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A Note on µ-Stable Surfaces
with Prescribed Constant Mean Curvature

S. Fröhlich

Abstract. Using a generalized stability condition we give an upper bound of the principle
curvatures of certain constant mean curvature surfaces. This implies a theorem of Bernstein
type.
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1. Introduction

Let B = {(u, v) ∈ R2 : u2 + v2 < 1} denote the open unit disc, B ⊂ R2 its topological
closure. We consider immersions X ∈ C3+α(B,R3) ∩ C0(B,R3) (0 < α < 1) of
prescribed constant mean curvature H(X) ≡ h0 ∈ [0, +∞). Introducing conformal
parameters (u, v) ∈ B, such an immersion satisfies the nonlinear system

4X(u, v) = 2h0(Xu ∧Xv)

|Xu|2 = W = |Xv|2
Xu ·Xt

v = 0 in B





.

Here W = |Xu ∧ Xv| > 0 denotes the surface element with the usual cross product ∧
between two vectors in R3. Finally, by

N(u, v) =
Xu(u, v) ∧Xv(u, v)
|Xu(u, v) ∧Xv(u, v)|

we denote the spherical mapping of the surface X = X(u, v).

Definition 1.1. The immersion X ∈ C3+α(B,R3) ∩ C0(B,R3) (0 < α < 1) of
constant mean curvature h0 ∈ [0, +∞) is of class Cµ(B,R3) if the following conditions
are satisfied:

(i) X satisfies the above nonlinear system.
(ii) X has finite Dirichlet integral

∫∫
B
|∇X(u, v)|2dudv < +∞.
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(iii) X is µ-stable with a real number µ > 0, namely
∫∫

B

|∇ϕ(u, v)|2dudv ≥ µ

∫∫

B

(2h2
0 −K)Wϕ(u, v)2dudv

for all test functions ϕ ∈ C∞0 (B,R), where K = K(u, v) is the Gaussian curvature of
the immersion X = X(u, v).

We are dealing with immersions X ∈ Cµ(B,R3) (µ > 0). In Section 2 we control
the modulus of projection of such an immersion. In Section 3 we show how to realize
µ-stability if ∫∫

B

(2h2
0 −K)W dudv < ω0

is satisfied with a real constant ω0 ∈ (0, 4π). Finally, we derive an upper bound for the
principle curvatures of the immersions applying [11: heorem 1], and we get a result of
Bernstein type.

2. Projectivity

We prove the following

Lemma 2.1. Let X ∈ Cµ(B,R3) with µ ∈ (1, 2). For w0 ∈ B and real ν ∈
(0, 1− |w0|) we assume

ψ∗(u, v) := N(u, v) · (0, 0, 1)t >
2
µ
− 1 for all (u, v) ∈ ∂Bν(w0)

where ∂Bν(w0) is the boundary of Bν(w0) = {w ∈ R2 : |w − w0| < ν}. Then the
inequality

N(u, v) · (0, 0, 1)t ≥ 2
µ
− 1 for all (u, v) ∈ Bν(w0)

holds true. In particular, X|Bν(w0)
can be represented as a graph.

Proof. In addition to ψ∗ = ψ∗(u, v) we define

ψ(u, v) = ψ∗(u, v)− ω
(
(u, v) ∈ Bν(w0), ω = 2

µ − 1
)
.

Because 4N + 2qN = 0 with q = (2h2
0 −K)W > 0, we obtain

4ψ∗ = −2qψ∗ = −2qψ − 2qω = 4ψ in Bν(w0).

Set
ψ−(u, v) = min(ψ(u, v), 0).

It remains to prove ψ− ≡ 0. Since ψ|∂B > 0, there exists a % ∈ (0, ν) with supp ψ− ⊂
B%(w0). That means ψ− ∈ H1,2(B%(w0),R) ∩ C0

0 (B%(w0),R), where

∇ψ− =
{

0 if ψ ≥ 0
∇ψ if ψ < 0.
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Partial integration yields (we set B∗ = B%(w0) and omit dudv)
∫∫

B∗
|∇ψ−|2 = −

∫∫

B∗
ψ−4ψ

= µ

∫∫

B∗
q|ψ−|2 + (2− µ)

∫∫

B∗
q|ψ−|2 + 2ω

∫∫

B∗
qψ−.

