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On a Class of Inclusions
in Ordered Spaces

N. B. Huy, D. B. Dung and N. H. Khanh

Abstract. Let W be a non-empty set, X an ordered topological space, L : W → X
a single-valued operator and N : W → 2X \ {∅} a set-valued operator. Under
approximate assumptions on monotonicity of L and N we prove existence results
for inclusions Lx ∈ Nx. An application of the obtained results to implicit elliptic
equations of the form Lu = f(x, u, Lu) is given.
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1. Introduction

Fixed point theorems for single-valued increasing operators in ordered spaces
are widely investigated and have found various applications to differential
equations (see [3, 6] and references therein). Recently, for some operators L
and N , the existence of solutions for operator equations of the type Lx = Nx
in ordered spaces with applications to implicit differential equations were given
in [4]. In the present paper we shall deal with similar results for multi-valued
operators.

The notion of monotonicity of multi-valued operators and the existence
of fixed points for increasing multi-valued operators were first given by Nish-
nianidze in [11]. Since the appearance of that paper the study of increasing
multi-valued operators has received little attention. In our recent paper [9] we
have presented some simple fixed point theorems for increasing multi-valued
operators. More interesting fixed point theorems with an application to dis-
continuous elliptic equations are given in [7, 8]. Further extensions have been
obtained in [5].
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In the present paper we shall use a general fixed point theorem of [5]
to prove existence results for inclusions of the form Lx ∈ Nx. Then we
demonstrate applicability of the obtained results, using them as an alternative
way to prove the existence for solutions of implicit elliptic equations.

2. Solvability of Inclusions in ordered Spaces

Let (X,≤) be an ordered topological space, that is a topological space X in
which there is defined an ordering ”≤” such that the sets {y ∈ X| y ≤ x} and
{y ∈ X|x ≤ y} are closed for all x ∈ X. Throughout this section we assume
that (X,≤) has the following property:

(C) Each well-ordered chain C of X whose increasing sequences converge
contains an increasing sequence which converges to sup C.

It is proved that each ordered metric space has the property (C) [6: Proposi-
tion 1.1.5] and that each ordered normed space equipped with weak topology
has property (C) [3: Lemma A.3.1].

Following Nishnianidze [11] we define a pre-ordering in the set 2X \{∅} as

A < B if and only if ∀ a ∈ A ∃ b ∈ B : a ≤ b.

A set A ⊂ X is said to be directed upwards if

∀ x, y ∈ A ∃ z ∈ A : x ≤ z and y ≤ z.

A multi-valued operator F : M ⊂ X → 2X\{∅} is called increasing if x, y ∈ M
with x ≤ y implies Fx < Fy. If x ∈ Fx, then x is called fixed point of F .

In the sequence we need the following two general fixed point theorems.

Theorem A [5]. Let F : M ⊂ X → 2X \ {∅} satisfy the following
hypotheses:

(F1) The set M0 = {x ∈ M |x < Fx} is non-empty.

(F2) If {xn} and {yn} are increasing sequences in M0 and if yn ∈ Fxn (n ∈
N), then {yn} converges in X.

(F3) If x ∈ M0 and x ≤ y ∈ Fx, then y ∈ M0.

(F4) Each increasing and convergent sequence of M0 has an upper bound
in M0.

Then the set M0 has a maximal element, and each maximal element of M0

is also a maximal fixed point of F . Further, if M0 is directed upwards, then
max M0 exists and is the greatest fixed point of F .
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Theorem B [6]. Let X be an ordered metric space and f : M ⊂ X → M
be a single-valued increasing operator such that:

1) There exists an element u0 ∈ M satisfying u0 ≤ f(u0).
2) The sequence {f(un)} converges in M whenever {un} is an increasing

sequence in M0 = {u ∈ M |u0 ≤ u ≤ f(u)}.
Then f has a least fixed point in M0.

Let W be a non-empty set, X an ordered topological space, L : W → X
a single-valued operator and N : W → 2X \ {∅} set-valued. Motivated by the
study in [4] we want to establish some existence results for solutions of the
inclusion

Lu ∈ Nu. (1)

By adaptation of a monotonicity condition in [4] to the multi-valued case we
can apply Theorem A to obtain the solvability of inclusion (1).

