Fixed-Point Properties of Roughly Contractive Mappings

H. X. Phu

Abstract. For given $k \in (0,1)$ and $r > 0$, a self-mapping $T : M \to M$ is said to be r-roughly k-contractive provided

$$
||Tx - Ty|| \le k ||x - y|| + r \quad (x, y \in M).
$$

To state fixed-point properties of such a mapping, the self-Jung constant $J_s(X)$ is used, which is defined as the supremum of the ratio $2r_{\text{conv }S}(S)/\text{diam }S$ over all non-empty, non-singleton and bounded subsets S of some normed linear space X , where $r_{\text{conv }S}(S) = \inf_{x \in \text{conv }S} \sup_{y \in S} ||x - y||$ is the self-radius of S and diam S is its diameter. If M is a closed and convex subset of some finite-dimensional normed space X and if $T: M \to M$ is r-roughly k-contractive, then for all $\varepsilon > 0$ there exists $x^* \in M$ such that

$$
||x^* - Tx^*|| < \frac{1}{2} J_s(X) r + \varepsilon.
$$

If dim $X = 1$, or X is some two-dimensional strictly convex normed space, or X is some Euclidean space, then there is $x^* \in M$ satisfying $||x^* - Tx^*|| \le \frac{1}{2} J_s(X) r$.

Keywords: Roughly contractive mapping, fixed-point theorem, rough invariance, self-Jung constant

AMS subject classification: Primary 47H10, secondary 54H25

1. Introduction

Let X be a finite-dimensional normed linear space. For given $M \subset X, k \in$ $(0, 1)$ and $r > 0$, a mapping $T : M \to M$ is said to be *r*-roughly k-contractive provided

$$
||Tx - Ty|| \le k ||x - y|| + r \qquad (x, y \in M). \tag{1.1}
$$

We introduced this notion in $[17, 18, 21]$ as a generalization of contractive mappings considered in the well-known Banach fixed-point theorem [2], where

H. X. Phu: Institute of Mathematics, P.O. Box 631 Bo Ho, 10000 Hanoi, Vietnam hxphu@thevinh.ncst.ac.vn

some roughness degree r is added to the right-hand side of the inequality. Such mappings may arise in quite natural ways. For example, if a given k contractive mapping T_0 defined by $||T_0x - T_0y|| \le k ||x - y||$ for all $x, y \in M$ cannot be determined exactly but it is only approximated by T , where $r =$ $2 \max_{x \in M} ||T_0 x - Tx||$ denotes the double maximal approximation error, then

$$
||Tx - Ty|| \le ||T_0x - Tx|| + ||Tx - Ty|| + ||Ty - T_0y||
$$

$$
\le k ||x - y|| + r
$$

for all $x, y \in M$, i.e. T is r-roughly k-contractive.

Actually, such mappings were considered independently by Kirk [10], but his main attention was devoted to so-called h –non-expansive mappings defined by

 $||Tx - Ty|| \le \max{||x - y||, h}$ (x, y ∈ M) (1.2)

and to Hölder continuous mappings.

Since roughly contractive mappings cannot always possess fixed points, we have to consider so-called γ -fixed or γ -invariant points defined by $||x^* - Tx^*|| \le$ γ for some $\gamma > 0$, as already done for discontinuous mappings by Klee [12], Cromme and Diener [5 - 6], Bula [4], and Kirk [10]. In [16 - 18], we determined the best invariant degree γ of roughly contractive mappings in Minkowski and Euclidean spaces.

We now take advantage of the self-Jung constant $J_s(X)$ defined by (2.2) below to get a better result for non-Euclidean n-dimensional normed spaces. In Section 2, the self-Jung constant is used to estimate the distance between some set S and any point $z \in \text{conv } S \setminus S$. This is applied in Section 3 to state the following fixed point property of an r-roughly k-contractive mapping on a closed and convex subset M of some *n*-dimensional normed space X :

$$
\forall \varepsilon > 0 \; \exists x^* \in M : \quad \|x^* - Tx^*\| < \frac{1}{2} \, J_s(X) \, r + \varepsilon.
$$

Moreover, if

 $\dim X = 1$,

or X is some two-dimensional strictly convex normed space,

or X is some Euclidean space,

then there exists $x^* \in M$ such that

$$
||x^* - Tx^*|| \le \frac{1}{2} J_s(X) r
$$

(Theorem 3.3).