For χ ∈ C∞0 (B∗,R) and ε ∈ R, we consider the admissible test function

ϕ(u, v) = ψ−(u, v) + εχ(u, v),
(
χ ∈ C∞0 (B∗,R)

)
.

The µ-stability condition implies
∫∫

B∗
|∇ψ−|2 + 2ε

∫∫

B∗
∇ψ− · ∇χ + ε2

∫∫

B∗
|∇χ|2

≥ µ

∫∫

B∗
q|ψ−|2 + 2µε

∫∫

B∗
qψ−χ + µε2

∫∫

B∗
qχ2.

Therefore we have

2ε

∫∫

B∗
∇ψ− · ∇χ + ε2

∫∫

B∗
|∇χ|2dudv

≥ (µ− 2)
∫∫

B∗
q|ψ−| |ψ−|+ 2ω

∫∫

B∗
q|ψ−|

+ 2µε

∫∫

B∗
qψ−χ + µε2

∫∫

B∗
qχ2.

Because −1− ω ≤ ψ− ≤ 0 and µ− 2 ≤ 0, we deduce

2ε

∫∫

B∗
∇ψ− · ∇χ + ε2

∫∫

B∗
|∇χ|2dudv

≥ (1 + ω)(µ− 2)
∫∫

B∗
q|ψ−|+ 2ω

∫∫

B∗
q|ψ−|

+ 2µε

∫∫

B∗
qψ−χ + µε2

∫∫

B∗
qχ2

= 2µε

∫∫

B∗
qψ−χ + µε2

∫∫

B∗
qχ2

taking (1 + ω)(µ− 2) + 2ω = 0 into account (note ω = 2µ−1 − 1). Therefore

2ε

∫∫

B∗
(∇ψ− · ∇χ− µqψ−χ + ε2

∫∫

B∗
(|∇χ|2 − µqχ2) ≥ 0

holds true for all ε ∈ R, and we find
∫∫

B∗
(∇ψ− · ∇χ− µqψ−χ) = 0

for all χ ∈ C∞0 (B∗,R). Because X = X(u, v) is real analytic, the same holds true for
q = q(u, v). By the Lemma of Weyl, ψ− = ψ−(u, v) for (u, v) ∈ B∗ is real analytic, and
ψ−(u, v) ≡ 0 because it is already zero on a strip of non-vanishing measure
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Remark 2.2. This result is motivated by [10: Hilfssatz 6] where the case µ = 2 is
investigated. Therefore, the result is also true for µ ≥ 2.

Remark 2.3. To realize a modulus of continuity for the spherical mapping N =
N(u, v) of the immersion, we decided on a well known regularity result of Weyl (cp.
[8: Section 4.2]). Furthermore, in [6] a maximum principle is established which refers
to the positivity of the first eigenvalue of an elliptic operator. This maximum principle
could be invested for an alternative proof of the above lemma in the case of strictly
stable immersions. Anyway, it seems that we can not abandon any suitable stability
condition.

3. A result of Ruchert type

Let 4∗ denote the Laplace-Beltrami operator on S2 =
{
Z ∈ R3 : |Z| = 1

}
. The proof

of the next result follows the lines of [9].

Proposition 3.1. Let X ∈ C3+α(B,R3)∩C0(B,R3) (0 < α < 1) be an immersion
of constant mean curvature h0 ∈ [0, +∞), given in conformal parameters (u, v) ∈ B.
We assume that

Q :=
∫∫

B

(2h2
0 −K)W dudv < ω0 ∈ (0,+4π)

holds true. Let S2
ω ⊂ S2 be a spherical cap with Area S2

ω = ω0, and let µ > 0 be the first
eigenvalue of 4∗ with respect to the Dirichlet problem

4∗ψ + λψ = 0

ψ = 0

on S2
ω

on ∂S2
ω

}
.

