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Fixed Points
for Multi-Valued Mixed Increasing Operators
in Ordered Banach Spaces
with Applications to Integral Inclusions

Nan-jing Huang and Ya-ping Fang

Abstract. Some new fixed point and coupled fixed point theorems for multi-valued mixed
increasing operators in ordered Banach spaces are presented in this paper. As applications, we
prove the existences of solutions for a class of integral inclusions.
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1. Introduction and Preliminaries

Fixed point theorems for single-valued increasing operators and coupled fixed point the-
orems for single-valued mixed increasing operators in ordered Banach spaces are widely
investigated and have found various applications to nonlinear integral equations and
differential equations. For details, we can refer to [1, 3 - 12, 14, 16, 17, 20] and the
references therein. However, only few results on fixed points of multi-valued increasing
operators in ordered Banach spaces are obtained. In 1984, Nishnianidze [16] introduced
monotone multi-valued operators and proved some fixed point theorems for such opera-
tors. Recently, Huy and Khash [11] gave some new fixed point theorems for multi-valued
increasing operators in ordered Banach spaces by means of the concept of Nishnianidze

16].

Motivated and inspired by [11], in this paper, we introduce a class of multi-valued
mixed increasing operators in Banach spaces and prove some new fixed point and cou-
pled fixed point theorems. As applications, we discuss the existences of solutions for a
class of integral inclusions.
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Let X be a real Banach space and K be a non-empty pointed closed convex cone
in X. Recall that K C X is called a pointed closed convex cone if K is closed and the
following conditions hold:

i) K+ KCK
(ii) tK C K for all t > 0
(iii) K N (—=K) = {0}.

A partial ordering < can be induced by K by
x<y ifandonlyif y—=x € K.

We always say that (X, <) is an ordered Banach space induced by K. A pointed convex
cone K is said to be normal if there exists some constant N > 0 such that 0 < x <y
implies ||z < Nyl

Definition 1.1. Let (X, <) be an ordered Banach space induced by K and let A, B
be two non-empty subsets of X. Then we denote
(i) A <y Bif for each a € A there exists b € B such that a <b
(i) A <, B if for each b € B there exists a € A such that a <b
(iii) AXBif A<; Band A<, B
(iv) A< Bifa<bforany a € Aand b€ B.

Definition 1.2. Let (X, <) be an ordered Banach space induced by K and let
L: X — X be a mapping. We say that L is positive if Lx € K whenever z € K.

Definition 1.3. Let M be a non-empty subset of an ordered Banach space (X, <)
and let f : M x M — 2% be a multi-valued operator. We say that f is mized increasing

if, for any x1,z2,y1,¥2 € M, x1 < w3 and yo <y imply f(z1,y1) =X f(22,y2).

Definition 1.4. Let M be a non-empty subset of an ordered Banach space (X, <)
and let f : M x M — 2% be a multi-valued operator. We say that (z*,y*) € M x M
is a coupled fized point of f if z* € f(x*,y*) and y* € f(y*,x*). We say that 2* € M
is a fized point of f if x* € f(x*,z*).

2. Main Results

In this section, we prove some new fixed point and coupled fixed point theorems for
multi-valued mixed increasing operators in ordered Banach spaces.

Theorem 2.1. Let (X, <) be an ordered Banach space induced by a pointed closed
convex cone K and M be a non-empty closed subset of X. Suppose that f : M xM — 2M
18 a multi-valued operator satisfying the following conditions:

(1) f(z,y) is closed for any x,y € M.
(ii) There exist xo,y0 € M such that {xo} <1 f(z0,y0) and f(yo,x0) <2 {yo}.
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(iii) For any uy,us,v1,v2 € M, uy < ug and vy < vy imply

flur,v1) C fluz,v2) — KN B(r|lur —uzll + sllvr —va)
flui,ur) C f(va,u) + K N B(rlor — 2l + slur — us|)

where r,s are two non-negative constants with r +s < 1 and B(l) denotes the closed
ball with radius | and center at origin.

