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Michael Selection Problem

in Hyperconvex Metric spaces

Xian Wu

Abstract. In the present paper, the Michael selection problem is researched in hy-
perconvex metric spaces. Our results show that the answer is “yes” for hyperconvex
metric spaces and that the lower semicontinuity of the multi-valued mapping can
be weakened. Moreover, as an application of our selection theorem, a fixed point
theorem for locally-uniform weak lower semicontinuous multi-valued mappings is
given.
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1. Introduction and preliminaries
In 1956, Michael [7] first researched the continuous selection problem and
obtained the following now well known theorem:

Theorem 1.1. LetY be a Banach space and X a paracompact topological
space. If F: X — 2Y is a lower semicontinuous set-valued mapping with non-
empty closed convex values, then F' has a continuous selection, i.e. there exists
a continuous mapping f : X — Y such that f(x) € F(x) for allz € X.

The following open problem is due also to E. Michael and appeared in [8].

Michael selection problem. Does Theorem 1.1 remain true if Y is a
non-locally convex complete, metrizable topological linear space ¢

Up to the present, this question is still open.
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We would like to point that in 1989 and 2000 Sine [10] and Khamsi et al.
[6] researched the non-expansive selection problem for non-expansive multi-
valued mappings in hyperconvex metric spaces, respectively. Motivated by
their idea, in the present paper our main purpose is to research the above
Michael selection problem in hyperconvex metric spaces. Our result shows
that the answer is “yes” if Y is a hyperconvex metric space and that the
lower semicontinuity of the mapping F' can be weakened. Moreover, as an
application of our selection, a fixed point theorem for locally-uniform weak
lower semicontinuous multi-valued mappings is given.

To begin with we explain the notion of a hyperconvex metric space intro-
duced by Aronszajn and Panitchpakdi [1] and related concepts on hyperconvex
metric spaces.

Definition 1.1. A metric space (M,d) is called hyperconvez if, for any
collections of points {z,}aer C M and non-negative reals {r,},csr with
d(zq,z8) <1 +rsforall a,fel,

ﬂ B(za,7a) # 0

acl
where
B(x,r) = {y € M: dx,y) < 7“}
B(z,r)={y € M : d(z,y) <r}.

Definition 1.2. Let (M, d) be a metric space and A C M a non-empty
subset. Then we set

co(A) =N{B : B is a closed ball such that A C B}

and o
A+1r=UgeaB(a,r) (r>0).

If A is an intersection of some closed balls, we will say A is an admissible subset
of M. A is called sub-admissible if, for each finite subset D of A, co(D) C A.

Sine [11] pointed that if A is an admissible subset of a hyperconvex metric
space, then so is A + r.

Let X be a topological space. We denote by 2% the family of all susets of
X. If A C X, we shall denote by cl(A) the closure of A.

Definition 1.3. Let X,Y be two topological spaces and T : X — 2V a
multi-valued mapping.

(1) T is called lower semicontinuous if for each € X and each open set
V C Y with T(x)(V # 0 there exists an open neighborhood U of x such
that T'(z) "V # 0 for each z € U.
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(2) If (Y, d) is a metric space, then:

(a) T is called quasi-lower semicontinuous if for each x € X and each
e > 0 there exists a point y € T'(x) and a neighborhood U(z) of = such that,
for each z € U(z), d(y,T(2)) < e.

(b) T is called locally-uniformly weak lower semicontinuous if T' is quasi-
lower semicontinuous and for each z € X there exists an open neighborhood
N(zx) of = such that, for each ¢ > 0 and each y € Y, there is a 6 > 0 with the
following property:

VzeN(z),3r>0: 0#B(y,r)NTs(z) CT,(z)+¢e (u>0)
where

T,(z) = {y €Y : 3U € N(z) such that,Va € U,d(y,T(a)) < 77}

where N (z) is the family of all open neighborhoods of z.

Remark 1.1. As Y is a normed linear space, the above concepts were
given by Deutsch and Kenderov [2] and by Przeslawski and Rybinski [9],
respectively.