2. Distance estimation by using self-Jung constant

For a bounded set $S \subset X$,

$$
\text{diam } S = \sup_{x,y \in S} ||x - y|| \quad \text{and} \quad r_A(S) = \inf_{x \in A} \sup_{y \in S} ||x - y|| \tag{2.1}
$$

are the diameter and the relative radius of S with respect to A. In particular, $r_X(S)$ and r_{conv} sS are called its absolute radius and self-radius, respectively.

The ratio between absolute radius and diameter was studied by Jung [8] who investigated Euclidean spaces. Later on, Bohnenblust [3], Leichtweiß [13], and Grünbaum [7] considered this problem in Minkowski spaces. These works started a research direction of determining the supremum of this ratio which is called Jung's constant (see, e.g., [1, 19, 20] and references therein).

In this paper, we are interested in a similar one, namely the *self-Jung* constant of X defined by

$$
J_s(X) = \sup \left\{ \frac{2 r_{\text{conv }S}(S)}{\text{diam }S} \middle| S \subset X \text{ is } \begin{bmatrix} \text{bounded} \\ \text{non-empty} \\ \text{non-singleton} \end{bmatrix} \right\}.
$$
 (2.2)

Obviously,

$$
\frac{1}{2}\operatorname{diam} S \le r_X(S) \le r_{\text{conv }S}(S) \le \operatorname{diam} S
$$
\n
$$
1 \le J_s(X) \le 2.
$$
\n(2.3)

For n-dimensional spaces, we have

$$
J_s(\ell_2^n) = \left(\frac{2n}{n+1}\right)^{1/2} \tag{2.4}
$$

which follows from the classical results of Jung $[8]$ and Klee $[11]$ (see [14]), and

$$
J_s(X) \le \frac{2n}{n+1} \qquad \text{if } \dim X = n \tag{2.5}
$$

 $(see [1]).$

Let us now use the self-Jung constant to estimate the distance between a set S and any point $z \in \text{conv } S \setminus S$.

Proposition 2.1. Let S be a bounded set of some finite-dimensional normed space X and $z \in \text{conv } S \setminus S$. Then there exists $s \in S$ such that

$$
||z - s|| \le \frac{1}{2} J_s(X) \operatorname{diam} S.
$$

Proof. Since $z \in \text{conv } S \setminus S$, there exists a set $S_k = \{x_1, \ldots, x_k\} \subset S$ of $k \geq 2$ linearly independent points such that $z \in \text{ri}(\text{conv } S_k)$, where ri A denotes the relative interior of A.

Let us prove by induction

$$
\min_{1 \le i \le k} \|z - x_i\| \le \frac{1}{2} J_s(X) \operatorname{diam} S. \tag{2.6}
$$

For $k = 2$, $||x_1 - x_2|| \leq \text{diam } S$ and (2.3) yield

$$
\min\left\{\|z-x_1\|,\|z-x_2\|\right\} \le \frac{1}{2}\,\|x_1-x_2\| \le \frac{1}{2}\,J_s(X)\operatorname{diam} S.
$$

Assuming now that (2.6) is true for $2 \leq k \leq l$, we have to show it for $k = l+1$. Consider the relative center set of S_k with respect to the compact set conv S_k

$$
\mathcal{C}_{\text{conv }S_k}(S_k) = \left\{ x \in \text{conv }S_k : \sup_{y \in S_k} ||x - y|| = r_{\text{conv }S_k}(S_k) \right\}
$$

which is obviously non-empty. For any fixed $c \in \mathcal{C}_{conv S_k}(S_k)$, (2.1) and (2.2) imply

$$
\max_{1 \le i \le k} ||c - x_i|| \le r_{\text{conv } S_k}(S_k)
$$

\n
$$
\le \frac{1}{2} J_s(X) \operatorname{diam} S_k
$$

\n
$$
\le \frac{1}{2} J_s(X) \operatorname{diam} S.
$$
\n(2.7)