Then f admits a coupled fized point (z*,y*) € M x M.
Proof. From condition (ii), there exist z1 € f(z0,yo) and y1 € f(yo, o) such that

xo < x7 and y; < yp. By condition (iii), we can choose x5 € f(z1,y1) and y2 € f(y1,21)

such that
r1 < @, |22 — 21| < rllz1 — 20| + sllyr — ol

Y2 < Y1, ly2 — 1l < rllyr — yol| + sljz1 — o]

Repeating the arguments above for x1, x2, Y1, y2 in place xg, x1, Yo, y1 and so on, we can
construct two sequences

{wn}7 Ty € f(wn—layn—l)
{yn}7 Yn € f(yn—bxn—l)
such that
Tp_1 < Tn, lzn — Zn_1]| < rllTn—1 — Tn—2| + $llUn—1 — Yn—2|| 2.1)
Yn S Yn—1, ||yn - yn—l” S THyn—l - yn—2|| + SHxn—l - xn—ZH- ‘
We claim that
[2n g1 — zall < (r+5)" (l21 — 2ol + llys — woll) (2.2)

lym+1 =yl < (v + 5)" (l21 = 20ll + lly2 = woll)

for all n > 1. In fact, for n = 1 it follows from (2.1) that

|z2 — z1]] < 7l — 2ol + sllyr — ol < (r + 5)(lz1 — @oll + ly1 — woll)
ly2 — y1ll < rllyr — ol + sl — oll < (r + s)([|lx1 — ol + [ly1 — vol|)-

Suppose that (2.2) holds for n =k (> 1). For n = k + 1 it follows from (2.1) that

[@k+2 — Tpa]]
< rllzker — zll + sllyer1 — il
<r(r+ )" (llze — zoll + lyr — woll) + s(r + )" (le1 — zoll + [ly2 — vol)
= (r+ )" (lz1 — ol + llyr — woll)

|Yk+2 — Yrrrll
< r|yks1 — Ykl + sllzrpr — 2|
<r(r+ )" (llze — zoll + lyr — woll) + s(r + 5)* (w1 — zoll + [ly2 — woll)
= (r+ )" (21 — oll + llyr — woll)-
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By induction, we can conclude that (2.2) holds for all n > 1. Since 0 < r + s < 1, from
(2.2) we know that {x,},{y,} are two Cauchy sequences. Let x,, — z* and y,, — y*.
Obviously, (z*,y*) € M x M since M is closed. Further, z, < z* and y* < y, for all
n since K is closed. Again from condition (iii), we can choose z},, € f(z*,y*) and

Y1 € f(y*,2*) such that

k1 — g1l < vllzn — 2| + sllyn — v
* * " (2.3)
”ynJrl - yn—|—1|| < THyn -y || + SHxn - X ||

Since z, — x* and y, — y*, it follows from (2.3) that =} — z* and y; — y*. By
condition (i), we know that z* € f(x*,y*) and y* € f(y*,2*). The proof is complete i

Theorem 2.2. Let (X, <) be an ordered Banach space induced by a pointed closed
convex cone K and M be a non-empty closed subset of X. Suppose that f . M x M —
C(M) (the family of all non-empty compact subsets of M) is a multi-valued operator
satisfying the following conditions:

(1) There exist xo,yo € M such that {zo} <1 f(xo,y0) and f(yo,z0) <2 {yo}-
(ii) For any uy,u2,v1,v2 € M, up < ug and vo < vy imply f(ui,v1) < f(uz,v2).
(iii) For any firzed w € M, x <y implies

H(f<$7u)7 f(yau)) < 7’”1‘ - y”
H(f(u,x), f(u,y)) < SH.CE - y”

where r,s are two non-negative constants with r + s < 1 and H(-,-) is the Hausdorff
metric on C(M).

Then f admits a coupled fized point (z*,y*) € M x M.