Remark 1.2. Obviously, if T is a lower semicontinuous multi-valued
mapping with non-empty values, then 7" must be locally-uniformly weak lower
semicontinuous.

2. Main results

To begin, we give two proximate selection theorems.

Theorem 2.1. Let X be a paracompact topological space, (M, d) a hyper-
convex metric space and Y a non-empty sub-admissible subset of M. Further,
let T: X — 2Y be a multi-valued mapping such that:

(i) For each x € X, T(x) is a non-empty sub-admissible subset of M.
(ii) T is quasi-lower semicontinuous.
Then for each € > 0 there exists a continuous mapping f : X — M such that
d(f(x),T(z)) <e foralzeX.

Proof. Since (M,d) is a hyperconvex metric space, by [5: Proposition
1/Conclusion 1] there exists an index set I and an isometric embedding from
M into [°°(I). We will identify M with the isometric embedding image set
in [*°(I). Since hyperconvexity is preserved by isometry, by [5: Proposition
1/Conclusion 4] there exists a non-expansive retract r: [*°(I) — M.
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For each ¢ > 0, by condition (ii) we know that, for each x € X, there
exist a point y(x) € T'(x) and an open neighborhood N(z) of = such that
d(y(z),T(z)) < e for all z € N(z). Since X is paracompact, there exists a
local finite open refinement R = {U, }aep of the family {N(x)}zex. Hence
for each o € D, there exists a point z, € X such that U, C N(z,). Conse-
quently, d(y(za),T(2)) < € for all z € U,. Let {fa}acp be a partition of the
continuous unity corresponding to the covering R of X. We can thus define a

mapping

g: X =12(I), g(z) =) fal@)y(za) (z€X).

aeD

Since R is a local finite open covering of X and {f,}acp is a partition of the
continuous unity corresponding to R, g is a well-defined continuous mapping.
Now let f =rog. Then f: X — M is continuous. For each x € X, let

o(z,R)={UeR: z€U}.
Then o(x, R) is finite, and hence, let
0(2,R) = {Uay,Ussgs - - Uay, }-

Consequently,

f@ﬂzﬂﬂ@%={é;ﬂwwwwwﬁ

€ r(conv{y(za,), ..., y(xa,)})

C co({y(zar)s -+ y(Ta,)})

where conv{y(za,),--.,y(Za,)} is the convex hull of {y(za,),-..,y(za,)} in
[°°(I). Foreachi € {1,2,...,n},since d(y(xq,),T(z)) < €, there exists a point
z; € T'(z) such that d(y(x,,),2:;) < €. Since again T'(x) is a sub-admissible
subset of M, co({z1,22,...,2,}) C T(x). Let 2(z) = 7[> p_; far(x)2k].
Then z(z) € T'(z) and

A(f(2),2(2) < 3 o (@) d(y(a,), 22) < 2.
k=1

Hence d(f(x),T(x)) < e. This completes the proof i

From the proof of Theorem 2.1 we know that if X is compact, then we
have the following theorem.
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Theorem 2.2. Let X be a compact topological space, (M, d) a hypercon-
vex metric space and Y a non-empty sub-admissible subset of M. Further, let
T: X — 2V be a multi-valued mapping such that:

(i) For each x € X, T(x) is a non-empty sub-admissible subset of M.

(ii) T is quasi-lower semicontinuous.

Then for each € > 0 there exists a continuous mapping f = r o g such that
d(f(z), T(x)) < € for all z € X, where r : I°°(I) — M is a non-expansive
retract, I is some index set such that M is isometrically embedded into 1°°(I)
and g : X — [°°(I) is continuous such that g(X) is contained in a polytope

P =conv{yi,...,yn} of I°°(I), {y1,...,yn} C T(X).

Theorem 2.3. Let X be a paracompact topological space, (M, d) a hyper-
convex metric space and Y a non-empty sub-admissible subset of M. Further,
let T: X — 2Y be a multi-valued mapping such that:

(i) For each x € X, T(x) is a non-empty closed sub-admissible subset of
M.