If $z = c$, then (2.6) follows from (2.7). Otherwise, the ray from c through z cuts the boundary conv $S_k \setminus \text{ri}(\text{conv } S_k)$ at some point $z' \in \text{conv } S_{k'}$ where $S_{k'} = \{x_{i_1}, \ldots, x_{i_{k'}}\} \subset S_k$ and $k' \leq k - 1 = l$. If $z' \in S_{k'}$, then $z \in [c, z']$ yields

$$
||z - z'|| \le ||c - z'|| \le r_{\text{conv }S_k}(S_k) \le \frac{1}{2} J_s(X) \text{ diam } S.
$$

If $z' \notin S_{k'}$, then $z' \in \text{conv } S_{k'} \setminus S_{k'}$. By the inductive assumption, there is some $y \in S_{k'} \subset S$ such that $||z' - y|| \leq \frac{1}{2} J_s(X) \text{ diam } S$. Therefore, it follows from $z \in [c, z']$ and (2.7) that

$$
||z - y|| \le \max \{ ||c - y||, ||z' - y|| \} \le \frac{1}{2} J_s(X)
$$
diam S

which completes our proof

Note that the assumption $z \in \text{conv } S \setminus S$ in the previous proposition and in the following one means at least diam $S > 0$.

Proposition 2.2. Suppose X is some two-dimensional strictly convex normed space or some Euclidean space, $S = \{x_1, \ldots, x_k\} \subset X$, and $z \in$ conv $S \setminus S$. Then either

$$
\min_{1 \le i \le k} \|z - x_i\| < r_{\text{conv } S}(S) \le \frac{1}{2} J_s(X) \text{ diam } S
$$

or

$$
||z - x_i|| = r_{\text{conv }S}(S) \le \frac{1}{2} J_s(X) \operatorname{diam} S
$$
 $(i = 1, ..., k).$

Proof. By (2.2) , we have to prove by induction that

$$
\min_{1 \le i \le k} ||z - x_i|| \ge r_{\text{conv }S}(S) \tag{2.8}
$$

implies

$$
||z - x_i|| = r_{\text{conv }S}(S) \qquad (i = 1, ..., k). \tag{2.9}
$$

If dim $S = 1$, then all points of S lie in some segment, say for instance, in the segment $[x_1, x_k]$ connecting x_1 and x_k . Then $r_{conv\ S}(S) = \frac{1}{2} \operatorname{diam} S$ 1 $\frac{1}{2} \| x_1 - x_k \|$ and

$$
\min_{1 \le i \le k} \|z - x_i\| < r_{\text{conv } S}(S) \qquad \text{if } z \neq \frac{1}{2} (x_1 + x_k).
$$

Therefore, (2.8) implies $z=\frac{1}{2}$ $\frac{1}{2}(x_1 + x_k)$ and $\max_{1 \le i \le k} ||z - x_i|| \le r_{\text{conv }S}(S)$. Hence, (2.9) follows from (2.8) .

Assume now that the assertion is true for dim $S \leq l$, and (2.8) holds for some set $S = \{x_1, \ldots, x_k\}$ with dim $S = l + 1 \geq 2$. We have to show (2.9) now. Due to [11: Corollary 3], $r_X(S) = r_{conv\ S}(S)$ and the absolute center set

$$
\mathcal{C}_X(S) = \left\{ x \in X : \sup_{y \in S} ||x - y|| = r_X(S) \right\}
$$

is a singleton contained in conv S, say $\mathcal{C}_X(S) = \{c\}$. If $c = z$, then similarly as above, (2.9) follows from (2.8). If $c \neq z \in \text{ri}(\text{conv } S)$, then the ray L from c through z cuts the boundary conv $S \setminus \text{ri}(\text{conv } S)$ at $z' \in \text{conv } S_l$ for some $S_l \subset S$ with $\dim S_l \leq l$. If $z' \in S_l$, then $z \in [c, z']$ and $c \neq z$ yield

$$
||z - z'|| < ||c - z'|| \le r_X(S) = r_{\text{conv }S}(S),
$$

a contradiction to (2.8). Hence, $z' \in \text{conv } S_l \backslash S_l$ and $S_l \cap L = \emptyset$. Consequently, for all $y \in S_l$, the function $g(x) = ||x-y||$ is strictly convex on L, which implies by $||c - y|| \leq r_X(S)$, $||z - y|| \geq r_{conv(S)}(S) = r_X(S)$ and $z' \in L \setminus [c, z]$ that

$$
||z'-y|| > r_X(S) \ge r_X(S_l) = r_{\text{conv } S_l}(S_l) \qquad (y \in S_l),
$$

i.e. (2.8) is satisfied for z' and S_l instead of z and S while (2.9) fails, a contradiction to the inductive assumption.

