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Fixed-Point Properties of
Roughly Contractive Mappings

H. X. Phu

Abstract. For given k ∈ (0, 1) and r > 0, a self-mapping T : M → M is said to be
r-roughly k-contractive provided

‖Tx− Ty‖ ≤ k ‖x− y‖+ r (x, y ∈ M).

To state fixed-point properties of such a mapping, the self-Jung constant Js(X) is
used, which is defined as the supremum of the ratio 2 rconv S(S)/ diam S over all
non-empty, non-singleton and bounded subsets S of some normed linear space X,
where rconv S(S) = infx∈conv S supy∈S ‖x − y‖ is the self-radius of S and diam S is
its diameter. If M is a closed and convex subset of some finite-dimensional normed
space X and if T : M → M is r-roughly k-contractive, then for all ε > 0 there exists
x∗ ∈ M such that

‖x∗ − Tx∗‖ < 1
2

Js(X) r + ε.

If dim X = 1, or X is some two-dimensional strictly convex normed space, or X is
some Euclidean space, then there is x∗ ∈ M satisfying ‖x∗ − Tx∗‖ ≤ 1

2
Js(X) r.

Keywords: Roughly contractive mapping, fixed-point theorem, rough invariance,
self-Jung constant

AMS subject classification: Primary 47H10, secondary 54H25

1. Introduction

Let X be a finite-dimensional normed linear space. For given M ⊂ X, k ∈
(0, 1) and r > 0, a mapping T : M → M is said to be r-roughly k-contractive
provided

‖Tx− Ty‖ ≤ k ‖x− y‖+ r (x, y ∈ M). (1.1)

We introduced this notion in [17, 18, 21] as a generalization of contractive
mappings considered in the well-known Banach fixed-point theorem [2], where
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some roughness degree r is added to the right-hand side of the inequality.
Such mappings may arise in quite natural ways. For example, if a given k-
contractive mapping T0 defined by ‖T0x − T0y‖ ≤ k ‖x − y‖ for all x, y ∈ M
cannot be determined exactly but it is only approximated by T , where r =
2maxx∈M ‖T0x−Tx‖ denotes the double maximal approximation error, then

‖Tx− Ty‖ ≤ ‖T0x− Tx‖+ ‖Tx− Ty‖+ ‖Ty − T0y‖
≤ k ‖x− y‖+ r

for all x, y ∈ M , i.e. T is r-roughly k-contractive.
Actually, such mappings were considered independently by Kirk [10], but

his main attention was devoted to so-called h–non-expansive mappings defined
by

‖Tx− Ty‖ ≤ max{‖x− y‖, h} (x, y ∈ M) (1.2)

and to Hölder continuous mappings.
Since roughly contractive mappings cannot always possess fixed points, we

have to consider so-called γ-fixed or γ-invariant points defined by ‖x∗−Tx∗‖ ≤
γ for some γ > 0, as already done for discontinuous mappings by Klee [12],
Cromme and Diener [5 - 6], Bula [4], and Kirk [10]. In [16 - 18], we determined
the best invariant degree γ of roughly contractive mappings in Minkowski and
Euclidean spaces.

We now take advantage of the self-Jung constant Js(X) defined by (2.2)
below to get a better result for non-Euclidean n-dimensional normed spaces.
In Section 2, the self-Jung constant is used to estimate the distance between
some set S and any point z ∈ conv S \S. This is applied in Section 3 to state
the following fixed point property of an r-roughly k-contractive mapping on
a closed and convex subset M of some n-dimensional normed space X:

∀ε > 0 ∃x∗ ∈ M : ‖x∗ − Tx∗‖ <
1
2

Js(X) r + ε.

