Fixed Points for Multi-Valued Mixed Increasing Operators in Ordered Banach Spaces with Applications to Integral Inclusions

Nan-jing Huang and Ya-ping Fang

Abstract. Some new fixed point and coupled fixed point theorems for multi-valued mixed increasing operators in ordered Banach spaces are presented in this paper. As applications, we prove the existences of solutions for a class of integral inclusions.

Keywords: Ordered Banach spaces, multi-valued operators, mixed increasing operators, fixed points, coupled fixed points, integral inclusions

AMS subject classification: 47H10, 47H07, 47H04, 54H25

1. Introduction and Preliminaries

Fixed point theorems for single-valued increasing operators and coupled fixed point theorems for single-valued mixed increasing operators in ordered Banach spaces are widely investigated and have found various applications to nonlinear integral equations and differential equations. For details, we can refer to $\begin{bmatrix} 1, 3 \\ 1, 2 \end{bmatrix}$ and the references therein. However, only few results on fixed points of multi-valued increasing operators in ordered Banach spaces are obtained. In 1984, Nishnianidze [16] introduced monotone multi-valued operators and proved some fixed point theorems for such operators. Recently, Huy and Khash [11] gave some new fixed point theorems for multi-valued increasing operators in ordered Banach spaces by means of the concept of Nishnianidze [16].

Motivated and inspired by [11], in this paper, we introduce a class of multi-valued mixed increasing operators in Banach spaces and prove some new fixed point and coupled fixed point theorems. As applications, we discuss the existences of solutions for a class of integral inclusions.

Both authors: Sichuan Univ., Dept. Math., Chengdu, Sichuan 610064, P.R. China nanjinghuang@hotmail.com

This work was supported by the National Natural Science Foundation of China (10171070) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Let X be a real Banach space and K be a non-empty pointed closed convex cone in X. Recall that $K \subset X$ is called a pointed closed convex cone if K is closed and the following conditions hold:

- (i) $K + K \subset K$
- (ii) $tK \subset K$ for all $t > 0$
- (iii) $K \cap (-K) = \{0\}.$

A partial ordering \leq can be induced by K by

 $x \leq y$ if and only if $y - x \in K$.

We always say that (X, \leq) is an ordered Banach space induced by K. A pointed convex cone K is said to be normal if there exists some constant $N > 0$ such that $0 \le x \le y$ implies $||x|| \le N||y||$.

Definition 1.1. Let (X, \leq) be an ordered Banach space induced by K and let A, B be two non-empty subsets of X . Then we denote

- (i) $A \leq_1 B$ if for each $a \in A$ there exists $b \in B$ such that $a \leq b$
- (ii) $A \leq_2 B$ if for each $b \in B$ there exists $a \in A$ such that $a \leq b$
- (iii) $A \preceq B$ if $A \leq_1 B$ and $A \leq_2 B$
- (iv) $A \ll B$ if $a \leq b$ for any $a \in A$ and $b \in B$.

Definition 1.2. Let (X, \leq) be an ordered Banach space induced by K and let $L: X \to X$ be a mapping. We say that L is *positive* if $Lx \in K$ whenever $x \in K$.

Definition 1.3. Let M be a non-empty subset of an ordered Banach space (X, \leq) and let $f: M \times M \to 2^X$ be a multi-valued operator. We say that f is mixed increasing if, for any $x_1, x_2, y_1, y_2 \in M$, $x_1 \le x_2$ and $y_2 \le y_1$ imply $f(x_1, y_1) \preceq f(x_2, y_2)$.

Definition 1.4. Let M be a non-empty subset of an ordered Banach space (X, \leq) and let $f: M \times M \to 2^X$ be a multi-valued operator. We say that $(x^*, y^*) \in M \times M$ is a coupled fixed point of f if $x^* \in f(x^*, y^*)$ and $y^* \in f(y^*, x^*)$. We say that $x^* \in M$ is a *fixed point* of *f* if $x^* \in f(x^*, x^*)$.

2. Main Results

In this section, we prove some new fixed point and coupled fixed point theorems for multi-valued mixed increasing operators in ordered Banach spaces.

Theorem 2.1. Let (X, \leq) be an ordered Banach space induced by a pointed closed convex cone K and M be a non-empty closed subset of X. Suppose that $f: M \times M \to 2^M$ is a multi-valued operator satisfying the following conditions:

- (i) $f(x, y)$ is closed for any $x, y \in M$.
- (ii) There exist $x_0, y_0 \in M$ such that $\{x_0\} \leq_1 f(x_0, y_0)$ and $f(y_0, x_0) \leq_2 \{y_0\}.$

(iii) For any $u_1, u_2, v_1, v_2 \in M$, $u_1 \le u_2$ and $v_2 \le v_1$ imply

$$
f(u_1, v_1) \subset f(u_2, v_2) - K \cap B(r||u_1 - u_2|| + s||v_1 - v_2||)
$$

$$
f(v_1, u_1) \subset f(v_2, u_2) + K \cap B(r||v_1 - v_2|| + s||u_1 - u_2||)
$$

where r, s are two non-negative constants with $r + s < 1$ and $B(l)$ denotes the closed ball with radius *l* and center at origin.