Proof. From condition (i), there exist x; € f(xo,y0) and y1 € f(yo, o) such that

xo < x1 and y1 < yo. By Nadler [15], we can choose x| € f(z1,y0) and y; € f(y1,x0)
such that /

Hxl - I‘1H < H(f(x()ay())a f(xlay()))

lyr — will < H(f(yo, x0), f(y1,20))-

Since x} € f(x1,y0) and y; € f(y1,20), again from Nadler [15] we can choose z3 €
f(z1,y1) and yo € f(y1,21) such that

|22 — 90/1” < H(f(xlayl)a f(xlay()))
ly2 = will < H(f (1, 21), f (y1, 20)).
It follows from (2.4) - (2.5) and condition (iii) that

(2.4)

(2.5)

lz2 — 21| < [Joe — 23| + |27 — 2]
< H(f(xlay1)7f($17y0)) + H(f(iﬂo,yo), f(ajlayO))
< vl — 2ol + sllyr — woll

ly2 — w1l < lly2 — w1l + llyy — vl
< H(f(yl,wl),f(yl,xo)) + H(f(!/o@o); f(yl,iUo))
< sllxr — @ol| + 7lly1 — vol|-



Fixed Points 403

Furthermore, by condition (ii) we know that z; < z and y2 < y;. Repeating the
arguments above for x1,x2, Y1, y2 in place xg, x1, Yo, y1 and so on, we can construct two
sequences
{l‘n}, Ty € f(mn—lyyn—1>
{yn}7 Yn € f(yn—lvxn—l)
such that
Tn—1 S T, ||xn - xn—l” S T||xn—1 - xn—2|| + SHyTL—l - yn—2||

(2.6)
Un < -1,  |Yn — Yn—1ll < 7|yn-1 — yn—2|| + s||Tn—1 — zp—2||.

The rest of proof now follows as in Theorem 2.1 and is therefore omitted W

Theorem 2.3. Let (X, <) be an ordered Banach space induced by a pointed closed
convex normal cone K with normal constant N > 0 and M be a non-empty closed subset
of X. Suppose that f : M x M — 2M be a multi-valued operator satisfying the following
conditions:

(1) f(z,y) is closed for any x,y € M.
(ii) There exist xo,yo € M such that {xo} <1 f(x0,y0) and f(yo,x0) <2 {yo}.

(iii) There exist two positive linear operators L, S : X — X with r(S+ L) < 1 such
that, for any uy,us,v1,v2 € M, uy < us and ve < vy imply:

(a) for any x1 € f(uy,v1), there exists xo € f(ug,ve) satisfying 0 < zo — 1 <

L<UQ — ul) -+ S(’Ul — 1)2)
(b) for any y1 € f(v1,u1), there exists yo € f(va,usz) satisfying 0 < y; — yo
L(Ul - Ug) + S(Ug - ul)
where r(S + L) denotes the spectral radius of S + L.
Then f admits a coupled fized point (z*,y*) € M x M.

A

Proof. From condition (ii), there exist z1 € f(zo,yo) and y1 € f(yo0, o) such that
xo < z1 and y; < yo. By condition (iii), we can choose x5 € f(z1,y1) and y2 € f(y1,21)
such that

0<zy—x1 <L(xy —x0)+ S(yo —y1)
0 <y —y2 < L(yo — y1) + S(z1 — z0).

Repeating the arguments above for x1, x2, y1,y2 in place xg, x1, Yo, y1 and so on, we can
construct two sequences

{J?n}, Ty € f(xn—lyyn—l)
{yn}a Yn € f(yn—lvxn—l)

such that
0 S LTn — Tp—1 S L(xn—l - xn—Z) + S(yn—Q - yn—l) (2 6)
0 S Yn—1 — Yn S L(yn—Q - yn—l) + S(xn—l - zn—2)- ‘
We claim that
0<zpt1—2n < (L+9)"(x1 — 20+ Y0 — Y1) @7

0<¥Yn—Ynt1 < (L+9)"(x1 — 20+ Y0 — 1)
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for all n > 1. In fact, for n =1 it follows from (2.6) that

0<zy—x1 <L(xi —20)+ S(yo —y1) < (L+S8) (@1 — 0+ yo— v1)
0<wy1 —y2 < L(yo—y1) + S(x1 —x0) < (L+95)(x1 — 20+ Yo — Y1)

Suppose that (2.7) holds for n = k (k > 1). For n = k + 1 it follows from (2.6) that

0< Tk4+2 — Tk+1
< L(@gt1 — zk) + S(Yk — Yr+1)
< L[(L+ 8)*(x1 —mo+yo —y1)] +S[(L+9)* (21 — 20 + yo — 11)]
= (L+ 8z, — x4+ 30— 11).