Moreover, if
dim X = 1,
or X is some two-dimensional strictly convex normed space,
or X is some Euclidean space,

then there exists x∗ ∈ M such that

‖x∗ − Tx∗‖ ≤ 1
2

Js(X) r

(Theorem 3.3).
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2. Distance estimation by using self-Jung constant

For a bounded set S ⊂ X,

diam S = sup
x,y∈S

‖x− y‖ and rA(S) = inf
x∈A

sup
y∈S

‖x− y‖ (2.1)

are the diameter and the relative radius of S with respect to A. In particular,
rX(S) and rconv SS are called its absolute radius and self-radius, respectively.

The ratio between absolute radius and diameter was studied by Jung [8]
who investigated Euclidean spaces. Later on, Bohnenblust [3], Leichtweiß [13],
and Grünbaum [7] considered this problem in Minkowski spaces. These works
started a research direction of determining the supremum of this ratio which
is called Jung’s constant (see, e.g., [1, 19, 20] and references therein).

In this paper, we are interested in a similar one, namely the self-Jung
constant of X defined by

Js(X) = sup

{
2 rconv S(S)

diam S

∣∣∣∣∣ S ⊂ X is

[
bounded
non-empty
non-singleton

]}
. (2.2)

Obviously,
1
2

diam S ≤ rX(S) ≤ rconv S(S) ≤ diam S

1 ≤ Js(X) ≤ 2.
(2.3)

For n-dimensional spaces, we have

Js(`n
2 ) =

( 2 n

n + 1

)1/2

(2.4)

which follows from the classical results of Jung [8] and Klee [11] (see [14]),
and

Js(X) ≤ 2n

n + 1
if dim X = n (2.5)

(see [1]).

Let us now use the self-Jung constant to estimate the distance between a
set S and any point z ∈ conv S \ S.

Proposition 2.1. Let S be a bounded set of some finite-dimensional
normed space X and z ∈ conv S \ S. Then there exists s ∈ S such that

‖z − s‖ ≤ 1
2

Js(X) diam S.
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Proof. Since z ∈ conv S \ S, there exists a set Sk = {x1, . . . , xk} ⊂ S
of k ≥ 2 linearly independent points such that z ∈ ri(conv Sk), where ri A
denotes the relative interior of A.

Let us prove by induction

min
1≤i≤k

‖z − xi‖ ≤ 1
2

Js(X) diam S. (2.6)

For k = 2, ‖x1 − x2‖ ≤ diam S and (2.3) yield

min
{‖z − x1‖, ‖z − x2‖

} ≤ 1
2
‖x1 − x2‖ ≤ 1

2
Js(X) diam S.

Assuming now that (2.6) is true for 2 ≤ k ≤ l, we have to show it for k = l+1.
Consider the relative center set of Sk with respect to the compact set conv Sk

Cconv Sk
(Sk) =

{
x ∈ conv Sk : sup

y∈Sk

‖x− y‖ = rconv Sk
(Sk)

}

which is obviously non-empty. For any fixed c ∈ Cconv Sk
(Sk), (2.1) and (2.2)

imply
max
1≤i≤k

‖c− xi‖ ≤ rconv Sk
(Sk)

≤ 1
2

Js(X) diam Sk

≤ 1
2

Js(X) diam S.

(2.7)

If z = c, then (2.6) follows from (2.7). Otherwise, the ray from c through
z cuts the boundary conv Sk \ ri(conv Sk) at some point z′ ∈ conv Sk′ where
Sk′ =

{
xi1 , . . . , xik′

} ⊂ Sk and k′ ≤ k − 1 = l. If z′ ∈ Sk′ , then z ∈ [c, z′]
yields

‖z − z′‖ ≤ ‖c− z′‖ ≤ rconv Sk
(Sk) ≤ 1

2
Js(X) diam S.

If z′ 6∈ Sk′ , then z′ ∈ conv Sk′ \ Sk′ . By the inductive assumption, there is
some y ∈ Sk′ ⊂ S such that ‖z′ − y‖ ≤ 1