If $c \neq z \notin \text{ri}(\text{conv } S)$, then $z \in \text{conv } S \setminus S$ implies $z \in \text{ri}(\text{conv } S_l)$ for some $S_l \subset S$ with dim $S_l \leq l$. By the inductive assumption, it follows from

$$
\min_{y \in S_l} \|z - y\| \ge \min_{y \in S} \|z - y\| \ge r_{\text{conv } S}(S) = r_X(S) \ge r_X(S_l)
$$

and dim $S_l \leq l$ that

$$
||z - y|| = r_X(S) = r_X(S_l) \qquad (y \in S_l).
$$

Therefore, by the strict convexity of the normed space X and $||c - y|| \le$ $r_X(S) = r_X(S_l)$ we have

$$
\left\|\frac{1}{2}(c+z) - y\right\| < r_X(S_l) \qquad (y \in S_l),
$$

a contradiction to the definition of $r_X(S_l)$

3. Fixed-point theorems

Following the Banach fixed-point theorem [2], to investigate the invariant property of an r-roughly k-contractive mapping $T: M \to M$, we consider the iteration

$$
x_0 \in M
$$

$$
x_{i+1} = Tx_i \quad (i \ge 0)
$$
 (3.1)

Without assuming M to be closed and convex, we proved in [18] the following γ -fixed-point theorem.

Theorem 3.1. Let (M, d) be a metric space and let $T : M \rightarrow M$ be an r-roughly k-contractive mapping, i.e. $d(Tx,Ty) \leq k d(x,y) + r$ for all $x, y \in M$, where $r > 0$ and $k \in (0,1)$ are given. Suppose $x_0 \in M$ and $a := d(x_0, Tx_0) - \frac{r}{1-r}$ $\frac{r}{1-k} > 0.$

- (a) If $\gamma > \frac{r}{1-k}$ and $i \geq \log_k$ ¡ $(\gamma - \frac{r}{1-r})$ $\frac{r}{1-k}$ (a^{-1}) , then x_i determined by (3.1) is a γ -invariant point under T, i.e. $d(x_i, Tx_i) \leq \gamma$.
- (b) If $x^* \in M$ is a cluster point of the sequence (x_i) , then it is a γ *invariant point under T with* $\gamma = \frac{r}{1-r}$ $\frac{r}{1-k}$.
- (c) For every $\gamma > 0$, the set I_{γ} of all γ -invariant points (of T) is bounded. If $\gamma \geq \frac{r}{1-r}$ $\frac{r}{1-k}$, then I_{γ} is invariant under T, i.e. $TI_{\gamma} \subset I_{\gamma}$.

Consequently, if M is a compact metric space or if it is a closed subset of some finite-dimensional metric space, then each r -roughly k-contractive mapping $T: M \to M$ admits at least one γ -invariant point with $\gamma = \frac{r}{1-r}$ $\frac{r}{1-k}$.

In general there is no smaller invariant degree γ as given in Theorem 3.1 if M is not assumed to be convex. This fact was shown in [18] by considering the mapping $T : M_1 \cup M_2 \to M_1 \cup M_2$ defined by

$$
Tx = \begin{cases} \frac{r}{2} - kx & \text{if } x \in M_1 = (-\infty, -\frac{r}{2(1-k)})\\ -\frac{r}{2} - kx & \text{if } x \in M_2 = (\frac{r}{2(1-k)}, \infty). \end{cases}
$$