By induction, we can conclude that (2.7) holds for all n > 1. Since K is normal, it
follows from (2.7) that

|Znt1 — znll < N(L+ )" |21 — 20 + yo — y1

. (2.8)
[Yynt1 = ynll < NII(L+5)"[[lz1 = z0 + yo — v -
Since limy,, 0 || (L + S)™|| = (S + L) < 1, we have
1L+ 5)"] < ¢" (2.9)

for some ¢ € (0,1) and n large enough. It follows from (2.8) and (2.9) that

|Tnt1 — xnl| < Nq"||z1 — 20 + yo — y1 ||
|Yn+1 — ynll < Nq"||x1 — z0 + yo — y1|

which implies that {x, } and {y, } are two Cauchy sequences. Let x,, — z* and y,, — y*.
It is easy to see that x,, < z* and y* < y, for all n since K is closed. Since x,41 €
f(@n,yn) and ypi1 € f(yn,Tn), by condition (iii) we can choose z,,; € f(z*,y*) and
Y1 € f(y*,x*) such that

0<a” =iy < L —an) + S(yn —y7)
0<ypi1—¥ < L(yn —y") + 5" — zn).

Since K is normal, it follows that

71 = @[ < WEHen =27 + 15[ lyn — "
1yra1 =y I < LIy — v + IS 20 — 7.

This implies that x — z* and y* — y*. By condition (i) we know that x* € f(z*,y*)
and y* € f(y*,z*). The proof is complete i
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Theorem 2.4. Let (X, <) be an ordered Banach space induced by a pointed closed
convex normal cone K with normal constant N > 0, and let xg,yo € X with xq < yo.
Denote

D = [zo,y0] = {z € X : o <z <o}

and let f : D x D — 2% be a multi-valued mized increasing operator satisfying the
following conditions:

(1) f(x,y) is closed for any xz,y € M.

(i) {zo} <1 f(o0.y0) and f(yo, o) <2 {yo}-

(iii) There exists a positive linear operator L : X — X with (L) < 1 such that,
for any x,y € D, x < y implies 0 < v —u < L(y — x) for any u € f(x,y) and any
v e f(y,x).

Then there exists * € D such that {z*} = f(z*, z*).

Proof. First we show that f(x,z) is single-valued for each x € D. Indeed, since K
is normal, it follows from condition (iii) that

lu— vl < N[IL|[lz =z =0 (u,v € f(z,z))

which implies that f(x,z) is single-valued for every x € D. From condition (ii), there
exist 1 € f(zo,y0) and y1 € f(yo,xo) such that o < x; and y; < yg. Further, since
xo < Yo, it follows from condition (iii) that xg < 21 < y; < yo. Since f is mixed
increasing, we can choose zo € f(z1,y1) and yo € f(y1,21) such that ;1 < x5 and
y2 < y1. Again from condition (iii), we know that x; < 29 < yy < y;. Repeating the
arguments above for x1, zs2,y1,y2 in place xg, x1, Yo, y1 and so on, we can construct two
sequences
{I'n}, Tn+1 € f(xna yn)a

{Ynts  Ynt1 € f(yn,zn),
From here and condition (iii) we have

Tn S Tn+1 S Yn+1 S Yn-

0 S Tn4+1 — Tn S Yn — Tn g L(yn—l - xn—l) g Ln(y() - .%’0)
0<Yn—Ynt1 <Yn — T < L(Yn—1 — Tn—1) < L" (Y0 — T0).

Since K is normal, we now have

||$n+1 _mnH
[Yn+1 = ynll ¢ < NIL|I" lyo — zol|-
|Zn — yull

Since (L) < 1, it follows that both {x,} and {y,} are Cauchy sequences with the same
limit. Let lim, . z, = lim, . ¥y, = x*. It is easy to see that z,, < z* <y, for all
n > 0. Since f is mixed increasing, we can choose z}, . € f(z*,2*) and y;, .1 € f(Yn,xn)
such that z, 41 <), 1 <y, 4, ie.
0< 1‘;+1 — Tpt1 < y;1+1 - Tn+1-