2 Js(X) diam S. Therefore, it follows
from z ∈ [c, z′] and (2.7) that

‖z − y‖ ≤ max
{‖c− y‖, ‖z′ − y‖} ≤ 1

2
Js(X) diam S

which completes our proof

Note that the assumption z ∈ conv S \ S in the previous proposition and
in the following one means at least diam S > 0.
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Proposition 2.2. Suppose X is some two-dimensional strictly convex
normed space or some Euclidean space, S = {x1, . . . , xk} ⊂ X, and z ∈
conv S \ S. Then either

min
1≤i≤k

‖z − xi‖ < rconv S(S) ≤ 1
2

Js(X) diam S

or
‖z − xi‖ = rconv S(S) ≤ 1

2
Js(X) diam S (i = 1, . . . , k).

Proof. By (2.2), we have to prove by induction that

min
1≤i≤k

‖z − xi‖ ≥ rconv S(S) (2.8)

implies
‖z − xi‖ = rconv S(S) (i = 1, . . . , k). (2.9)

If dim S = 1, then all points of S lie in some segment, say for instance, in
the segment [x1, xk] connecting x1 and xk. Then rconv S(S) = 1

2 diam S =
1
2‖x1 − xk‖ and

min
1≤i≤k

‖z − xi‖ < rconv S(S) if z 6= 1
2

(x1 + xk).

Therefore, (2.8) implies z = 1
2 (x1 + xk) and max1≤i≤k ‖z − xi‖ ≤ rconv S(S).

Hence, (2.9) follows from (2.8).
Assume now that the assertion is true for dimS ≤ l, and (2.8) holds for

some set S = {x1, . . . , xk} with dim S = l + 1 ≥ 2. We have to show (2.9)
now. Due to [11: Corollary 3], rX(S) = rconv S(S) and the absolute center set

CX(S) =
{

x ∈ X : sup
y∈S

‖x− y‖ = rX(S)
}

is a singleton contained in conv S, say CX(S) = {c}. If c = z, then similarly
as above, (2.9) follows from (2.8). If c 6= z ∈ ri(conv S), then the ray L from
c through z cuts the boundary conv S \ ri(conv S) at z′ ∈ conv Sl for some
Sl ⊂ S with dim Sl ≤ l. If z′ ∈ Sl, then z ∈ [c, z′] and c 6= z yield

‖z − z′‖ < ‖c− z′‖ ≤ rX(S) = rconv S(S),

a contradiction to (2.8). Hence, z′ ∈ conv Sl\Sl and Sl∩L = ∅. Consequently,
for all y ∈ Sl, the function g(x) = ‖x−y‖ is strictly convex on L, which implies
by ‖c− y‖ ≤ rX(S), ‖z − y‖ ≥ rconv S(S) = rX(S) and z′ ∈ L \ [c, z] that

‖z′ − y‖ > rX(S) ≥ rX(Sl) = rconv Sl
(Sl) (y ∈ Sl),
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i.e. (2.8) is satisfied for z′ and Sl instead of z and S while (2.9) fails, a
contradiction to the inductive assumption.

If c 6= z 6∈ ri(conv S), then z ∈ conv S \ S implies z ∈ ri(conv Sl) for some
Sl ⊂ S with dim Sl ≤ l. By the inductive assumption, it follows from

min
y∈Sl

‖z − y‖ ≥ min
y∈S

‖z − y‖ ≥ rconv S(S) = rX(S) ≥ rX(Sl)

and dim Sl ≤ l that

‖z − y‖ = rX(S) = rX(Sl) (y ∈ Sl).

Therefore, by the strict convexity of the normed space X and ‖c − y‖ ≤
rX(S) = rX(Sl) we have

∥∥1
2 (c + z)− y

∥∥ < rX(Sl) (y ∈ Sl),

a contradiction to the definition of rX(Sl)

3. Fixed-point theorems

Following the Banach fixed-point theorem [2], to investigate the invariant
property of an r-roughly k-contractive mapping T : M → M , we consider the
iteration

x0 ∈ M

xi+1 = Txi (i ≥ 0)

}
. (3.1)

Without assuming M to be closed and convex, we proved in [18] the following
γ-fixed-point theorem.