This mapping is r-roughly k-contractive but has no γ -invariant points with $\gamma \leq \frac{r}{1-r}$ $\frac{r}{1-k}$. If T is extended continuously to the closure

$$
\mathrm{cl}\, M_1 \cup \mathrm{cl}\, M_2 = \Big(-\infty, -\frac{r}{2(1-k)}\Big] \cup \Big[\frac{r}{2(1-k)}, \infty\Big),
$$

i.e. $T \frac{-r}{2(1-r)}$ $\frac{-r}{2(1-k)} = \frac{r}{2(1-k)}$ $rac{r}{2(1-k)}$ and $T\frac{r}{2(1-k)}$ $\frac{r}{2(1-k)} = \frac{-r}{2(1-k)}$ $\frac{-r}{2(1-k)}$, then $\frac{-r}{2(1-k)}$ and $\frac{r}{2(1-k)}$ are γ -invariant with $\gamma = \frac{r}{1}$ $\frac{r}{1-k}$ and there exists no γ-invariant point with $\gamma < \frac{r}{1-k}$.

Theorem 3.1 says that for all $\gamma > \frac{r}{1-k}$ there exists an $x \in M$ such that $d(x,Tx) \leq \gamma$. Consequently,

$$
\inf\{d(x,Tx):x\in M\}\leq \frac{r}{1-k}.
$$

This inequality was shown by Kirk [10]. Note that the infimum $\frac{r}{1-k}$ is not necessarily attainable as shown by the above example.

For convex M , in [16, 18] we obtained the following result.

Theorem 3.2. Let $T : M \to M$ be an r-roughly k-contractive mapping on a closed and convex subset M of some n-dimensional normed space X. If $\dim X = 1$, then there exists $x^* \in M$ such that

$$
||x^* - Tx^*|| \le \frac{1}{2}r. \tag{3.2}
$$

If dim $X \geq 2$, then for all $\varepsilon > 0$ there exists $x^* \in M$ such that

$$
||x^* - Tx^*|| < \frac{n}{n+1}r + \varepsilon.
$$
\n(3.3)

If, in addition, the normed space X is strictly convex, then there exists $x^* \in M$ such that

$$
||x^* - Tx^*|| < \frac{n}{n+1}r.
$$
 (3.4)

If X is the n-dimensional Euclidean space, then there exists $x^* \in M$ such that

$$
||x^* - Tx^*|| \le \left(\frac{n}{2(n+1)}\right)^{1/2}r.
$$
\n(3.5)

It is worth mentioning that iteration (3.1) is not suitable to approximate γ -invariant points with $\gamma < \frac{r}{1-k}$ even if they exist, as pointed out in [18] by considering \sqrt{r}

$$
Tx = \begin{cases} \frac{r}{2} - kx & \text{if } x \le 0\\ -\frac{r}{2} - kx & \text{if } x > 0. \end{cases}
$$

For any $\gamma \geq \frac{1}{2}$ $\frac{1}{2}r$, each x satisfying $-\frac{\gamma-\frac{r}{2}}{1+k} \leq x \leq \frac{\gamma-\frac{r}{2}}{1+k}$ is a γ -invariant point of this r-roughly k-contractive mapping $T : \mathbb{R} \to \mathbb{R}$. But, for any starting point $x_0 \in \mathbb{R}$, the sequence (x_i) determined by (3.1) has only two cluster points $x^{-} = -\frac{r}{2(1-x^2)}$ $\frac{r}{2(1-k)}$ and $x^+ = \frac{r}{2(1-k)}$ $\frac{r}{2(1-k)}$, which satisfy $Tx^{-} = x^{+}$, $Tx^{+} = x^{-}$, and $|x^- - Tx^-| = |x^+ - Tx^+| = |x^- - x^+| = \frac{r}{1-}$ $\frac{r}{1-k}$.

Let us now use the self-Jung constant $J_s(X)$ to improve Theorem 3.2.

Theorem 3.3. Let $T : M \to M$ be an r-roughly k-contractive mapping on a closed and convex subset M of some n-dimensional normed space X. Then for all $\varepsilon > 0$ there exists $x^* \in M$ such that

$$
||x^* - Tx^*|| < \frac{1}{2} J_s(X) r + \varepsilon.
$$
 (3.6)

If dim $X = 1$, or X is some two-dimensional strictly convex normed space, or X is some Euclidean space, then there exists $x^* \in M$ such that

$$
||x^* - Tx^*|| \le \frac{1}{2} J_s(X) r.
$$
 (3.7)