Then the surface is µ-stable with this number µ > 0.

Proof. The Gaussian curvature K = K(u, v) of the surface satisfies

K(u, v) = − 1
W
4(log

√
W ).

Set χ = 2h2
0 −K. For the Gaussian curvature K̂ = K̂(u, v) with respect to the metric

(ĝij)i,j=1,2 with
{

ĝ11 = χW = ĝ22

ĝ12 = 0 = ĝ21

one finds
χK̂ = K − 1

2W
4(log χ).

As shown in [9: Lemma 2.3], K̂ ≤ 1 in B. Let 4̂ denote the Laplacian with respect to
(ĝij)i,j=1,2, and λ̂1 > 0 means the first eigenvalue of the problem

4̂ϕ + λϕ = 0

ϕ = 0

in B

on ∂B

}
.
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Let S2
ω ⊂ S2 with ω ∈ (0, 4π) be a spherical cap with AreaS2

ω = Q, and let λ∗1 > 0 be
the first eigenvalue of the spherical Laplacian with respect to

4∗ϕ∗ + λ∗ϕ∗ = 0

ϕ∗ = 0

in S2
ω

on ∂S2
ω

}
.

Since K̂ ≤ 1, [1: Propositions 3.3 and 3.16] yield λ∗1 ≤ λ̂1. By assumption, S2
ω is

contained in a spherical cap with first eigenvalue µ > 0. The monotonicity of the first
eigenvalue yields µ < λ∗1, and therefore

µ < λ∗1 ≤ λ̂1 ≤
∫∫

B
|∇ϕ|2dudv∫∫

B
ϕ2(2h2

0 −K)W dudv

for all ϕ ∈ H1,2(B,R) \ {0} with ϕ|∂B = 0. The statement follows

Remark 3.2. In [11: Section 5] a curvature estimate for constant mean curvature
surfaces is established under the integral condition

∫∫

B

(h2
0 −K)W dudv < 4π.

The method is based on a comparison surface of Bonnet type and an isoperimetric
inequality.

4. An a priori bound for the principle curvatures

Let X ∈ Cµ(B,R3) (µ > 0) represent a geodesic disc Br(X0) of radius r > 0 and of
center X0 = X(0, 0). In geodesic polar coordinates X takes the form Z = Z(%, ϕ) :
[0, r]× [0, 2π] → R3. For its line element we have

ds2
P = |Z%|2d% + 2Z% · Zϕ d%dϕ + |Zϕ|2 dϕ

= d%2 + P (%, ϕ) dϕ2.

The proofs of the following results can be extracted from the proof of [11: Theorem 3].
We only give the crucial ideas.

Lemma 4.1. Let X ∈ Cµ(B,R3) (µ > 1
2 ) represent a geodesic disc Br(X0). Then

we have the area estimate

A(Z) :=
∫ r

0

∫ 2π

0

√
P (%, ϕ) d%dϕ ≤ 2πµ

2µ− 1
r2.

Proof. Using geodesic polar coordinates (%, ϕ) ∈ [0, r] × [0, 2π], insert the special
test function Φ(%) := 1−r−1% (0 ≤ % ≤ r) into the µ-stability condition from Definition
1.1. The result follows by partial integration (cp. [7: Proof of Theorem 1])



460 S. Fröhlich

Lemma 4.2. Let X ∈ Cµ(B,R3) (µ > 0). Then for any ν ∈ (0, 1) we have
∫∫

|w|≤1−ν

|∇N(u, v)|2dudv ≤ 8π

µν2
.