(ii) T is lower semicontinuous.
Then there exists a continuous mapping f : X — M such that f(x) € T(x)
forallx € X.

Proof. By Theorem 2.1 there exists a continuous mapping f1 : X — Y
such that
(x € X).

N | =

d(f1(z), T (z)) <
Let 1
ﬂ@ﬂzT@Mﬂ%ﬁ@m§> (z € X).

Then, for all x € X, T1(z) is a non-empty sub-admissible subset of M. More-
over, by [3: p. 348/Lemma 1] we know that T3 : X — 2V is lower semi-
continuous. Consequently, by Theorem 2.1 there exists a continuous mapping
f2: X — Y such that

cw%mn@»<% (x € X).
Hence 1
d(f2(2), T(z)) < d(f2(2), Ti(2)) < 5

1 1
d(fi(2), f2(2)) < 5 + 55
Now assume that fi, fo,..., fn : X — Y has been found such that, for each

reX,

(x € X).

(), firn@) < o + sy (=1,2,00m 1)
1

d(fr(x),T(x)) < = (k=1,2,...,n).
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Let
T (x) = T(x) 0 B( fulw) 2%) (x € X).

Then by Theorem 2.1 there exists a continuous mapping f,+1 : X — Y such
that

W oir(@) Tula) < 5y (€ X).

Hence
1
dnlvax SdnlxaTnx
(fas1 (@), T(@)) ff+2) D
d(fn(x)?fn-i-l(x)) < 2_n + on+1

Consequently, we can find a sequence {f,},>1 of continuous functions f, :
X — Y such that

Aal@) 1 (2) < g + gy 21)
Afule), T@)) < 57 (22)

for all z € X and n > 1. By (2.1) we know that {f,(z)},>1 is a uniformly
Cauchy sequence in M. Since each hyperconvex space is complete, there is
a mapping f : X — M such that f,(z) — f(z) for all z € X. Since again
fn is continuous, the mapping f : X — M is continuous, too. Moreover, by
(2.2) and the closeness of T'(x) we know that f(x) € T(x) for all x € X. This
completes the proof B

Theorem 2.4. Let X be a paracompact topological space, (M, d) a hyper-
convex metric space and Y a non-empty sub-admissible subset of M. Further,
let T: X — 2V be a multi-valued mapping such that:

(i) For each x € X, T'(x) is a non-empty closed sub-admissible subset of
M.

(i) T is locally-uniform weak lower semicontinuous.

Then there exists a continuous mapping f : X — M such that f(x) € T(z)
forallz € X.

Proof. For each » > 0 and each z € X, we denote
T (z) = {y €Y : 33U e N(x) such that, ¥ a € U, d(y,T(a)) < r}

and
Th ('T) = ﬂ7“>0Tr (,T)
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where N (z) is the family of all open neighborhoods of . We first prove the
following several Facts 1 - 6:

Fact 1: I 0 < 1y < 719, then cl[T,, (z)] C T,,(z) for all x € X, where
cl[T,, (z)] is the closure of F,, (x). Indeed, for each x € X and each y €
cl[T,, (z)] there is a sequence {yn}n>1 in T}, (x) such that y, — y. Hence
there exists an ng such that d(y,yn,) < ro —r1. Since yn, € Ty, (z), there
exists an open neighborhood N(x) of x such that d(y,,,T(z)) < r for all
z € N(x). Hence

d(y,T(2)) < d(Y, Yno) + d(Yny, T(2)) <72 (2 € N(x)).

This shows y € T,.,(z). Hence cl[T,, (x)] C T, (x).