Theorem 1. Let L and N be operators satisfying the following hypothe-
ses:

(N1) The set W0 = {u ∈ W |Lu < Nu} is non-empty.
(N2) If un ∈ W0 and yn ∈ Nun (n ∈ N) such that {Lun} and {yn} are

increasing, then {yn} converges.
(N3) If u ∈ W0 and Lu ≤ x ∈ Nu, then x ∈ L(W0).
(N4) Every increasing and convergent sequence of L(W0) has an upper

bound in L(W0).

Then inclusion (1) has a solution.

Proof. Let us define two multi-valued operators

L−1 : L(W0) → 2W0 \ {∅}
F : L(W0) → 2X \ {∅}

by
L−1x = {u ∈ W0|Lu = x}

Fx = N ◦ L−1x =
⋃

u∈L−1x

Nu.

Clearly, if x is a fixed point of F and u ∈ L−1x, then u will be a solution of
inclusion (1). We shall verify that the defined above operator F satisfies all
hypotheses (F1) - (F4) of Theorem A.

First we observe from the definition of F that

y ∈ Fx ⇐⇒ ∃u ∈ W0 : y ∈ Nu and Lu = x (2)
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and, consequently,

u0 ∈ W0 =⇒ x0 = Lu0 ∈ M0 = {x|x < Fx}. (3)

Assuming that x ≤ y ∈ Fx, we shall prove y ∈ M0. By (2) there exists u ∈ W0

such that x = Lu ≤ y ∈ Nu and so y = Lv for some v ∈ W0 by Hypothesis
(N3). Therefore, y ∈ M0 by (3). If {xn} and {yn} are two increasing sequences
of M0 such that yn ∈ Fxn, then there exists un ∈ W0 satisfying xn = Lun

and yn ∈ Nun (n ∈ N) and hence {yn} converges by Hypothesis (N2). Thus,
Hypothesis (F2) of Theorem A holds.

Finally, if {xn} ⊂ M0 is an increasing and convergent sequence, then
{xn} has an upper bound in M0. Indeed, we have xn = Lun (n ∈ N) with
{un} ⊂ W0 and hence there exists u ∈ W0 such that Lun ≤ Lu by Hypothesis
(N4) or, equivalently, xn ≤ x with x = Lu ∈ M0. The proof is complete

Theorem 2. Let N and L be operators satisfying Hypotheses (N1), (N2),
(N4) of Theorem 1 and the following hypothesis:

(N5) The operator L is surjective, moreover Lu ≤ Lv implies Nu < Nv.

Then inclusion (1) has a solution.

Proof. It is sufficient to show that Hypothesis (N3) of Theorem 1 holds.
Assume Lu ≤ x ∈ Nu and choose v ∈ W such that x = Lv. We have Lv < Nu
and Lu ≤ Lv. This implies Nu < Nv and so Lv < Nv. Thus x ∈ L(W0) and
Hypothesis (N3) holds

Theorem 3. Let Hypotheses (N1) and (N2) of Theorem 1 and Hypothesis
(N5) of Theorem 2 hold. Assume, in addition, the following:

(N6) For each u ∈ W the set Nu is directed upwards and each increasing
sequence of Nu converges to an element of Nu.

Then inclusion (1) has a solution.

Proof. Let us prove that the combination of Hypotheses (N5) and (N6)
implies Hypothesis (N4). For this assume that {Lun} is an increasing sequence
in L(W0) such that x = lim Lun exists in X. Assuming x = Lu, we have from
Hypothesis (N5) that Nun < Nu. Since Lun < Nun, then Lun < Nu whence
there is yn ∈ Nu such that Lun ≤ yn (n ∈ N). Since Nu is directed upwards,
we can assume that {yn} is increasing. Therefore, y = lim yn exists and
belongs to Nu. Assuming y = Lv we have Lu ≤ Lv, hence Nu < Nv. Since
Lu < Nu we have Lv < Nv and so Lun ≤ Lv ∈ L(W0). Thus, Hypothesis
(N4) holds. The theorem is completely proved
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3. Applications to implicit elliptic equations

Let us consider the implicit elliptic boundary value problem

Lu = f(x, u, Lu)

u = 0

in Ω

on ∂Ω

}
(4)

in a bounded domain Ω ⊂ RN (N ≥ 3) with smooth boundary ∂Ω, where L
is a second order elliptic operator in divergence form Lu = −div(A(x) · ∇u)
with A(x) = (aij(x)) a symmetric matrix and aij ∈ L∞(Ω) satisfying for some
positive number µ

A(x)ξξ ≥ µ|ξ|2 for a.e x ∈ Ω and all ξ ∈ RN .