Then f admits a coupled fixed point $(x^*, y^*) \in M \times M$.

Proof. From condition (ii), there exist $x_1 \in f(x_0, y_0)$ and $y_1 \in f(y_0, x_0)$ such that $x_0 \leq x_1$ and $y_1 \leq y_0$. By condition (iii), we can choose $x_2 \in f(x_1, y_1)$ and $y_2 \in f(y_1, x_1)$ such that kx2 − x1k ≤ rkx1 − y0k + sky1 − y0k + sky1 − y0k + sky1 + sky

$$
x_1 \le x_2, \qquad ||x_2 - x_1|| \le r||x_1 - x_0|| + s||y_1 - y_0||
$$

$$
y_2 \le y_1, \qquad ||y_2 - y_1|| \le r||y_1 - y_0|| + s||x_1 - x_0||.
$$

Repeating the arguments above for x_1, x_2, y_1, y_2 in place x_0, x_1, y_0, y_1 and so on, we can construct two sequences

$$
\{x_n\}, \qquad x_n \in f(x_{n-1}, y_{n-1})
$$

$$
\{y_n\}, \qquad y_n \in f(y_{n-1}, x_{n-1})
$$

such that

$$
x_{n-1} \le x_n, \qquad \|x_n - x_{n-1}\| \le r \|x_{n-1} - x_{n-2}\| + s \|y_{n-1} - y_{n-2}\|
$$

\n
$$
y_n \le y_{n-1}, \qquad \|y_n - y_{n-1}\| \le r \|y_{n-1} - y_{n-2}\| + s \|x_{n-1} - x_{n-2}\|.
$$
\n
$$
(2.1)
$$

We claim that

$$
||x_{n+1} - x_n|| \le (r+s)^n (||x_1 - x_0|| + ||y_1 - y_0||)
$$

\n
$$
||y_{n+1} - y_n|| \le (r+s)^n (||x_1 - x_0|| + ||y_1 - y_0||)
$$
\n(2.2)

for all $n \geq 1$. In fact, for $n = 1$ it follows from (2.1) that

$$
||x_2 - x_1|| \le r||x_1 - x_0|| + s||y_1 - y_0|| \le (r + s)(||x_1 - x_0|| + ||y_1 - y_0||)
$$

\n
$$
||y_2 - y_1|| \le r||y_1 - y_0|| + s||x_1 - x_0|| \le (r + s)(||x_1 - x_0|| + ||y_1 - y_0||).
$$

Suppose that (2.2) holds for $n = k \geq 1$). For $n = k + 1$ it follows from (2.1) that

$$
||x_{k+2} - x_{k+1}||
$$

\n
$$
\leq r||x_{k+1} - x_k|| + s||y_{k+1} - y_k||
$$

\n
$$
\leq r(r+s)^k (||x_1 - x_0|| + ||y_1 - y_0||) + s(r+s)^k (||x_1 - x_0|| + ||y_1 - y_0||)
$$

\n
$$
= (r+s)^{k+1} (||x_1 - x_0|| + ||y_1 - y_0||)
$$

\n
$$
||y_{k+2} - y_{k+1}||
$$

\n
$$
\leq r||y_{k+1} - y_k|| + s||x_{k+1} - x_k||
$$

$$
\leq r||y_{k+1} - y_k|| + s||x_{k+1} - x_k||
$$

\n
$$
\leq r(r+s)^k (||x_1 - x_0|| + ||y_1 - y_0||) + s(r+s)^k (||x_1 - x_0|| + ||y_1 - y_0||)
$$

\n
$$
= (r+s)^{k+1} (||x_1 - x_0|| + ||y_1 - y_0||).
$$

By induction, we can conclude that (2.2) holds for all $n \geq 1$. Since $0 \leq r + s < 1$, from (2.2) we know that $\{x_n\}, \{y_n\}$ are two Cauchy sequences. Let $x_n \to x^*$ and $y_n \to y^*$. Obviously, $(x^*, y^*) \in M \times M$ since M is closed. Further, $x_n \leq x^*$ and $y^* \leq y_n$ for all *n* since K is closed. Again from condition (iii), we can choose $x_{n+1}^* \in f(x^*, y^*)$ and $y_{n+1}^* \in f(y^*, x^*)$ such that

$$
||x_{n+1}^* - x_{n+1}|| \le r||x_n - x^*|| + s||y_n - y^*||
$$

\n
$$
||y_{n+1}^* - y_{n+1}|| \le r||y_n - y^*|| + s||x_n - x^*||.
$$
\n(2.3)