Fact 2: Ty(xz) = (Nosocl[Z:(x)] for all x € X. Indeed, for each y €
Nesocl[Te(z)], if y ¢ To(x), then there is a r > 0 such that y ¢ T,.(x).
Consequently, by Fact 1, y ¢ cl[T.(z)] as 0 < € < r. This contradicts that
Y € Noso clTe(2)]-

Fact 3: Ty(x) is sub-admissible for all z € X. Indeed, for each r > 0
and each x € X, if A = {aj,a9,...,a,} is a finite subset of T,.(x), then
there exists an open neighborhood N(x) of = such that, for each z € N(z),
d(a;, T(z)) < r for all i € {1,2,...,n}. Consequently, for each z € N(x)
there exists a finite subset B = {b1,ba,...,b,} of T(z) and a 0 < € < r such
that d(a;,b;) < e for all i € {1,2,...,n}. Hence A C co(B) + ¢, and hence
co(A) C co(B) + e C T(z) + €. Therefore, co(A) C T;.(x). This shows that
T,-(z) is sub-admissible, and hence Ty(z) is sub-admissible.

Fact 4: For each xy € X, Ty(zg) # () and there exists an open neighbor-
hood N(xg) of xg with the property that, for each € > 0 and each y € Y, there
is a d > 0 such that d(y, To(z)) < d(y, Ts(z)) + 2¢ for all z € N(zp). Indeed,
since T is locally-uniform weak lower semicontinuous, for each fixed g € X
there exists an open neighborhood N(z() of xy with the property that, for
each € > 0 and each y € X, there is a § > 0 such that for each z € N(z)
there exists a r > 0 satisfying

0 # B(y,r)NTs(x) C T, (z) +¢ (n>0).

Consequently, for § there exists ; > 0 and r; > 0 such that

0 # B(y,r1) NTs, (z) C Tp(x) + (n>0).

N ™

Let 7o = d(y,Ts(x)) + 5. Then B(y,ro) N Ts(x) # 0. Hence there exists a
point y; such that

v1 € B(y,r0) N B(y,m) N To(w) € Tuw) + 5 (n>0)
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and hence d(y1,T,(z)) < 5 for all > 0.
For y; and o5 there exists d2 > 0 and r2 > 0 such that

0 # Vo (1) N T3, (2) CTule) + o5 (1> 0).

Since y1 € Ts,(x) + 5, we have B(y1, 5) N Ts,(x) # 0. Hence there exists a
point yo such that

15 15
Yo € B(yl, §) A B(yr,r2) N Ts,(z) C Th(a) + — (> 0).

22

Therefore, d(y1,y2) < § and d(y2,T,(x)) < 5 for all > 0. Now assume

that y1,¥2,...,y, has been found such that

d(ykayk+1)<2_k (k=1,2,...,n—1)
- (k> 0).
d(yk,TM(x)) < 2_k (k =12,... 7n)

For y, and 5 there exists d,,11 > 0 and r, 11 > 0 such that

1) 7£ B(yn,’l“n_|_1> N T5n+1(IE) C TM('T) + 2n€+1 (,u > 0)

Since y, € Ts,,,(x) + 5=, we have B(yn, 57) N Ts,,,(x) # 0. Hence there

exists a point y, 41 such that

n+1

€
2n

9
Yn+1 € B(yna ) N B(yna rn—f—l) n T5n+1 (.T) - Tu(l‘) + on+1 (/J’ > 0)

Therefore,

£
d(ymyn-i-l) < 2_n

c (1> 0).
A(yn+1, Tu(2)) < 5o

Consequently, by induction we obtain a sequence {yy, },>1 such that

g
d(ynayn—i—l) < 2_n

- (p>0,n>1).
Ay, To(a)) < o

For each n € N, by d(yn, T, (7)) < 5 there exists a point z, € T'(z) such
that d(yn, zn) < sm=r. Since again d(yn,Yn+1) < 57, {Zn}n>1 is a Cauchy
sequence in T'(x) and d(y1,y,) < €. By the completeness of T'(x) there is a
point yo € T'(x) such that z, — yo. Hence y,, — yo and d(y1,y0) < €. Since
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d(Yn,Tp(z)) < 57 for all p > 0 and n > 1, we have d(yo, T, (z)) = 0 for all
p > 0. Hence yo € cl(T),(z)), and hence yo € To(x) by Fact 2. Therefore,

d(y, To(x)) < d(y,y0)
< d(y,y1) + d(y1,%0)

<7rg+e
= d(y, Ts(x)) + 5 +<
< d(y,Ts(z)) + 2e.