This and condition (iii) imply

51— 21| < Nl = Znsa | < NIE] g — 2l
Since lim,, o0 T, = limy, 00 Y, = =¥, then 7 — x*. It follows from condition (i) that
{z*} = f(x*,z*). The proof is complete i
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3. Applications

Let (E, <) be a real ordered separable Banach space induced by a pointed closed
convex normal cone P with normal constant N > 0, let C([0,1], E) = {u : [0,1] —
E| uis continuous} and P. = {u € C([0,1],F) : u(t) > 0 (¢t € [0,1])}. For each
u € C([0,1], E) we define [Jul|. = max,c[o,1] |u(t)||. Then C([0,1], E) is a real Banach
space with norm || - || and P, is a pointed closed convex normal cone with normal
constant N. In this section, we also denote by < the order induced by P..

Let (€2,X) be a measurable space and X be a non-empty subset of E. We will use
the notations
Pr(X) = {A C X : A non-empty, closed}
Pi.(X) = {A C X : A non-empty, compact, convex}.

A multi-valued mapping F': Q — Py(X) is said to be measurable if, for every z € X,

w—d(z,F(w)) = inf |z —
is measurable.

In the following, we always suppose that x € C([0,1],F), k : [0,1] x [0,1] —
(—00,+00) is a non-negative continuous function, and f : [0,1] x E x E — 2F is a
multi-valued operator.

Theorem 3.1. Assume that the following conditions hold:

(C1) f:[0,1] x E x E — 2% is a multi-valued operator such that
(a) f(+,+,+) has values in Py.(F)
(b) for each u,v € C(I,E), t — f(t,u(t),v(t)) is measurable
(c) for each t € I and u,v € C(I, E), SUP,c p(. u(y () 12l € L}

(C2) There exist ug, vy € C([0,1], E) such that

(uo(t)} <4 x(t)—f—/o k(t, 5)f (5, w0(s), vo(s))ds
{vo(t)} >2 z(t) —|—/0 k(t,s)f(s,v0(s),uo(s))ds

(C3) There exist two non-negative constants L', S" such that, for any uy,us,vi, vy
e C([0,1], E), uy <ug and vy < vy imply
(a) for any x1(t) € fg k(t,s)f (s, u1(s),vi(s))ds, there emists z2(t) € fot k(t,s)
x f(s,u2(s),v2(s))ds such that
0 < zo(t) — x1(t)

< /0 L'k(t, s) (usz(s) — ui(s))ds +/0 S'k(t, s)(vi(s) — va(s))ds



Fixed Points 407

(b) for any y1(t) € fg k(t,s)f(s,v1(s),u1(s))ds, there exists ya(t) € fot k(t, s)
X f(s,v2(s), us(s))ds such that

0 <wyi(t) — ya(t)

< /0 L'k(t, ) (vi(s) — va(s))ds —|—/ S'k(t, s) (ua(s) — ui(s))ds.

0

(C4) There exists a constant K > 0 such that K(L'+5") <1 and fg k(t,s)ds < K.
Then there exist u*,v* € C(I, E) such that

u*(t) € x(t) +/O k(t,s)f(s,u*(s),v"(s))ds

v*(t) € x(t) +/0 k(t,s)f(s,v"(s),u"(s))ds.

Proof. Define F : C([0,1], E) x C([0,1], E) — 2C(011L.E) a5
F(u,v)(t) = z(t) +/O k(t,s)f(s,u(s),v(s))ds (u,v € C([0,1], E). (3.1)

From condition (C1) we know that F' has non-empty values. Because of the Rédstrom
embedding theorem (see Klein and Thompson [13]), it is easy to see that

/0 k(t, ) f(s,u(s), v(s)) ds € Peo(E) (£ € [0,1]).