Since $x_n \to x^*$ and $y_n \to y^*$, it follows from (2.3) that $x_n^* \to x^*$ and $y_n^* \to y^*$. By condition (i), we know that $x^* \in f(x^*, y^*)$ and $y^* \in f(y^*, x^*)$. The proof is complete

Theorem 2.2. Let (X, \leq) be an ordered Banach space induced by a pointed closed convex cone K and M be a non-empty closed subset of X. Suppose that $f: M \times M \rightarrow$ $C(M)$ (the family of all non-empty compact subsets of M) is a multi-valued operator satisfying the following conditions:

- (i) There exist $x_0, y_0 \in M$ such that $\{x_0\} \leq_1 f(x_0, y_0)$ and $f(y_0, x_0) \leq_2 \{y_0\}$.
- (ii) For any $u_1, u_2, v_1, v_2 \in M$, $u_1 \le u_2$ and $v_2 \le v_1$ imply $f(u_1, v_1) \ll f(u_2, v_2)$.
- (iii) For any fixed $u \in M$, $x \leq y$ implies

$$
H(f(x, u), f(y, u)) \le r||x - y||
$$

$$
H(f(u, x), f(u, y)) \le s||x - y||
$$

where r, s are two non-negative constants with $r + s < 1$ and $H(\cdot, \cdot)$ is the Hausdorff metric on $C(M)$.

Then f admits a coupled fixed point $(x^*, y^*) \in M \times M$.

Proof. From condition (i), there exist $x_1 \in f(x_0, y_0)$ and $y_1 \in f(y_0, x_0)$ such that $x_0 \leq x_1$ and $y_1 \leq y_0$. By Nadler [15], we can choose $x'_1 \in f(x_1, y_0)$ and $y'_1 \in f(y_1, x_0)$ such that ¡ ¢

$$
||x_1 - x_1'|| \le H(f(x_0, y_0), f(x_1, y_0))
$$

\n
$$
||y_1 - y_1'|| \le H(f(y_0, x_0), f(y_1, x_0)).
$$
\n(2.4)

Since $x_1' \in f(x_1, y_0)$ and $y_1' \in f(y_1, x_0)$, again from Nadler [15] we can choose $x_2 \in$ $f(x_1, y_1)$ and $y_2 \in f(y_1, x_1)$ such that

$$
||x_2 - x_1'|| \le H(f(x_1, y_1), f(x_1, y_0))
$$

\n
$$
||y_2 - y_1'|| \le H(f(y_1, x_1), f(y_1, x_0)).
$$
\n(2.5)

It follows from (2.4) - (2.5) and condition (iii) that

$$
||x_2 - x_1|| \le ||x_2 - x_1'|| + ||x_1' - x_1||
$$

\n
$$
\le H\big(f(x_1, y_1), f(x_1, y_0)\big) + H\big(f(x_0, y_0), f(x_1, y_0)\big)
$$

\n
$$
\le r||x_1 - x_0|| + s||y_1 - y_0||
$$

\n
$$
||y_2 - y_1|| \le ||y_2 - y_1'|| + ||y_1' - y_1||
$$

\n
$$
\le H\big(f(y_1, x_1), f(y_1, x_0)\big) + H\big(f(y_0, x_0), f(y_1, x_0)\big)
$$

\n
$$
\le s||x_1 - x_0|| + r||y_1 - y_0||.
$$

Furthermore, by condition (ii) we know that $x_1 \leq x_2$ and $y_2 \leq y_1$. Repeating the arguments above for x_1, x_2, y_1, y_2 in place x_0, x_1, y_0, y_1 and so on, we can construct two sequences

$$
\{x_n\}, \quad x_n \in f(x_{n-1}, y_{n-1})
$$

$$
\{y_n\}, \quad y_n \in f(y_{n-1}, x_{n-1})
$$

such that

$$
x_{n-1} \le x_n, \qquad \|x_n - x_{n-1}\| \le r \|x_{n-1} - x_{n-2}\| + s \|y_{n-1} - y_{n-2}\|
$$

\n
$$
y_n \le x_{n-1}, \qquad \|y_n - y_{n-1}\| \le r \|y_{n-1} - y_{n-2}\| + s \|x_{n-1} - x_{n-2}\|.
$$
\n
$$
(2.6)
$$

The rest of proof now follows as in Theorem 2.1 and is therefore omitted \blacksquare

Theorem 2.3. Let (X, \leq) be an ordered Banach space induced by a pointed closed convex normal cone K with normal constant $N > 0$ and M be a non-empty closed subset of X. Suppose that $f: M \times M \to 2^M$ be a multi-valued operator satisfying the following conditions:

- (i) $f(x, y)$ is closed for any $x, y \in M$.
- (ii) There exist $x_0, y_0 \in M$ such that $\{x_0\} \leq_1 f(x_0, y_0)$ and $f(y_0, x_0) \leq_2 \{y_0\}.$

(iii) There exist two positive linear operators $L, S: X \to X$ with $r(S+L) < 1$ such that, for any $u_1, u_2, v_1, v_2 \in M$, $u_1 \le u_2$ and $v_2 \le v_1$ imply:

- (a) for any $x_1 \in f(u_1, v_1)$, there exists $x_2 \in f(u_2, v_2)$ satisfying $0 \le x_2 x_1 \le$ $L(u_2 - u_1) + S(v_1 - v_2)$
- (b) for any $y_1 \in f(v_1, u_1)$, there exists $y_2 \in f(v_2, u_2)$ satisfying $0 \le y_1 y_2 \le$ $L(v_1 - v_2) + S(u_2 - u_1)$

where $r(S+L)$ denotes the spectral radius of $S+L$.

Then f admits a coupled fixed point $(x^*, y^*) \in M \times M$.

Proof. From condition (ii), there exist $x_1 \in f(x_0, y_0)$ and $y_1 \in f(y_0, x_0)$ such that $x_0 \leq x_1$ and $y_1 \leq y_0$. By condition (iii), we can choose $x_2 \in f(x_1, y_1)$ and $y_2 \in f(y_1, x_1)$ such that

$$
0 \le x_2 - x_1 \le L(x_1 - x_0) + S(y_0 - y_1)
$$

$$
0 \le y_1 - y_2 \le L(y_0 - y_1) + S(x_1 - x_0).
$$

Repeating the arguments above for x_1, x_2, y_1, y_2 in place x_0, x_1, y_0, y_1 and so on, we can construct two sequences

$$
\{x_n\}, \quad x_n \in f(x_{n-1}, y_{n-1})
$$

$$
\{y_n\}, \quad y_n \in f(y_{n-1}, x_{n-1})
$$

such that

$$
0 \le x_n - x_{n-1} \le L(x_{n-1} - x_{n-2}) + S(y_{n-2} - y_{n-1})
$$

\n
$$
0 \le y_{n-1} - y_n \le L(y_{n-2} - y_{n-1}) + S(x_{n-1} - x_{n-2}).
$$
\n(2.6)

We claim that

$$
0 \le x_{n+1} - x_n \le (L+S)^n (x_1 - x_0 + y_0 - y_1)
$$

\n
$$
0 \le y_n - y_{n+1} \le (L+S)^n (x_1 - x_0 + y_0 - y_1)
$$
\n(2.7)

for all $n \geq 1$. In fact, for $n = 1$ it follows from (2.6) that

$$
0 \le x_2 - x_1 \le L(x_1 - x_0) + S(y_0 - y_1) \le (L + S)(x_1 - x_0 + y_0 - y_1)
$$

$$
0 \le y_1 - y_2 \le L(y_0 - y_1) + S(x_1 - x_0) \le (L + S)(x_1 - x_0 + y_0 - y_1).
$$

Suppose that (2.7) holds for $n = k$ $(k \ge 1)$. For $n = k + 1$ it follows from (2.6) that

$$
0 \le x_{k+2} - x_{k+1}
$$

\n
$$
\le L(x_{k+1} - x_k) + S(y_k - y_{k+1})
$$

\n
$$
\le L[(L+S)^k(x_1 - x_0 + y_0 - y_1)] + S[(L+S)^k(x_1 - x_0 + y_0 - y_1)]
$$

\n
$$
= (L+S)^{k+1}(x_1 - x_0 + y_0 - y_1).
$$

By induction, we can conclude that (2.7) holds for all $n \geq 1$. Since K is normal, it follows from (2.7) that

$$
||x_{n+1} - x_n|| \le N ||(L + S)^n|| \, ||x_1 - x_0 + y_0 - y_1||
$$

\n
$$
||y_{n+1} - y_n|| \le N ||(L + S)^n|| \, ||x_1 - x_0 + y_0 - y_1||.
$$
\n(2.8)