Fact 5: To(x) C T'(z) for all z € X. Indeed, for each yo € Tp(x) we have
yo € Ta(z) for all n € N. Hence d(yo,T(z)) < 1 for all n € N, and hence
yo € T(z). This shows that Ty(z) C T'(z) for all z € X.

Fact 6: Ty : X — 2Y is lower semicontinuous. Indeed, for each zy € X
and each open set G C Y, if Ty(xg) N G # 0, then there exist a point y €
To(zp) NG and an € > 0 such that B(y,2¢) C G. By Fact 4 there exists an
open neighborhood N(zg) of zy and a § > 0 such that

d(y, To(x)) < d(y, Ts(x)) +2¢ (2 € N(z0)).

Since y € To(xg) C Ts(xp), there exists an open neighborhood Ni(zp) C
N (zp) of z¢ such that d(y,T(z)) < ¢ for all z € Ny(xg). Since again Ni(z)
is an open neighborhood of z for all x € Ny(z¢), we have y € Ts(z) for all
x € Ni(zo). Hence d(y, T5(x)) = 0 for all x € Ny (o), and hence d(y, To(z)) <
d(y, Ts(x)) + 2e = 2¢ for all x € Ny(xp). Consequently, To(z) NG # ( for all
x € N1(z0). This shows that Ty : X — 2Y is lower semicontinuous.

Summing up the above facts we get that Ty : X — 2Y is a lower semicon-
tinuous multi-valued mapping with non-empty closed sub-admissible values
and To(z) C T(x) for each x € X. Hence by virtue of Theorem 2.3 there
exist a continuous mapping f : X — Y such that f(x) € Ty(z) C T(x) for all
re X1l

As an application of Theorem 2.4 we get the following fixed point theorem.

Theorem 2.5. Let (Y, d) be a hyperconvex metric space and X be a non-
empty compact sub-admissible subset of Y. Further, let T : X — 2Y be a
locally-uniform weak lower semicontinuous multi-valued mapping such that:

(i) For each x € X, T(x) is a non-empty closed sub-admissible subset of
Y

(ii) For each x € X with x ¢ T(x) and each z € T(x), there exists
a € (0,1) such that

X N B(z,ad(r,2)) N B(z, (1 — a)d(x,2)) # 0.
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Then T has a fized point, i.e. there exists a point T € X such that T € T(Z).

Proof. By Theorem 2.4 there exists a continuous mapping f : X — Y
such that f(z) € T'(z) for all x € X. For each x € X, set

G(z)={y e X : d(y, f(y) <d(z, f(y))}

Then G : X — 2V is a multi-valued mapping with non-empty closed values.
We claim that G is a metric KK M (see [5]) mapping. Otherwise, there exists
a finite subset A C X and a point y € co(A4) such that y ¢ |J_. 4 G(z). Since
X is a sub-admissible subset of Y, co(A) C X, and hence

€A

d(z, f(y)) <d(y, fy))  (z€A).

Let € > 0 be such that

d(z, f(y) < d(y, f(y)) —e  (z€A).

Then o
ACXNB(f(y),dy, f(y) —¢)-
Hence
co(A) C X N B(f(y),d(y, f(y)) —¢).
Consequently,

d(y, f(y)) < d(y, f(y)) — &

This is a contradiction.

By the compactness of X and [9: Theorem 4], there exists a point yg €
mweXG(fL’), i.e.
d(yo, f(yo)) = inf d(z, f(y0))-

We claim that yg € T'(yp). Otherwise, since f(yo) € T'(yo), by (ii) there exists
a € (0,1) such that

X N B(yo,ad(yo, f(y0))) N B(f(yo), (1 — a)d(yo, f(yo))) # 0.