Theorem 3.1. Let (M, d) be a metric space and let T : M → M be
an r-roughly k-contractive mapping, i.e. d(Tx, Ty) ≤ k d(x, y) + r for all
x, y ∈ M , where r > 0 and k ∈ (0, 1) are given. Suppose x0 ∈ M and
a := d(x0, Tx0)− r

1−k > 0.

(a) If γ > r
1−k and i ≥ logk

(
(γ − r

1−k )a−1
)
, then xi determined by (3.1)

is a γ-invariant point under T , i.e. d(xi, Txi) ≤ γ.
(b) If x∗ ∈ M is a cluster point of the sequence (xi), then it is a γ-

invariant point under T with γ = r
1−k .

(c) For every γ > 0, the set Iγ of all γ-invariant points (of T ) is bounded.
If γ ≥ r

1−k , then Iγ is invariant under T , i.e. TIγ ⊂ Iγ .

Consequently, if M is a compact metric space or if it is a closed subset
of some finite-dimensional metric space, then each r-roughly k-contractive
mapping T : M → M admits at least one γ-invariant point with γ = r

1−k .
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In general there is no smaller invariant degree γ as given in Theorem 3.1
if M is not assumed to be convex. This fact was shown in [18] by considering
the mapping T : M1 ∪M2 → M1 ∪M2 defined by

Tx =

{
r
2 − kx if x ∈ M1 =

(−∞,− r
2(1−k)

)

− r
2 − kx if x ∈ M2 =

(
r

2(1−k) ,∞
)
.

This mapping is r-roughly k-contractive but has no γ-invariant points with
γ ≤ r

1−k . If T is extended continuously to the closure

clM1 ∪ clM2 =
(
−∞,− r

2(1− k)

]
∪

[ r

2(1− k)
,∞

)
,

i.e. T −r
2(1−k) = r

2(1−k) and T r
2(1−k) = −r

2(1−k) , then −r
2(1−k) and r

2(1−k) are
γ-invariant with γ = r

1−k and there exists no γ-invariant point with γ < r
1−k .

Theorem 3.1 says that for all γ > r
1−k there exists an x ∈ M such that

d(x, Tx) ≤ γ. Consequently,

inf{d(x, Tx) : x ∈ M} ≤ r

1− k
.

This inequality was shown by Kirk [10]. Note that the infimum r
1−k is not

necessarily attainable as shown by the above example.

For convex M , in [16, 18] we obtained the following result.

Theorem 3.2. Let T : M → M be an r-roughly k-contractive mapping
on a closed and convex subset M of some n-dimensional normed space X. If
dim X = 1, then there exists x∗ ∈ M such that

‖x∗ − Tx∗‖ ≤ 1
2 r. (3.2)

If dim X ≥ 2, then for all ε > 0 there exists x∗ ∈ M such that

‖x∗ − Tx∗‖ < n
n+1 r + ε. (3.3)

If, in addition, the normed space X is strictly convex, then there exists x∗ ∈ M
such that

‖x∗ − Tx∗‖ < n
n+1 r. (3.4)

If X is the n-dimensional Euclidean space, then there exists x∗ ∈ M such that

‖x∗ − Tx∗‖ ≤ (
n

2(n+1)

)1/2
r. (3.5)
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It is worth mentioning that iteration (3.1) is not suitable to approximate
γ-invariant points with γ < r

1−k even if they exist, as pointed out in [18] by
considering

Tx =
{ r

2 − kx if x ≤ 0
− r

2 − kx if x > 0.