Proof. (a) Take any $x_0 \in M$ and define

$$
\widehat{B} = \left\{ x \in X : ||x - x_0|| \leq \hat{r} \right\}
$$

where $\hat{r} = \frac{r + ||x_0 - Tx_0||}{1 - k}$ $\frac{x_0 - Tx_0||}{1-k}$. Then $\widehat{M} = M \cap \widehat{B}$ is non-empty, compact, and convex, and T maps \widehat{M} into itself because, for all $x \in \widehat{M}$, (1.1) implies

$$
||Tx - x_0|| \le ||Tx - Tx_0|| + ||Tx_0 - x_0||
$$

\n
$$
\le k||x - x_0|| + r + (1 - k)\hat{r} - r
$$

\n
$$
\le \hat{r},
$$

i.e. $Tx \in \widehat{M}$.

(b) Consider \overline{T} : $\widehat{M} \to 2^{\widehat{M}}$ defined by $\overline{T}(x) = \text{conv }\overline{M}(x)$, where o

$$
\overline{M}(x) = \left\{ y \in \widehat{M} : \exists (x_i) \subset \widehat{M} \text{ such that } x_i \to x, Tx_i \to y \right\}.
$$
 (3.8)

For all $x \in \widehat{M}$, $\overline{M}(x)$ is closed and non-empty because \widehat{M} is compact. It is also bounded because diam $\overline{M}(x) \leq r$ follows from (1.1) and (3.8). Since X

is finite-dimensional, $\overline{M}(x)$ and conv $\overline{M}(x)$ are compact (see [22: p. 40]). It was shown in [6] that \overline{T} is upper semi-continuous. Therefore, by Kakutani's theorem (see [9, 23]), there exists $\bar{x} \in \widehat{M}$ such that $\bar{x} \in \overline{T}(\bar{x}) = \text{conv } \overline{M}(\bar{x})$.

(c) By Proposition 2.1 and diam $\overline{M}(\bar{x}) \leq r$, there is a $\bar{y} \in \overline{M}(\bar{x})$ such that

$$
\|\bar{x} - \bar{y}\| \le \frac{1}{2} J_s(X) \operatorname{diam} \overline{M}(\bar{x}) \le \frac{1}{2} J_s(X) r.
$$

Due to (3.8), for any $\varepsilon > 0$ there exists a point $x^* \in \widehat{M} \subset M$ such that

$$
||x^* - \bar{x}|| < \frac{\varepsilon}{2} \qquad \text{and} \qquad ||Tx^* - \bar{y}|| < \frac{\varepsilon}{2} \tag{3.9}
$$

which yields immediately

$$
||x^* - Tx^*|| \le ||x^* - \bar{x}|| + ||\bar{x} - \bar{y}|| + ||\bar{y} - Tx^*|| < \frac{1}{2} J_s(X) r + \varepsilon,
$$

i.e. (3.6) holds true.

(d) If dim $X = 1$, then $J_s(X) = 1$, and therefore, (3.7) follows from (3.2). Assume now that X is a two-dimensional strictly convex normed space or it is the *n*-dimensional Euclidean space. If $\|\bar{x} - T\bar{x}\| \leq \frac{1}{2} J_s(X) r$, then (3.7) is fulfilled for $x^* = \bar{x}$. Otherwise, assume

$$
\|\bar{x} - T\bar{x}\| > \frac{1}{2} J_s(X) r \ge r_{\text{conv }S}(S). \tag{3.10}
$$

Since $\bar{x} \in \text{conv } \overline{M}(\bar{x})$, there exists a finite set $\widetilde{M} \subset \overline{M}(\bar{x})$ such that $\bar{x} \in$ conv \widetilde{M} . For $S = \widetilde{M} \cup T\bar{x}$, we have $\bar{x} \in \text{conv } S$, and diam $S \leq r$ follows from (1.1) and (3.8). Consequently, Proposition 2.2 and (3.10) imply that there exists $\bar{y} \in \widetilde{M} \subset \overline{M}(\bar{x}) \subset \widehat{M} \subset M$ satisfying

$$
\|\bar{x} - \bar{y}\| < r_{\text{conv }S}(S) \le \frac{1}{2} J_s(X) \, r.
$$

By choosing $\varepsilon = \frac{1}{2}$ $\frac{1}{2} J_s(X) r - ||\bar{x} - \bar{y}|| > 0$ and $x^* \in \widehat{M} \subset M$ satisfying (3.9), we obtain

$$
||x^* - Tx^*|| \le ||x^* - \bar{x}|| + ||\bar{x} - \bar{y}|| + ||\bar{y} - Tx^*||
$$