Problem (4) and its variants have been studied under various conditions on
the function f by Carl, Heikkilä, Marano and others (see [4, 8] and references
therein). We shall consider problem (4) for two cases. In the first case we
impose the same monotonicity condition on f as in [4] but the growth condi-
tions are different. In the second case the function f = f(x, u, v) is assumed
to be non-decreasing in u and continous in v. To study the first case we apply
Theorem 2, while the second case will be considered by Theorem 3.

In this section we make blanked assumption that the function f : Ω ×
R+ × R→ R is sup-measurable. Moreover:

(H1) 0 ≤ f(x, u, v) ≤ a(x)|u|α + b(x)|v|β for some α, β ∈ (0, 1), a ∈ Lp1(Ω)
and b ∈ Lp2(Ω) where p1 = 2∗

2∗−1−α , p2 = 2∗
(2∗−1)(1−β) and 2∗ = 2N

N−2 .

(H2) The function u 7→ f(x, u, v) is non-decreasing for all v ∈ R and a.e
x ∈ Ω.

(H3) There are a non-decreasing function g : R → R with g(0) = 0 and
an open bounded subset Ω′ b Ω satisfying f(x, u, v) ≥ g(u) for all
(x, u, v) ∈ Ω′ × R+ × R and limu→0+

g(u)
u > λ1 where λ1 is the first

eigenvalue of the operator L on Ω′.

Lemma. There exists a function u0 ∈ W 1,2
0 (Ω) such that Lu0 ∈ L(2∗)′

and
Lu0 ≤ f(x, u0, Lu0) a.e on Ω. (5)

Proof. Let v0 = εϕ, where ϕ is the first eigenfunction of the operator
L on Ω′, set to O in Ω \ Ω′ and ε > 0 is a number. Since v0 ∈ L2∗(Ω) and
(2∗)′ < 2∗, we have v0 ∈ L(2∗)′ ⊂ W−1,2. Therefore, there exists u0 ∈ W 1,2

0 (Ω)
such that Lu0 = v0. It follows from results of [2] that Lv0 ≤ λ1v0 in the weak
sense, consequently

〈Lv0 − λ1Lu0, w〉 = 〈Lv0 − λ1v0, w〉 ≤ 0
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for all 0 ≤ w ∈ W 1,2
0 (Ω) where 〈·, ·〉 stands for the dual pairing between

W 1,2
0 (Ω) and W−1,2

0 (Ω). Choosing w = (v0 − λ1u0)+ as a test function we
conclude v0 ≤ λ1u0 a.e on Ω. Therefore, if ε is small we have by condition
(H3) that

Lu0 − f(x, u0, Lu0) ≤ λ1u0 − g(u0) ≤ 0

a.e on Ω

Theorem 4. Let Hypotheses (H1) - (H3) hold. Assume, in addition, the
following:

(H4) The function v 7→ f(x, u, v) is non-decreasing for all u ∈ R and a.e.
x ∈ Ω.

Then problem (4) has a non-trivial solution.

Proof. Let u0 and v0 be as in Lemma and p = (2∗)′ = 2∗
2∗−1 . We define

the set
W =

{
u ∈ W 1,2

0 (Ω)|u ≥ u0 and Lu ∈ Lp(Ω)
}
.

For every u ∈ W let us consider the problem of finding v ∈ Lp(Ω) such that

v(x) = f
(
x, u(x), v(x)

)
:= Fu(v) for a.e x ∈ Ω. (6)

The function Fu(v) is measurable and satisfies

( ∫

Ω

|Fu(v)|pdx

) 1
p

≤
( ∫

Ω

ap(x)|u(x)|αpdx

) 1
p

+
( ∫

Ω

bp(x)|v(x)|βpdx

) 1
p

≤ ‖a‖p1‖u‖α
p′ + ‖b‖p2‖v‖β

p .

(7)

Therefore, Fu is a map from Lp(Ω) into itself, it is increasing and satisfies
Fu(v0) ≥ v0. Moreover, if {vn} is an increasing sequence such that vn ≤
Fu(vn), then it follows from (7) that the sequence {Fu(vn)} is bounded, hence
being increasing it converges. Consequently, the solution set of equation (6),
which we denote by Nu, is non-empty by Theorem B. Problem (4) is now
reduced to the inclusion Lu ∈ Nu, which will be solved by applying Theorem
2 for W defined above and X = Lp(Ω).