For any γ ≥ 1
2 r, each x satisfying −γ− r

2
1+k ≤ x ≤ γ− r

2
1+k is a γ-invariant point of

this r-roughly k-contractive mapping T : R→ R. But, for any starting point
x0 ∈ R, the sequence (xi) determined by (3.1) has only two cluster points
x− = − r

2(1−k) and x+ = r
2(1−k) , which satisfy Tx− = x+, Tx+ = x−, and

|x− − Tx−| = |x+ − Tx+| = |x− − x+| = r
1−k .

Let us now use the self-Jung constant Js(X) to improve Theorem 3.2.

Theorem 3.3. Let T : M → M be an r-roughly k-contractive mapping
on a closed and convex subset M of some n-dimensional normed space X.
Then for all ε > 0 there exists x∗ ∈ M such that

‖x∗ − Tx∗‖ <
1
2

Js(X) r + ε. (3.6)

If dim X = 1, or X is some two-dimensional strictly convex normed space, or
X is some Euclidean space, then there exists x∗ ∈ M such that

‖x∗ − Tx∗‖ ≤ 1
2

Js(X) r. (3.7)

Proof. (a) Take any x0 ∈ M and define

B̂ =
{
x ∈ X : ‖x− x0‖ ≤ r̂

}

where r̂ = r+‖x0−Tx0‖
1−k . Then M̂ = M ∩B̂ is non-empty, compact, and convex,

and T maps M̂ into itself because, for all x ∈ M̂ , (1.1) implies

‖Tx− x0‖ ≤ ‖Tx− Tx0‖+ ‖Tx0 − x0‖
≤ k‖x− x0‖+ r + (1− k)r̂ − r

≤ r̂,

i.e. Tx ∈ M̂ .

(b) Consider T : M̂ → 2M̂ defined by T (x) = conv M(x), where

M(x) =
{

y ∈ M̂ : ∃ (xi) ⊂ M̂ such that xi → x, Txi → y
}

. (3.8)

For all x ∈ M̂ , M(x) is closed and non-empty because M̂ is compact. It is
also bounded because diam M(x) ≤ r follows from (1.1) and (3.8). Since X
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is finite-dimensional, M(x) and conv M(x) are compact (see [22: p. 40]). It
was shown in [6] that T is upper semi-continuous. Therefore, by Kakutani’s
theorem (see [9, 23]), there exists x̄ ∈ M̂ such that x̄ ∈ T (x̄) = conv M(x̄).

(c) By Proposition 2.1 and diamM(x̄) ≤ r, there is a ȳ ∈ M(x̄) such that

‖x̄− ȳ‖ ≤ 1
2

Js(X) diam M(x̄) ≤ 1
2

Js(X) r.

Due to (3.8), for any ε > 0 there exists a point x∗ ∈ M̂ ⊂ M such that

‖x∗ − x̄‖ <
ε

2
and ‖Tx∗ − ȳ‖ <

ε

2
(3.9)

which yields immediately

‖x∗ − Tx∗‖ ≤ ‖x∗ − x̄‖+ ‖x̄− ȳ‖+ ‖ȳ − Tx∗‖ <
1
2

Js(X) r + ε,

i.e. (3.6) holds true.

(d) If dim X = 1, then Js(X) = 1, and therefore, (3.7) follows from (3.2).
Assume now that X is a two-dimensional strictly convex normed space or it
is the n-dimensional Euclidean space. If ‖x̄ − T x̄‖ ≤ 1

2 Js(X) r, then (3.7) is
fulfilled for x∗ = x̄. Otherwise, assume

‖x̄− T x̄‖ >
1
2

Js(X) r ≥ rconv S(S). (3.10)

Since x̄ ∈ conv M(x̄), there exists a finite set M̃ ⊂ M(x̄) such that x̄ ∈
conv M̃ . For S = M̃ ∪ T x̄, we have x̄ ∈ conv S, and diam S ≤ r follows from
(1.1) and (3.8). Consequently, Proposition 2.2 and (3.10) imply that there
exists ȳ ∈ M̃ ⊂ M(x̄) ⊂ M̂ ⊂ M satisfying

‖x̄− ȳ‖ < rconv S(S) ≤ 1
2

Js(X) r.