\n
$$
\le ||\bar{x} - \bar{y}|| + \varepsilon
$$

\n
$$
= \frac{1}{2} J_s(X) r,
$$

i.e. (3.7) holds true

Note that (3.3) and (3.5) in Theorem 3.2 can be derived from Theorem 3.3 by using the estimation of $J_s(X)$ for Euclidean and Minkowski spaces stated in (2.4) - (2.5) .

In general, the invariant degrees given in Theorem 3.3 should be the best ones for r-roughly k-contractive mappings. This can be illustrated by the following

Example 3.1. Let $S = \{x_1, ..., x_{n+1}\}$ be a subset of $n+1$ linearly independent points of the *n*-dimensional Euclidean space ℓ_2^n , where $||x_i - x_j|| = r > 0$ for $i \neq j$. Then $M = \text{conv } S$ is an *n*-dimensional regular simplex in ℓ_2^n , $\bar{x} = \frac{1}{n+1}$ $\frac{n+1}{n+1}$ $\frac{J}{n+1}$ $\prod_{i=1}^{n+1} x_i$ is its unique center, and

$$
||x_i - \bar{x}|| = r_M(M) = \frac{1}{2} J_s(\ell_2^n) r = \left(\frac{n}{2(n+1)}\right)^{1/2} r \quad (1 \le i \le n+1).
$$

For any $x \in M$ we choose $Tx \in S$ such that $||x - Tx|| = \max_{s \in S} ||x - s||$. Then

$$
||Tx - Ty|| \leq \text{diam } M = r \leq k ||x - y|| + r \quad (x, y \in M, \ 0 < k < 1)
$$

and

$$
\|\bar{x} - T\bar{x}\| = r_M(M) = \frac{1}{2} J_s(\ell_2^n) r < \|x - Tx\| \quad (x \in M \setminus \{\bar{x}\}).
$$

Hence, the mapping $T : M \to M$ is r-roughly k-contractive for arbitrary $k \in (0, 1)$ and $\frac{1}{2} J_s(\ell_2^n) r$ is the smallest invariant degree of T.

4. Concluding remarks

Due to Kirk [10], an r-roughly k-contractive mapping $T : M \to M$ is hnon-expansive for $h = \frac{r}{1-r}$ $\frac{r}{1-k}$, and if M is a non-empty bounded closed convex subset of a Banach space X, then an h–non-expansive mapping $T: M \to M$ satisfies inf{ $||x-Tx|| : x \in K$ } $\leq h$. This result allows to ensure the existence of γ -invariant points of r-roughly k-contractive mappings only for $\gamma \geq \frac{r}{1-r}$ $\frac{r}{1-k}$ which is just the same as in Theorem 3.1, where the convexity of M is not required.

By (2.5), if dim $X = n$, then $J_s(X) \leq \frac{2n}{n+1}$, which implies $\frac{1}{2} J_s(X) r \leq$ $\frac{nr}{n+1} < \frac{r}{1-}$ $\frac{r}{1-k}$, i.e. the invariant degrees given in Theorem 3.3 are better than the ones given in Theorem 3.1, especially for k near 1.

In particular, if $M = [a, b] \subset \mathbb{R}^1$ and if $T : M \to M$ is h-non-expansive, then Kirk [10] showed that there exists $z \in M$ satisfying $|z - Tz| \leq \frac{h}{2}$. This is the best result available for such h –non-expansive mappings. But if this result is applied to an r-roughly k-contractive mapping $T : M \to M$ as an h–non-expansive one for $h = \frac{r}{1-r}$ $\frac{r}{1-k}$, then we only obtain the invariant degree h $\frac{h}{2} = \frac{r}{2(1-r)}$ $\frac{r}{2(1-k)}$, which is also greater than the invariant degree $\gamma = \frac{r}{2}$ $rac{r}{2}$ given in Theorems 3.2 - 3.3.