Proof. The result follows by inserting a test function ϕ ∈ C∞0 (B,R) with the
properties

Φ(u, v) ≡ 1

|∇ϕ(u, v)| ≤ 2
ν

in B1−ν(0, 0)

in B

into the µ-stability condition

Lemmata 2.1, 4.1 and 4.2 enable us to apply [11: Theorem 1]. We obtain our main
result

Theorem 4.3. Let X ∈ Cµ(B,R3) (µ > 1) and let it represent a geodesic disc
Br(X0). Then there exists a constant Θ = Θ(h0r, µ) such that

κ1(0, 0)2 + κ2(0, 0)2 ≤ 1
r2

Θ(h0r, µ)

holds true for the principle curvatures κ1 and κ2 of the immersion.

Proof. We only present the idea of the proof. For details, we refer to [11].
1. Let Γ(B) denote all continuous curves γ : [0, 1] → B with γ(0) = (0, 0) and

γ(1) ∈ ∂B. Then

inf
γ∈Γ(B)

∫ 1

0

∣∣∣∣
d

dt
X ◦ γ(t)

∣∣∣∣ dt ≥ r.

Now, set d = 2πµ(2µ − 1)−1. Lemma 4.1 implies A(Z) ≤ dr2. Then, by [11: Lemma
1], there is a point w∗ ∈ B with |w∗| ≤ 1− ν0 and ν0 = e−4πd such that

W (w∗)
r2

≥ c1(µ) > 0

with an a priori constant c1 = c1(µ).
2. The Courant-Lebesgue lemma applied to the estimate of Lemma 4.2 and the

projectivity result of Lemma 2.1 ensure the existence of a constant c2 = c2(h0r, µ) with
the property

|r−1Xuu|+ |r−1Xvv|+ |r−1Xuv| ≤ c2(h0r, µ) in Bν(0, 0)

where ν ∈ (0, ν0) is choosen sufficiently small due to Lemma 2.1 and Lemma 4.2.
3. The iterative scheme from the proof in [11] yields an a priori constant c3 =

c3(h0r, µ) such that
W (0, 0)

r2
≥ c3(h0r, µ) > 0.

4. Investing

κ2
1 + κ2

2 = 4h2
0 − 2K ≤ 1

r2

{
4(h0r)2 + 2r2|K|}
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for the principle curvatures κ1 band κ2, as well as

K =
(N ·Xt

uu)(N ·Xt
vv)− (N ·Xt

uv)2

W 2

for the Gaussian curvature K, we arrive at (set Y = r−1X)

κ1(0, 0)2 + κ2(0, 0)2 ≤ 1
r2

(
(4h0r)2 + 2

|Yuu| |Yvv|+ |Yuv|2
(Wr−2)2

∣∣∣
(0,0)

)

≤ 1
r2

(
4(h0r)2 +

4c2(h0r, µ)2

c3(h0r, µ)2

)

=:
1
r2

Θ(h0r, µ).

This proves the statement

In the case h0 = 0 we immediately obtain the Bernstein-type result

Corollary 4.4. Let the regular, complete and µ-stable minimal surface X : R2 →
R3 be given and let µ > 1. Then the surface represents a plane in R3.

Proof. We have K ≤ 0 for a minimal surface, and therefore X : R2 → R3 repre-
sents a geodesic disc for all r > 0 by a theorem of Hadamard. We can apply our main
result for r →∞

Remark 4.5. This result is proved in [4] even for µ ≥ 1. The authors develop
methods of complex analysis to investigate complete metrics in C. Compared to our
methods, they do not derive Bernstein-type results from curvature estimates.

Remark 4.6. In [5] an adequate µ-stability condition is applied to immersions of
minimal surface type. Corollary 4.4 is contained in the Bernstein results of that article
with the modification µ > 1

2 . The smallest possible value of the constant µ > 0 is not
known to the author (cp. also the introductory remarks in [4]).

Remark 4.7. Immersions of minimal surface type were originally investigated in
[2, 3], where fundamental geometric and analytic properties as well as questions of
existence are discussed.

Remark 4.8. In [12] immersions that are stationary for general parametric func-
tionals are investigated, and an a priori bound for the principle curvatures is derived.
However, it seems to the author that no Bernstein-type result can be extracted for im-
mersions of minimal surface type. It is an open question how to expand the methods
presented here to attack these general functionals.
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