Since $\lim_{n\to\infty} ||(L+S)^n|| = r(S+L) < 1$, we have

$$
||(L+S)^n|| \le q^n \tag{2.9}
$$

for some $q \in (0,1)$ and n large enough. It follows from (2.8) and (2.9) that

$$
||x_{n+1} - x_n|| \le Nq^n ||x_1 - x_0 + y_0 - y_1||
$$

$$
||y_{n+1} - y_n|| \le Nq^n ||x_1 - x_0 + y_0 - y_1||
$$

which implies that $\{x_n\}$ and $\{y_n\}$ are two Cauchy sequences. Let $x_n \to x^*$ and $y_n \to y^*$. It is easy to see that $x_n \leq x^*$ and $y^* \leq y_n$ for all n since K is closed. Since $x_{n+1} \in$ $f(x_n, y_n)$ and $y_{n+1} \in f(y_n, x_n)$, by condition (iii) we can choose $x_{n+1}^* \in f(x^*, y^*)$ and $y_{n+1}^* \in f(y^*, x^*)$ such that

$$
0 \leq x^* - x_{n+1}^* \leq L(x^* - x_n) + S(y_n - y^*)
$$

$$
0 \leq y_{n+1}^* - y^* \leq L(y_n - y^*) + S(x^* - x_n).
$$

Since K is normal, it follows that

$$
||x_{n+1}^* - x^*|| \le ||L|| \, ||x_n - x^*|| + ||S|| \, ||y_n - y^*||
$$

$$
||y_{n+1}^* - y^*|| \le ||L|| \, ||y_n - y^*|| + ||S|| \, ||x_n - x^*||.
$$

This implies that $x_n^* \to x^*$ and $y_n^* \to y^*$. By condition (i) we know that $x^* \in f(x^*, y^*)$ and $y^* \in f(y^*, x^*)$. The proof is complete

Theorem 2.4. Let (X, \leq) be an ordered Banach space induced by a pointed closed convex normal cone K with normal constant $N > 0$, and let $x_0, y_0 \in X$ with $x_0 \leq y_0$. Denote ª

$$
D = [x_0, y_0] = \{x \in X : x_0 \le x \le y_0\}
$$

and let $f : D \times D \to 2^X$ be a multi-valued mixed increasing operator satisfying the following conditions:

(i) $f(x, y)$ is closed for any $x, y \in M$.

(ii) $\{x_0\} \leq_1 f(x_0, y_0)$ and $f(y_0, x_0) \leq_2 \{y_0\}.$

(iii) There exists a positive linear operator $L : X \to X$ with $r(L) < 1$ such that, for any $x, y \in D$, $x \leq y$ implies $0 \leq v - u \leq L(y - x)$ for any $u \in f(x, y)$ and any $v \in f(y,x)$.

Then there exists $x^* \in D$ such that $\{x^*\} = f(x^*, x^*)$.

Proof. First we show that $f(x, x)$ is single-valued for each $x \in D$. Indeed, since K is normal, it follows from condition (iii) that

$$
||u - v|| \le N||L|| \, ||x - x|| = 0 \qquad (u, v \in f(x, x))
$$

which implies that $f(x, x)$ is single-valued for every $x \in D$. From condition (ii), there exist $x_1 \in f(x_0, y_0)$ and $y_1 \in f(y_0, x_0)$ such that $x_0 \leq x_1$ and $y_1 \leq y_0$. Further, since $x_0 \leq y_0$, it follows from condition (iii) that $x_0 \leq x_1 \leq y_1 \leq y_0$. Since f is mixed increasing, we can choose $x_2 \in f(x_1, y_1)$ and $y_2 \in f(y_1, x_1)$ such that $x_1 \leq x_2$ and $y_2 \leq y_1$. Again from condition (iii), we know that $x_1 \leq x_2 \leq y_2 \leq y_1$. Repeating the arguments above for x_1, x_2, y_1, y_2 in place x_0, x_1, y_0, y_1 and so on, we can construct two sequences

$$
\{x_n\}, \quad x_{n+1} \in f(x_n, y_n),
$$

$$
\{y_n\}, \quad y_{n+1} \in f(y_n, x_n), \quad x_n \le x_{n+1} \le y_{n+1} \le y_n.
$$

From here and condition (iii) we have

$$
0 \le x_{n+1} - x_n \le y_n - x_n \le L(y_{n-1} - x_{n-1}) \le L^n(y_0 - x_0)
$$

$$
0 \le y_n - y_{n+1} \le y_n - x_n \le L(y_{n-1} - x_{n-1}) \le L^n(y_0 - x_0).
$$

Since K is normal, we now have

$$
\|x_{n+1} - x_n\|
$$

$$
\|y_{n+1} - y_n\|
$$

$$
\|x_n - y_n\|\right\} \le N \|L\|^n \|y_0 - x_0\|.
$$

Since $r(L) < 1$, it follows that both $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences with the same limit. Let $\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=x^*$. It is easy to see that $x_n\leq x^*\leq y_n$ for all $n \geq 0$. Since f is mixed increasing, we can choose $x_{n+1}^* \in f(x^*, x^*)$ and $y'_{n+1} \in f(y_n, x_n)$ such that $x_{n+1} \leq x_{n+1}^* \leq y'_{n+1}$, i.e.

$$
0 \le x_{n+1}^* - x_{n+1} \le y_{n+1}' - x_{n+1}.
$$

This and condition (iii) imply

$$
||x_{n+1}^* - x_{n+1}|| \le N||y_{n+1}' - x_{n+1}|| \le N||L|| \, ||y_n - x_n||.
$$