By using the result of Bula $[4]$ for so-called uniformly w-continuous mappings, we can show that an r-roughly k-contractive mapping $T : M \to M$ possesses γ -invariant points with $\gamma = r + \varepsilon$ for arbitrary small ε , which is obviously greater than $\frac{nr}{n+1} \geq \frac{1}{2}$ $\frac{1}{2} J_s(X) r$.

In [15], we obtained similar results for discontinuous self-mappings on compact convex subsets of arbitrary normed spaces. By defining the self-Jung constant analogously, similar results are available for metric spaces.

Acknowledgment. The author thank the referees very much for their valuable and constructive comments.

References

- [1] Amir, D.: On Jung's constant and related constants in normed linear spaces. Pacific J. Math. 118 (1985), 1 – 15.
- [2] Banach, S.: Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fund. Math. 3 (1922), 133 – 181.
- [3] Bohnenblust, F.: Convex regions and projections in Minkowski spaces. Ann. Math. 39 (1938), 301 – 308.
- [4] Bula, I.: On the stability of the Bohl-Brouwer-Schauder theorem. Nonlin. Anal.: Theory, Method & Appl. 26 (1996), 1859 – 1868.
- [5] Cromme, L. J.: Fixed point theorems for discontinuous functions and applica*tions.* Nonlin. Anal.: Theory, Method & Appl. 30 (1997), 1527 – 1534.
- [6] Cromme, L. J. and I. Diener: Fixed point theorems for discontinuous mapping. Math. Programming 51 (1991), 257 – 267.
- $[7]$ Grünbaum, B.: On some covering and intersection properties in Minkowski spaces. Pacific J. Math. 9 (1959), 487 – 494.
- $[8]$ Jung, H.: Über die kleinste Kugel, die eine räumliche Figur einschließt. J. Reine Angew. Math. 123 (1901), 241 – 257.
- [9] Kakutani, S.: A generalization of Brouwer's fixed point theorem. Duke Math. J. 8 (1941) , $457 - 459$.
- [10] Kirk, W. A.: Hölder continuity and minimal displacement. Numer. Funct. Anal. Optimiz. 19 (1998), 71 – 79.
- [11] Klee, V.: Circumspheres and inner products. Math. Scand. 8 (1960), 363 370.
- [12] Klee, V.: Stability of the fixed-point property. Coll. Math. 8 (1961), 43 46.
- [13] Leichtweiß, K.: Zwei Extremalprobleme der Minkowski-Geometrie. Math. Z. 62 (1955), $37 - 49$.
- [14] Maluta, E.: Uniformly normal structure and related coefficients. Pacific J. Math. 111 (1984), 357 – 369.
- [15] Phu, H. X.: Fixed-point theorems for discontinuous mappings. Preprint. Nat. Center for Sci. & Techn. of Vietnam, Inst. Math., Preprint 2002/19.
- [16] Phu, H. X.: Some remarks on circumradii of sets and roughly contractive mappings. Vietnam J. Math. 31 (2003), 115 – 122.
- [17] Phu, H. X. and T. V. Truong: Some results on approximately fixed points for the class of roughly contractive mappings. Preprint. Nat. Center for Sci. & Techn. of Vietnam, Inst. Math., Preprint 1999/8.
- [18] Phu, H. X. and T. V. Truong: Invariant property of roughly contractive mappings. Vietnam J. Math. 28 (2000), 275 – 290.
- [19] Pichugov, S. A.: On Jung's constant of the space L_p (in Russian). Mat. Zemetki 43 (1988), 604 – 614; English transl.: Math. Notes 43 (1988), 348 – 354.
- [20] Routledge, N.: A result in Hilbert space. Quart. J. Math. 3 (1952), $12 18$.
- [21] Truong, T. V.: Some problems on the fixed-points theory (in Vietnamese). Master thesis. Nat. Center for Sci. & Techn. of Vietnam, Inst. Math. 1998.
- [22] Valentine, F. A.: Convex Sets. New York etc.: McGraw-Hill Book Comp. 1964.
- [23] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. Vol. I: Fixed-Point Theorems. New York etc.: Springer-Verlag 1986.

Received 02.12.2002, in revised form 02.05.2003