Hence there exists a point z € X such that

d(yo, z) < ad(yo, f(yo))
d(f(vo),2) < (1 = a)d(yo, f(¥o))-

Consequently,

d(f(y0),2) = (1 — a)d(yo, f(v0))-
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Indeed, otherwise

d(yo, f(yo)) = ad(yo, f(yo)) + (1 — a)d(yo, f(yo))
> d(yo, 2) +d(f(yo), 2)

and hence

d(yo, f(%0)) < d(yo,2) +d(f(y0),2) < d(yo, f(Yo))-

This is a contradiction. Hence

d(f(vo),z) = (1 — a)d(yo, f(¥0))
(1 - @) inf d(z, f(y0))
< (1 —a)d(z, f(o))-

We get a contradiction. This shows that yo € T'(yp) and the proof is com-
pleted I

Corollary 2.6. Let (Y,d) be a hyperconvex metric space and X be a
non-empty compact sub-admissible subset of Y. Further, let T : X — 2% be
a locally-uniform weak lower semicontinuous multi-valued mapping with non-
empty closed sub-admissible values. Then T has a fixed point.

Proof. For each z € X with x ¢ T(x) and each y € T(x) we have
co{z,y}) € X since X is a non-empty sub-admissible subset of Y. Let
co{z,y}) = NjesB(z;,7;) and take any a € (0,1). Since

d(xay) = ad($7 y) + (1 - O‘)d(xv y)
d(z,z;) <r; <r;+ad(z,y)
dy,z;) <r; <rj+ (1 —a)d(z,y),

by hyperconvexity of Y,

co({z,y}) N B(z,ad(z,y)) N B(y, (1 — a)d(z,y)) # 0

and hence
X NB(z,ad(z,y)) N By, (1 —a)d(z,y)) # 0.

This shows that condition (ii) in Theorem 2.5 is satisfied. Hence the conclusion
follows from Theorem 2.5 il

Remark 2.1. Horvath [3, 4] studied continuous selection problems and
fixed point problems for lower semicontinuous multi-valued mappings in topo-
logical spaces with a generalized convexity structure. Our results are different
from these corresponding results in [3, 4].



516 Xian Wu
References

[1] Aronszajn, N. and P. Panitchpakdi: FEztension of uniformly continuous trans-
formations and hyperconvex metric spaces. Pacific J. Math. 6 (1956), 405 —
439.

[2] Deutsch, F. and P. Kenderov: Continuous selections and approzimate selection
for set-valued mappings. STAM J. Math. Anal. 14 (1983), 185 — 194.

[3] Horvath, C. D.: Contractibility and generalized convexity. J. Math. Anal.
Appl. 156 (1991), 341 — 357.

[4] Horvath, C. D.: Extension and selection theorems in topological spaces with a
generalized convezity structure. Ann. Fac. Sei. Toulouse (VI Ser. Math.) 2
(1993), 253 — 269.

[6] Khamsi, M. A.: KKM and Ky Fan theorems in hyperconvex metric spaces. J.
Math. Anal. Appl. 204 (1996), 298 — 306.

[6] Khamsi, M. A., Kirk, K. A. and C. Martinez Yafez: Fized point and selection
theorems in hyperconvex metric spaces. Proc. Amer. Math. Soc. 128 (2000),
3275 — 3283.

[7] Michael, E.: Continuous Selections I. Ann. Math. 63 (1956), 361 — 381.

[8] Michael, E.: Some Problems. In: Open Problems in Topology (eds.: J. van
Mill and G. M. Reed). North-Holland: Elsevier Sci. Publ. 1990, pp. 273 — 278.

[9] Przeslawski, K. and L. E. Rybinski: Concepts of lower semicontinuity and
continuous selections for convex valued multifunctions. J. Appr. Theory 68
(1992), 262 — 282.

[10] Sine, R.: Hyperconvexity and nonexpansive multifunctions. Trans. Amer.
Math. Soc. 315 (1989), 755 — 767.
[11] Sine, R.: Hyperconvexity and approzimate fized points. Nonlin. Anal. 13

(1989), 863 — 869.

Received 04.10.2002; in revised form 12.05.2003