Let us verify conditions (N1), (N2), (N4) and (N5). If Lu1 ≤ Lu2, then
u1 ≤ u2 and we need to show Nu1 < Nu2. For an element v1 ∈ Nu1 one has
v1 = Fu1(v1) ≤ Fu2(v1). Therefore, equation (6) with u = u2 has a solution
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v ≥ v1 by Theorem B. Thus, there exists v ∈ Nu2 such that v ≥ v1. It follows
from the definition of Nu that

v1, v2 ∈ Nu =⇒ max(v1, v2) ∈ Nu. (8)

Hence, the set Nu is directed up-wards.
Considering increasing sequences {vn} and {Lun} satisfying vn ∈ Nun

and Lun < Nun, we shall show that {vn} converges. Actually, from property
(8) we can construct a sequence {wn} such that vn ≤ wn and

wn = Fun
(wn) (9)

Lun ≤ wn. (10)

Applying estimation (7) for u = un and v = wn we get

‖wn‖p ≤ C
(
1 + ‖un‖α

p′
)
. (11)

Using un as a test function in (10), by the inequalities of Hölder and Sobolev
we obtain

C

( ∫

Ω

u2∗
n dx

) 2
2∗

≤ µ

∫

Ω

|∇un|2dx ≤
( ∫

Ω

|wn|pdx

) 1
p
( ∫

Ω

u2∗
n dx

) 1
2∗

which implies ‖un‖2∗ ≤ 1
C ‖wn‖p. This estimation and (11) prove the bound-

edness of {wn}. The sequence {vn} is increasing and bounded, hence it con-
verges.

Finally, we verify condition (N4). If a sequence {Lun} is increasing and
satisfies Lun < Nun, then we can construct an increasing sequence {wn}
satisfying (9) - (10). The sequences {Lun} and {wn} converge in Lp(Ω) to
some functions Lu and w, respectively. Since Lun ≤ Lu one has un ≤ u,
hence Lu ≤ w ≤ f(x, u, w) by letting n → ∞ in the inequality Lun ≤ wn ≤
f(x, u, w). Consequently, the set Nu contains an element v ≥ Lu and so
Lu < Nu. Thus, we have proved that Lu is an upper bound of {Lun} in
L(W0). The theorem is completely proved

Theorem 5. Let hypotheses (H1) - (H3) be satisfied. Assume, in addi-
tion, the following:

(H5) The function v 7→ f(x, u, v) is continuous for all u ∈ R and a.e. x ∈ Ω.

Then problem (4) has a solution.

Proof. Let u0, v0 and W,X be defined as in the proof of Theorem 4, and
let us define a multi-valued operator N that assigns to each function u ∈ W
the set

Nu =
{

v| v is measurable and v(x) = f(x, u(x), v(x)) a.e on Ω
}

.
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Then problem (4) is reduced to the inclusion Lu ∈ Nu, which will be solved
by applying Theorem 3.

First we need to prove Nu 6= ∅ for every u ∈ W . In fact, since v0(x) ≤
f(x, u(x), v0(x)) and f(x, u(x), v) ≤ v for sufficiently large v, Hypothesis (H5)
yields that the set

H(x) =
{

v ∈ R| f(x, u(x), v)− v = 0
}

is non-empty and closed. Moreover, the multi-valued function x 7→ H(x) is
measurable by [1: Theorem 8.2.9]. This implies Nu 6= ∅ by [1: Measurable
Selection Theorem 8.1.3]. Furthermore, it follows from Hypotheses (H1) and
(H5) and the Dominated Convergence Theorem that the set Nu is closed in
Lp(Ω) and condition (N6) holds. Clearly, property (8) also holds for the de-
fined operator N . Since Lu1 ≤ Lu2 implies u1 ≤ u2, hence to verify condition
(N5) it is sufficient to show Nu1 < Nu2 if u1 ≤ u2. Indeed, for a given
function y ∈ Nu1 we define a multi-valued function x 7→ G(x) by

G(x) =
{

v ∈ R| y(x) ≤ v = f(x, u2(x), v)
}

.

Since y(x) = f(x, u1(x), y(x)) ≤ f(x, u2(x), y(x)), hence the equation v =
f(x, u2(x), v) has a solution v ≥ y(x), so G(x) 6= ∅. Again, the Measurable
Selection Theorem yields that the set Nu2 contains an element that is greater
than y.

Condition N2 can be verified as in proof of Theorem 4. The proof is
complete
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