Since $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = x^*$, then $x_n^* \to x^*$. It follows from condition (i) that ${x^*} = f(x^*, x^*)$. The proof is complete

3. Applications

Let (E, \leq) be a real ordered separable Banach space induced by a pointed closed convex normal cone P with normal constant $N > 0$, let $C([0, 1], E) = \{u : [0, 1] \rightarrow$ E| u is continuous} and $P_c = \{u \in C([0,1], E) : u(t) \geq 0 \ (t \in [0,1])\}.$ For each $u \in C([0,1], E)$ we define $||u||_c = \max_{t \in [0,1]} ||u(t)||$. Then $C([0,1], E)$ is a real Banach space with norm $\|\cdot\|_c$ and P_c is a pointed closed convex normal cone with normal constant N. In this section, we also denote by \leq the order induced by P_c .

Let (Ω, Σ) be a measurable space and X be a non-empty subset of E. We will use the notations

$$
P_f(X) = \{ A \subseteq X : A \text{ non-empty, closed} \}
$$

$$
P_{kc}(X) = \{ A \subseteq X : A \text{ non-empty, compact, convex} \}.
$$

A multi-valued mapping $F: \Omega \to P_f(X)$ is said to be measurable if, for every $x \in X$,

$$
\omega \to d(x,F(\omega)) = \inf_{z \in F(\omega)} ||x-z||
$$

is measurable.

In the following, we always suppose that $x \in C([0,1], E)$, $k : [0,1] \times [0,1] \rightarrow$ $(-\infty, +\infty)$ is a non-negative continuous function, and $f : [0,1] \times E \times E \to 2^E$ is a multi-valued operator.

Theorem 3.1. Assume that the following conditions hold:

(C1) $f:[0,1] \times E \times E \rightarrow 2^E$ is a multi-valued operator such that (a) $f(\cdot,\cdot,\cdot)$ has values in $P_{kc}(E)$ (b) for each $u, v \in C(I, E), t \mapsto f(t, u(t), v(t))$ is measurable (c) for each $t \in I$ and $u, v \in C(I, E)$, $\sup_{x \in f(\cdot, u(\cdot), v(\cdot))} ||x|| \in L^1_+$.

(C2) There exist $u_0, v_0 \in C([0,1], E)$ such that

$$
\{u_0(t)\} \leq_1 x(t) + \int_0^t k(t,s)f(s,u_0(s),v_0(s))ds
$$

$$
\{v_0(t)\} \geq_2 x(t) + \int_0^t k(t,s)f(s,v_0(s),u_0(s))ds
$$

(C3) There exist two non-negative constants L', S' such that, for any u_1, u_2, v_1, v_2 $\in C([0, 1], E), u_1 \leq u_2 \text{ and } v_2 \leq v_1 \text{ imply}$ $\frac{r^2}{\rho t}$ $\frac{\nu}{\lambda}$ ¢ \mathbf{r}^t

(a) for any $x_1(t) \in$ $\int_0^t k(t,s)f$ $s, u_1(s), v_1(s)$ ds, there exists $x_2(t) \in$ $\lim_{s \to 0} x_1(t) \in \int_0^t k(t, s) f(s, u_1(s), v_1(s)) ds$, there exists $x_2(t) \in \int_0^t k(t, s)$ $\times f$ ¡ $s, u_2(s), v_2(s)$) ds such that

$$
0 \le x_2(t) - x_1(t)
$$

\n
$$
\le \int_0^t L'k(t,s)(u_2(s) - u_1(s))ds + \int_0^t S'k(t,s)(v_1(s) - v_2(s))ds
$$

(b) for any $y_1(t) \in$ \int_0^t $\int_0^t k(t,s)f$ ¡ $s, v_1(s), u_1(s)$ ¢ ds, there exists $y_2(t) \in$ \int_0^t $\mathbf{f}(x, y_1(t)) \in \int_0^t k(t, s) f(s, v_1(s), u_1(s)) ds$, there exists $y_2(t) \in \int_0^t k(t, s)$ $\times f$ ¡ $s, v_2(s), u_2(s)$) ds such that

$$
0 \le y_1(t) - y_2(t)
$$

\n
$$
\le \int_0^t L'k(t,s)(v_1(s) - v_2(s))ds + \int_0^t S'k(t,s)(u_2(s) - u_1(s))ds.
$$

