13)

Let k0 ∈ N be such that a2−k0n ≤ ε. Inserting (6.13) and (6.12) into (6.11) and using
the monotonicity of f∗J , we obtain, for any J ≥ k0,

J
1
q ≥ c1

( ∞∑

k=k0

∫ a2−kn

a2−(k+1)n

(
t

1
p Σ(t−

1
n ) f∗J (t)

)v dt

t

) 1
v

≥ c2

( J∑

k=k0

f∗J (a2−kn)v Σ(2k)v

∫ a2−kn

a2−(k+1)n

t
v
p−1 dt

) 1
v

≥ c3 (J − k0 + 1)
1
v

where the constants involved are independent of J . But this is clearly impossible as
v ∈ (0, q)

Theorem 6.3. Let 0 < p < ∞, 0 < q ≤ ∞ and σ be an admissible sequence with
n( 1

p − 1)+ < βσ ≤ ασ < n
p . Consider a corresponding interpolating function Σ (say, as

in (3.7)). Then:

(i) EGBσ
pq = (t−

1
p Σ(t

1
n ), q).

(ii) EGF σ
pq = (t−

1
p Σ(t

1
n ), p).

Proof. Step 1: Consider the function

g(t) = t
1
p Σ(t

1
n )−1 (t ≥ 0).

By virtue of Proposition 3.6/(ii) it can be easily seen that the above function g belongs
to the class B and, moreover, for its lower Boyd index we have

βg =
1
p
− βΣ

n
=

1
p
− βσ

n
> 0.

Using a result due to Merucci, namely [16: Proposition 4], we can guarantee the exis-
tence of an increasing function h ∈ B with h ∼ g which is a C1-diffeomorphism of (0,∞)
and satisfies

0 < inf
t>0

t
h′(t)
h(t)

≤ sup
t>0

t
h′(t)
h(t)

< ∞.

In particular,
h′(t)
h(t)

∼ 1
t

(t ≥ 0) (6.14)
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and h(t)−1 ∼ t−
1
p Σ(t

1
n ) in (0, ε], for ε ∈ (0, 1) according to Proposition 6.2. By (6.2)

and (6.10) we conclude that h(t)−1 is a continuous representative in the class [EG |Bσ
pq].

We set H(t) = log h(t) in (0, ε] and consider µH – the Borel measure associated to H.
Since h is continuously differentiable in (0, ε], we have

µH(dt) =
h′(t)
h(t)

dt. (6.15)

Taking into account (6.14) and (6.15), Propositions 6.1 and 6.2 assert that, for a given
v ∈ (0,∞], there exists a constant c(v) > 0 such that

( ∫

(0,ε]

(
h(t) f∗(t)

)v
µH(dt)

) 1
v

≤ c ‖f |Bσ
pq‖ (f ∈ Bσ

pq) ⇐⇒ v ≥ q.

This completes the proof of assertion (i).
Step 2: We choose p1, p2 such that 0 < p1 < p < p2 ≤ ∞ and consider the sequences

σ′, σ′′ defined by
σ′j = 2n( 1

p1
− 1

p )jσj

σ′′j = 2n( 1
p2
− 1

p )jσj

(j ∈ N0).

Then, by Proposition 4.7,
Bσ′

p1p ↪→ Fσ
pq ↪→ Bσ′′

p2p. (6.16)

Due to part (i) proved above,

EG |Bσ′
p1p(t) ∼ t−

1
p1 Σ′(t

1
n ) ∼ t−

1
p Σ(t

1
n )

EG |Bσ′′
p2p(t) ∼ t−

1
p2 Σ′′(t

1
n ) ∼ t−

1
p Σ(t

1
n )

in some interval (0, ε], for some ε ∈ (0, 1). Then assertion (ii) follows from (6.16), thanks
to Proposition 2.4/(iv) and [12: Proposition 3.5]

Remark 6.4. The use of the interpolating function Σ in the above theorem is some-
how immaterial. In fact, it was useful for technical reasons, in particular in connection
to the interpolation with a function parameter in the proof of Proposition 6.1. Indeed,
of interest is the singular behaviour of the growth envelope function in a neighbourhood
of the origin and this can simply be described by EGAσ

pq(2
−jn) ∼ 2j n

p σ−1
j for any large

enough j ∈ N0.

Remark 6.5. We compare our results with the known ones. For A
(s,Ψ)
pq , with Ψ

an admissible function, which corresponds to the choice σ = {2sjΨ(2−j)}j∈N0 , then
Σ(t) ∼ ts Ψ(t)−1 (t ∈ (0, 1]). According to the above theorem, for 0 < p, q ≤ ∞ and
n( 1

p − 1)+ < s < n
p , we have

EGB(s,Ψ)
pq =

(
t−

1
r Ψ(t

1
n )−1, q

)

EGF (s,Ψ)
pq =

(
t−

1
r Ψ(t

1
n )−1, p

)
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where 1
r = 1

p − s
n . As for an admissible function Ψ, Ψ(t

1
n ) ∼ Ψ(t) (t ∈ (0, 1]) (cf. [5:

Lemma 2.3]), we recover the results of A. Caetano and S. D. Moura in [5]. In particular,
we also extended the results of D. Haroske and H. Triebel regarding the spaces As

pq in
the sub-critical case (cf. [12, 13, 20]).

Acknowledgement. The authors wish to express their gratitude to Prof. Hans-
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Paris 326, série I (1998), 1269 – 1274.

[9] Edmunds, E. and H. Triebel: Eigenfrequencies of isotropic fractal drums. Oper. Theory:
Adv. & Appl. 110 (1999), 81 – 102.

[10] Farkas, W. and H.-G. Leopold: Characterisations of function spaces of generalised smooth-
ness. Jenaer Schriften zur Math. & Inf. 23/01 (2001).

[11] Goldman, M. L.: A method of coverings for describing general spaces of Besov type (in
Russian). Trudy Mat. Inst. Steklov 156 (1980), 47 – 81; English transl.: Proc. Steklov
Institut Math. 156 (1983)2.

[12] Haroske, D. D.: Envelopes in function spaces – a first approach. Jenaer Schriften zur
Math. & Inf. 16/01 (2001).

[13] Haroske, D. D.: Limiting Embeddings, Entropy Numbers and Envelopes in Function
Spaces. Habilitationsschrift. Jena (Germany): University of Jena 2002.

[14] Kalyabin, G. A.: Description of functions in classes of Besov-Triebel-Lizorkin type (in
Russian). Trudy Mat. Inst. Steklov 156 (1980), 82 – 109; English transl.: Proc. Steklov
Institut Math. 156 (1983)2.

[15] Kalyabin, G. A. and P. I. Lizorkin: Spaces of functions of generalized smoothness. Math.
Nachr. 133 (1987), 7 – 32.

[16] Merucci, C.: Applications of interpolation with a function parameter to Lorentz, Sobolev
and Besov spaces. Lect. Notes Math. 1070 (1984), 183 – 201.



398 M. Bricchi and S. D. Moura

[17] Moura, S. D.: Function Spaces of Generalised Smoothness. Diss. Math. 143 (2001).

[18] Moura, S. D.: Function Spaces of Generalised Smoothness, Entropy Numbers, Applica-
tions. PhD thesis. Coimbra (Portugal): University of Coimbra 2001.

[19] Triebel, H.: Fractals and Spectra. Basel: Birkhäuser Verlag 1997.
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