By choosing ε = 1
2 Js(X) r − ‖x̄ − ȳ‖ > 0 and x∗ ∈ M̂ ⊂ M satisfying (3.9),

we obtain
‖x∗ − Tx∗‖ ≤ ‖x∗ − x̄‖+ ‖x̄− ȳ‖+ ‖ȳ − Tx∗‖

≤ ‖x̄− ȳ‖+ ε

=
1
2

Js(X) r,

i.e. (3.7) holds true
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Note that (3.3) and (3.5) in Theorem 3.2 can be derived from Theorem 3.3
by using the estimation of Js(X) for Euclidean and Minkowski spaces stated
in (2.4) - (2.5).

In general, the invariant degrees given in Theorem 3.3 should be the best
ones for r-roughly k-contractive mappings. This can be illustrated by the
following

Example 3.1. Let S = {x1, ..., xn+1} be a subset of n+1 linearly indepen-
dent points of the n-dimensional Euclidean space `n

2 , where ‖xi−xj‖ = r > 0
for i 6= j. Then M = conv S is an n-dimensional regular simplex in `n

2 ,
x̄ = 1

n+1

∑n+1
i=1 xi is its unique center, and

‖xi − x̄‖ = rM (M) =
1
2

Js(`n
2 ) r =

( n

2(n + 1)

)1/2

r (1 ≤ i ≤ n + 1).

For any x ∈ M we choose Tx ∈ S such that ‖x − Tx‖ = maxs∈S ‖x − s‖.
Then

‖Tx− Ty‖ ≤ diam M = r ≤ k ‖x− y‖+ r (x, y ∈ M, 0 < k < 1)

and

‖x̄− T x̄‖ = rM (M) =
1
2

Js(`n
2 ) r < ‖x− Tx‖ (x ∈ M \ {x̄}).

Hence, the mapping T : M → M is r-roughly k-contractive for arbitrary
k ∈ (0, 1) and 1

2 Js(`n
2 ) r is the smallest invariant degree of T .

4. Concluding remarks

Due to Kirk [10], an r-roughly k-contractive mapping T : M → M is h–
non-expansive for h = r

1−k , and if M is a non-empty bounded closed convex
subset of a Banach space X, then an h–non-expansive mapping T : M → M
satisfies inf{‖x−Tx‖ : x ∈ K} ≤ h. This result allows to ensure the existence
of γ-invariant points of r-roughly k-contractive mappings only for γ ≥ r

1−k ,
which is just the same as in Theorem 3.1, where the convexity of M is not
required.

By (2.5), if dimX = n, then Js(X) ≤ 2n
n+1 , which implies 1

2 Js(X) r ≤
nr

n+1 < r
1−k , i.e. the invariant degrees given in Theorem 3.3 are better than

the ones given in Theorem 3.1, especially for k near 1.
In particular, if M = [a, b] ⊂ R1 and if T : M → M is h–non-expansive,

then Kirk [10] showed that there exists z ∈ M satisfying |z − Tz| ≤ h
2 . This

is the best result available for such h–non-expansive mappings. But if this
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result is applied to an r-roughly k-contractive mapping T : M → M as an
h–non-expansive one for h = r

1−k , then we only obtain the invariant degree
h
2 = r

2(1−k) , which is also greater than the invariant degree γ = r
2 given in

Theorems 3.2 - 3.3.

By using the result of Bula [4] for so-called uniformly w-continuous map-
pings, we can show that an r-roughly k-contractive mapping T : M → M
possesses γ-invariant points with γ = r + ε for arbitrary small ε, which is
obviously greater than nr

n+1 ≥ 1
2 Js(X) r.

In [15], we obtained similar results for discontinuous self-mappings on
compact convex subsets of arbitrary normed spaces. By defining the self-Jung
constant analogously, similar results are available for metric spaces.
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