(C4) There exists a constant $K \geq 0$ such that $K(L'+S') < 1$ and $\int_0^t k(t,s) ds \leq K$. Then there exist $u^*, v^* \in C(I, E)$ such that

$$
u^*(t) \in x(t) + \int_0^t k(t,s)f(s, u^*(s), v^*(s))ds
$$

$$
v^*(t) \in x(t) + \int_0^t k(t,s)f(s, v^*(s), u^*(s))ds.
$$

Proof. Define $F: C([0, 1], E) \times C([0, 1], E) \to 2^{C([0, 1], E)}$ as

$$
F(u, v)(t) = x(t) + \int_0^t k(t, s) f(s, u(s), v(s)) ds \qquad (u, v \in C([0, 1], E). \tag{3.1}
$$

From condition $(C1)$ we know that F has non-empty values. Because of the Rädstrom embedding theorem (see Klein and Thompson [13]), it is easy to see that

$$
\int_0^t k(t,s)f(s,u(s),v(s)) ds \in P_{kc}(E) \qquad (t \in [0,1]).
$$

So a straightforward application of the Arzela and Ascoli theorem tells us that F has values in $P_{kc}(C[[0,1], E])$. It follows from condition (C2) and (3.1) that $\{u_0\} \leq_1 F(u_0, v_0)$ and $F(v_0, u_0) \leq_2 \{v_0\}$. We now define $L, S: C([0, 1], E) \to C([0, 1], E)$ by

$$
Lu(t) = \int_0^t L'k(t, s)u(s) ds
$$

$$
Su(t) = \int_0^t S'k(t, s)u(s) ds.
$$

From here and conditions $(C3)$ - $(C4)$, it is easy to see that condition (iii) of Theorem 2.3 holds for F. Thus, by Theorem 2.3, there exist $u^*, v^* \in C([0,1], E)$ such that

$$
u^*(t) \in x(t) + \int_0^t k(t,s)f(s, u^*(s), v^*(s)) ds
$$

$$
v^*(t) \in x(t) + \int_0^t k(t,s)f(s, v^*(s), u^*(s)) ds.
$$

The proof is complete \blacksquare

Remark 3.1. If dim $E < \infty$, then condition (C4) of Theorem 3.1 can be relaxed by requiring only $KS' < 1$. In fact, L in the proof of Theorem 3.1 is a compact Volterra operator, and so the operator $S + T$ has the same spectrum as S by [2: Theorem 2.3]; in particular, $r(S+T) = r(S)$. Using this fact and $KS' < 1$, we know that $r(S+T) < 1$.

Remark 3.2. If $f : [0,1] \times E \times E \rightarrow P_{kc}(E)$ is a multi-valued operator such that, for all $u, v \in C([0, 1], E), t \mapsto f(t, u(t), v(t))$ is integrably bounded (see, for example, [12] or [19]), then condition (C1) of Theorem 3.1 holds. If $f : [0,1] \times E \times E \rightarrow E$ is a single-valued operator satisfying the Carathéodory condition, then condition $(C1)$ of Theorem 3.1 can be satisfied.

Theorem 3.2. Let $u_0, v_0 \in C([0,1], E)$ with $u_0 \le v_0$, let $D = [u_0, v_0] = \{u \in$ $C([0.1], E) : u_0 \le u \le v_0$ and let $f : [0,1] \times E \times E \rightarrow 2^E$ be a mixed increasing operator satisfying the following conditions:

- (C1) (a) $f(\cdot,\cdot,\cdot)$ has values in $P_{kc}(E)$
	- (b) for each $u, v \in D$, $t \mapsto f(t, u(t), v(t))$ is measurable
	- (c) for each $t \in [0,1]$ and $u, v \in D$, $\sup_{x \in f(\cdot, u(\cdot), v(\cdot))} ||x|| \in L^1_+$.

 $(C2)$ u₀ and v_0 are such that

$$
\{u_0(t)\} \leq_1 x(t) + \int_0^t k(t,s)f(s,u_0(s),v_0(s)) ds
$$

$$
\{v_0(t)\} \geq_2 x(t) + \int_0^t k(t,s)f(s,v_0(s),u_0(s)) ds.
$$

(C3) There exists a non-negative constant L' such that for any $\mu, \nu \in D$, $\mu \leq \nu$ implies rt

$$
0 \le v(t) - u(t) \le \int_0^t L'k(t,s)(\nu(s) - \mu(s)) ds
$$

for any $v(t) \in \int_0^t$ $\int_0^t k(t,s) f(s, \nu(s), \mu(s)) ds$ and $u(t) \in \int_0^t$ $\int_0^{\infty} f(s,\mu(s),\nu(s))\,ds.$

(C4) There exists a constant $K \geq 0$ such that $KL' < 1$ and $\int_0^t k(t, s) ds \leq K$.