So a straightforward application of the Arzela and Ascoli theorem tells us that F" has val-
ues in P.(C[[0, 1], E]). It follows from condition (C2) and (3.1) that {ug} <; F(ug,vo)
and F(vg,ug) <2 {vo}. We now define L, S : C([0,1], E) — C([0,1], E) by

Lu(t):/o L'k(t, s)u(s)ds

Su(t) = /0 S'k(t, s)u(s) ds.

From here and conditions (C3) - (C4), it is easy to see that condition (iii) of Theorem
2.3 holds for F'. Thus, by Theorem 2.3, there exist u*,v* € C([0, 1], E') such that

u*(t) € x(t) +/0 k(t,s)f(s,u”(s),v"(s))ds
v (t) € x(t) + /o k(t,s)f(s,v™(s),u"(s))ds.

The proof is complete B
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Remark 3.1. If dimFE < oo, then condition (C4) of Theorem 3.1 can be relaxed
by requiring only K'S” < 1. In fact, L in the proof of Theorem 3.1 is a compact Volterra
operator, and so the operator S+ T has the same spectrum as S by [2: Theorem 2.3]; in
particular, r(S +7T') = r(5). Using this fact and KS’ < 1, we know that (S +7T) < 1.

Remark 3.2. If f: [0,1] X E x E — Py.(F) is a multi-valued operator such that,
for all u,v € C([0,1], E), t — f(t,u(t),v(t)) is integrably bounded (see, for example,
[12] or [19]), then condition (C1) of Theorem 3.1 holds. If f: [0,1] x E X E — E'is
a single-valued operator satisfying the Carathéodory condition, then condition (C1) of
Theorem 3.1 can be satisfied.

Theorem 3.2. Let ug,vg € C([0,1], E) with ug < v, let D = [ug,vo] = {u €
C([0.1,E) : ug < u < vo} and let f : [0,1] x E x E — 2F be a mized increasing
operator satisfying the following conditions:

(C1) (a) f(-,+,) has values in Py.(FE)

(b) for each u,v € D, t — f(t,u(t),v(t)) is measurable

(c) for each t € [0,1] and u,v € D, SUP,e (. w0y 2l € LL
(C2) ug and vg are such that

(w000} < 2(0) + [ 0,515 6 uals) w05 s
{MMEw®+IMwﬁ@M$m®M&
| l(.cs) There exists a non-negative constant L' such that for any u,v € D, u < v
implics
0 0f0) ~ ) < [ KK 006) — p(s) s
for amy v(t) € [ (t, ) (5,v(), () ds and u(t) € [ £(s, u(s), ws)) d.

(C4) There exists a constant K > 0 such that KL' <1 and fot k(t,s)ds < K.
Then there exists u* € D such that

&Nm=mwfémwvam@m%»m

Proof. By using Theorem 2.4 and the similar arguments in Theorem 3.1, the con-
clusion can be proved but we omit the details il

Example 3.1. Let ug,vo € C(]0,1], E) with ug < vg. Let
D = [ug,vo] = {u e C([0,1],E) : up <u < v}

and let f: [0,1] x £ x E — E be a single-valued mixed increasing operator satisfying
the following conditions:

(C1) For each u,v € D, t — f(t,u(t),v(t)) is measurable.
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(C2) up and vy are such that
uo(t) < x(t) +/0 k(t,s)f(s,uo(s),vo(s))ds

vo(t) > x(t) —|—/0 k(t,s)f(s,vo(s),uo(s))ds.

(C3) There exists a non-negative constant L’ such that, for any p,v € D, u < v
implies
0 < f(t,v(t), u(t) — f(t, pu(t), v(t)) < L'(v(t) — u(t)).
(C4) There exists a constant K > 0 such that KL’ < 1 and fot k(t,s)ds < K.
Then by using Theorem 3.2, there exists u* € D such that

u*(t)::z:(t)+/0 k(t, ) f(s, u (s), u" (5)) ds.

However, the standard technique used in [18] is invalid since f is not continuous.
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