Then there exists $u^* \in D$ such that

$$
\{u^*(t)\} = x(t) + \int_0^t k(t,s)f(s,u^*(s),u^*(s)) ds.
$$

Proof. By using Theorem 2.4 and the similar arguments in Theorem 3.1, the conclusion can be proved but we omit the details

Example 3.1. Let $u_0, v_0 \in C([0, 1], E)$ with $u_0 \le v_0$. Let

$$
D = [u_0, v_0] = \{ u \in C([0, 1], E) : u_0 \le u \le v_0 \}
$$

and let $f : [0,1] \times E \times E \rightarrow E$ be a single-valued mixed increasing operator satisfying the following conditions:

(C1) For each $u, v \in D$, $t \mapsto f(t, u(t), v(t))$ is measurable.

(C2) u_0 and v_0 are such that

$$
u_0(t) \le x(t) + \int_0^t k(t,s)f(s, u_0(s), v_0(s)) ds
$$

$$
v_0(t) \ge x(t) + \int_0^t k(t,s)f(s, v_0(s), u_0(s)) ds.
$$

(C3) There exists a non-negative constant L' such that, for any $\mu, \nu \in D, \mu \leq \nu$ implies

$$
0 \le f(t, \nu(t), \mu(t)) - f(t, \mu(t), \nu(t)) \le L'(\nu(t) - \mu(t)).
$$

(C4) There exists a constant $K \geq 0$ such that $KL' < 1$ and $\int_0^t k(t, s) ds \leq K$. Then by using Theorem 3.2, there exists $u^* \in D$ such that

$$
u^*(t) = x(t) + \int_0^t k(t,s)f(s, u^*(s), u^*(s)) ds.
$$

However, the standard technique used in $[18]$ is invalid since f is not continuous.

Acknowledgment. The authors would like to express their deep gratitude to the referees for their helpful comments and suggestions.

References

- [1] Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18 (1976), 620 – 709.
- [2] Biberdorf, E. A. and M. Väth: On the spectrum of orthomorphisms and Barbashin oper*ators.* Z. Anal. Anw. 18 (1999), $859 - 873$.
- [3] Chang, S. S., Cho, Y. J. and N. J. Huang: Coupled fixed point theorems with applications. J. Korean Math. Soc. 33 (1996), 575 – 585.
- [4] Du, Y. H.: Fixed points of increasing operators in ordered Banach spaces with applications. Appl. Anal. 38 (1990), 1 – 20.
- [5] Guo, D. J.: Fixed points of mixed monotone operators with applications. Appl. Anal. 31 $(1988), 215 - 224.$
- [6] Guo, D. J.: Existence and uniqueness of positive fixed point of mixed monotone operators with applications. Appl. Anal. 46 (1992), $91 - 100$.
- [7] Guo, D. J.: Existence and uniqueness of positive fixed points for noncompact decreasing *operators.* Indian J. Pure Appl. Math. 31 (2000) , $551 - 562$.
- [8] Guo, D. J. and V. Lakshmikantham: Coupled fixed points of nonlinear operators with *applications.* Nonlin. Anal. – TMA 11 (1987), $623 - 632$.
- [9] Heikkilä, S. and V. Lakshmikantham: Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations. New York: Dekker 1994.
- [10] Huang, N. J., Tang, Y. Y. and Y. P. Liu: Some new existence theorems for nonlinear inclusion with an application. Nonlin. Funct. Anal. Appl. 6 (2001) , 341 – 350.
- [11] Huy, N. B. and N. H. Khanh: Fixed point for multivalued increasing operators. J. Math. Anal. Appl. 250 (2000), 368 – 371.
- [12] Kandilakis, D. A. and N. S. Papageorgiou: On the properties of the Aumann integral with applications to differential inclusions and control systems. Czech. Math. J. 39 (1989), 1 – 15.
- [13] Klein, E. and A. Thompson: Theory of Correspondences. New York: Wiley 1984.
- [14] Krasnoselskii, M. A. and P. P. Zabriko: Geometrical Methods of Nonlinear Analysis. Berlin: Springer-Verlag 1984.
- [15] Nadler, S. B.: Multivalued contraction mappings. Pacific J. Math. 30 (1969), 475 488.
- [16] Nishnianidze, Z. G.: Fixed points of monotone multivalued operators. Soobshch. Akad. Nauk Gruzin. SSR 114 (1984), 489 – 491.
- [17] Sun, J. X. and Z. Q. Zhao: Fixed point theorems of increasing operators and applications to nonlinear integro-differential equations with discontinuous terms. J. Math. Anal. Appl. 175 (1993), 33 – 45.
- [18] Sun, J. X.: The solutions of ordinary differential equations in Banach spaces. Acta Math. Sinica 33 (1990), 374 – 380.
- [19] Tolstonogov, A.: Differential Inclusions in a Banach Space. Dordrecht: Kluwer Acad. Publ. 2000.
- [20] Zhang, Z. T.: New fixed point theorems of mixed monotone operators and applications. J. Math. Anal. Appl. 204 (1996), 307 – 319.

Received 27.06.2002; in revised form 10.12.2002